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Spin squeezing in symmetric multiqubit states with two distinct Majorana spinors
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Majorana geometric representation of pure N-qubit states obeying exchange symmetry is em-
ployed to explore spin squeezing properties in the family {Dy_r,x}, 1 < k < [N/2] with two distinct
spinors. Dicke states are characterized by two orthogonal spinors and belong to this family - but
they are not spin squeezed. On the otherhand, those constituted by two non-orthogonal spinors

exhibit spin squeezing.
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I. INTRODUCTION

Spin squeezing in multiqubit states has been an intense
area of research iﬂ@] both for its theoretical importance
and for its applicability in entanglement-enhanced sens-
ing in quantum metrology. Spin squeezing implies pair-
wise entanglement ﬂE, ﬂ, M, @, @] and has gained
significance in the quantification of metrologically use-
ful entanglement in large number of ensembles of atomic
spins.

Kitegawa and Ueda ﬂﬂ] proposed a definition of spin
squeezing in terms of the uncertainty relation between
collective angular momentum components of a spin j =
N/2 state of an arbitrary N-qubit system. A quanti-
tative measure of spin squeezing, incorporating invari-
ance under rotation of the frame of reference, is defined
as [2], € =2 (AJ1),in /VN and a N-qubit state is spin
squeezed if the minimum value of the variance (AJ)? of
the spin component J | , in the direction perpendicular to
the mean spin direction (.J), is smaller than the standard
quantum limit N/4 of the coherent spin states [2]. More
specifically,

% — 2B i (1)
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and hence the parameter ¢ = % < 1 for spin
squeezed states [J]. Here (AJ.)> = (J2) — (J.)?
is the variance of the component J; of the angular
momentum, perpendicular to the mean spin-direction

Lo () () () .
M= B T Vimrrpeeage O the Naubit sys
tem. The spin-squeezing parameter of a N-qubit sym-

metric state can be expressed in terms of the correlation
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matrix elements of its two-qubit reduced density matrix,
expressed in the standard form [14],

1
p= 7 I+ Z (0T +1®0y) s;

i=x,y,z

+ Y, (i®o)ty |, (2)

LI=T,Y,2

where I denotes the 2 x 2 unit matrix, o; are the standard
Pauli spin matrices and

si = Trlp(oi @) =Tr [p(I ®0;)]
tij = Tr[p(os ®@0;)]=Tr [p(oj ®@0i)] =tji, (3)

denote the qubit orientations § = (s, sy, s;) and the
real symmetric 3 x 3 correlation matrix T' = (¢;5), 4,j =
x,y, z. The spin-squeezing parameter £ can be expressed
in the following simple form [14]:

€ = [T+ (N =1L Th1)min (4)

}1 /2
where 71 is a unit vector perpendicular to the mean spin
direction ng and n; denotes its transpose. Choosing a
suitable co-ordinate system with mutually orthogonal tri-
ads n1, ng, Ng of basis vectors, such that the Z-axis is
aligned along the unit vector 7y (mean spin direction), it
may be seen that the quadratic form (7 T7 ) )min is the
minimum eigenvalue [14,123] of the 2 x 2 block T'| of the
correlation matrix 7" in the basis 711, g orthogonal to the
mean spin direction 7g:

= ~ 1 g N = N
(annL)min = 5 |: (nl Tnl —+ N9 T’ng)

—\/(%Jﬁl —%2Tﬁ2)2 +4 (%1Tﬁ2)2

. (5)
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Consequently, the spin-squeezing parameter £ can be ex-
pressed in an operationally simple form, on substituting
Eq. (@) into Eq. ). In other words, the Kitegawa-Ueda
spin-squeezing parameter £ may be evaluated using the
two-qubit reduced density matrix of any random pair of
qubits of a N-qubit symmetric system.

In this paper we employ Majorana geometric represen-
tation [26] of pure symmetric N-qubit states and explore
spin squeezing in the family {’DN_;C7;€} of N-qubit states
with two distinct Majorana spinors. Dicke states, the
common eigenstates of collective operators J2 JZ, are
special states of the family {Dn_x i}, (1 < k § [N/2])
with the constituent two distinct orthogonal spinors |0),
[1). Tt is well known that Dicke states are entangled but
are not spin squeezed [27]. We focus our attention to in-
vestigate spin squeezing behavior of N-qubit symmetric
states constituted by two distinct non-orthogonal spinors
belonging to the Majorana family {Dy_g.}, where one
of the spinors occurs k times and the other (N —k) times.
We evaluate the reduced two-qubit density matrix of V-
qubit states belonging to different SLOCC classes [28-30]
of the family {Dy_g 1} with 1 < k < [N/2]} and deduce
the spin squeezing parameter for different values of k.

This paper is organized as follows: Section II gives
an overview of the Majorana geometric representation
of symmetric N-qubit states and provides a canonical
structure for the family of states {Dy_x,,} with two dis-
tinct spinors. In Section III, we evaluate the two-qubit
reduced density matrices and the spin-squeezing param-
eter of the N-qubit states belonging to {Dn_j i}, with
1 < k < [N/2]. The variation of the spin squeezing pa-
rameter for the family of states {Dy_g, }, with different
values of k =1,2,...,[N/2] and N, is illustrated in Sec-
tion ITI. Section IV contains a brief summary.

II. MAJORANA REPRESENTATION OF PURE
SYMMETRIC MULTIQUBIT STATES

In the novel 1932 paper |26] Ettore Majorana proposed
that a quantum system prepared in a pure spin j = 5
state can be represented as a permutation of the states
of N constituent qubits as follows:
NZP{|€17627"' N>}7 (6)

| sym

where

ler) = ai|0)+beP 1), 1=1,2,...,N, aj+bi=1 (7)
denote the states of the qubits (spinors) constituting the
symmetric N-qubit state |WUgym); P corresponds to the
set of all N! permutations and N corresponds to an over-
all normalization factor. Eq. (@) is referred to as the Ma-
jorana geometric representation of a pure quantum state
|Wsym) of spin j = N/2 or equivalently, that of permuta-
tionally symmetric N qubits, expressed in terms of the

constituent spinors |e), | = 1,2,...N. It may be seen
that when all the N spinors |¢;), [ =1,2,..., N are iden-
tical, the corresponding class {Dy} consists of separable
states |Dy) = e, €, ... €). The states
|DN—k,k> = NH €1,€1,...€1,€2,€2,... €2> +
N—k k
k=1,2,...

+ permutations], [N/2] (8)
constructed from two distinct spinors |e1), |e2) belong to

the family {Dy_ 1} of N qubits. It may be noted that
the Dicke states %, % - k>, k=1,2,...[N/2] are the
representative states of the family {Dy_g 1}, with two
orthogonal spinors |e1) = |0), |e2) = |1).

An arbitrary symmetric state belonging to the family
{Dka.,k} is given by [28*30],

|[DN_k k) ,€2)}

NZP{|€1,61,...,€1; €2, €2, ...

N-k k

and it can be reduced to a canonical form, characterized
by only one real parameter [28;[31], with the help of iden-
tical local unitary transformations on individual qubits.
More specifically, symmetric pure states |Dy_g ) be-
longing to the family {Dy_x}, are equivalent (under lo-
cal unitary transformations) to the canonical state of the
following form [31]

DN —k,k) ’g g_ >7 )

k T br
® — n N
b —7)!

where 0 < a,b = v/1 —a? <1 are real parameters.

In the next section we evaluate the two-qubit reduced
density matrix of the state |[Dy_g, ) for different values
of k=1,2,..., for any N and deduce the spin-squeezing
parameter £ (see Eq. {@)) corresponding to inequivalent
classes k = 1,2,...[N/2] of the family {Dn_kr}. We
establish that the states |Dy_g. i) are spin-squeezed, ex-
cept when ¢ =0 and a = 1.

III. SPIN SQUEEZING IN THE FAMILY
{Dn_k1} OF N-QUBIT SYMMETRIC STATES
WITH TWO DISTINCT SPINORS

In order to analyze spin squeezing in the different
inequivalent SLOCC classes [28430], corresponding to
k=1,2,3,...,[N/2], in the family {Dy_ 1} of sym-
metric states, we first obtain the two-qubit reduced den-
sity matrix p*) corresponding to any random pair of
qubits in the state |DN7k,k> € {Dka.,k}- We have



pF) = Try—2 (|DN—k &) {DN—k &|)

k
> A0

r,r’'=0

= Try_2
ma,ml

= Y A Lma) (1 my),

mg,mb=1,0,—1

where
(N/2)—1
Bk r) ) N
mz mh Z ﬁ my Z < 2
7,1’ =0 m1=(—N/2)+1
The associated Clebsch-Gordan coefficients
Cgr:; _C(N 11727m ma, M2,MmM )7m:%_7a7
mg =1, 0, —1 are given explicitly by [32]
RO (N=7r)(N—-r—-1) = r(r—1)
! N(N —1) VNV -1)
. 2r (N —
NI A k) (12)

By expressing p*) in the standard two-qubit basis
{lOAu OB>7 |0A7 1B>7 |1A7 OB>7 |1A7 1B>}7 (USing the rela-
tions between angular momentum basis |1, me = +1,0
and the local qubit basis i.e., |1,1) = |04,05), |1,0) =
(104,18)+]14,08))/v?2, |1, —1) = |14,1p)), one obtains
the following simplified form [16] for the symmetric two-
qubit reduced density matrix:

A® BB B o)
®  pw  pm g

® _ | B

PV = g pw pw gw |» (13)
oW p® gk p®

where A®) B®) k) D& EE) and F*) are real.

Now we proceed to discuss spin squeezing in detail
in the illustrative cases kK = 1,2 in the family of states

{DN_k, K}

A. Spin squeezing in the class of states {Dy_1,1}

The reduced two-qubit density matrix p(*) drawn from
the N-qubit pure states of the family {Dn_1,1} (see

) ) | N
Z [cnwcm,2 ‘2 1

N N oy N
5 T me 5 g T T M

®|1,m2><1,m'2|}

N N N N ,
3—1,5 T — Mo ) 1,5 T myl g 1,mq
(11)
Eq. (I0)) has the following explicit structure:
pM =Try o (IDN=1,1){Dn-1,1)
2 2
= ((ﬂé”) + (80 ) )ll, 11, 1]
2
+ (8 e0) 11, 001, 0 + 7880 e, 1) (1, 0
+65" 81 e 1, 0)(1, 1 (14)

NN a, %1) =
and the as-

Here (see Eq. (@) we have [3(1)
— 2 -
N VN1 —a?) with N = ~ a2+N(1 e

sociated non-zero Clebsch-Gordan coefficients (see Eq.
([@2)) are given by

n IN—=2 o 2
cg): N ,cé): N (15)

Furthermore, in the standard two-qubit basis
{|0Aa OB>7 |0A7 1B>7 |1A7 OB>5 |1Aa 1B>}a we obtain
A  p® O
a _ BM  p®  pl g
P BL pm  pm g
0 0 0 0
where
A(l) _ N2a2 + (N — 2)(1 — CL2) (1) - ay/ 1 — 012
N2a2+ N(1—a?) ~’ 1+a%2(N-1)
1— 2
D — a4 (16)

N2a?2+ N(1—a2)’
We obtain the qubit orientations (see (Eq. Bl))

Sy = 2B(1)7 5y =0, s, = AM



using which we find an orthogonal triad of basis vectors

ho = S 0 Sy
- 9 b b
\/s% + 2 \/8926 + 52

ﬁl = (07 ]-7 0)7

o Sz 0 Sz
nz = - s s
V2 + 82\ /s2+s2
with 7o denoting the mean spin direction. On simplify-
ing, we obtain (see Eq. (@) i The = A2 Thy = 0 and

(n 1 T7) )min = nngg Thus the corresponding spin-
squeezing parameter takes the form [33] (see (Eq. H))

\/1+

9 {(Au)f DL _9 (Bu))?}
L(BO) + (A0)T

f ng T?’Lg) (17)

where

iy Ty = (18)

In Fig. 1 we have plotted &, for the states in the family
{Dn—1.1}, as a function of the parameter a and number
of qubits N.
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FIG. 1: Spin-squeezing parameter £ as a function of the pa-
rameter a and number of qubits N in the class {Dny_1,1} of
N-qubit pure symmetric states with two distinct spinors.

B. Spin squeezing in the class {Dy_2 2}

When k = 2, the state |[Dy_g ) has the form (see Eq.

@)
N N
+ 82 ‘—2,—2 —1>

[Dn—22) = 5(()2) g
—2> (19)

N
2
9 |N N
|3

where
@ _ NN(N2— l)az
& = NVN(N = 1)av/1—a? (20)
N(N -1
© _ N (2 )1 - a2,

and A, the normalization factor, satisfies the relation
(B2 + (B?)2 + (B)2 = 1. Following the procedure
outlined in subsection IITA, we evaluate the two-qubit re-
duced density matrix p(? = Try_s (|Dy_2,2){Dn—_2.2|)
and express it in the standard two-qubit basis
{|0A7 OB>7 |0A7 lB>7 |1A7 OB>7 |1A7 lB>}:

A®  B® p® (@
@ B® p@ p@ Eg©
P = g p® p® g
c? gp@ p@ p@
where
2
2 2 1 2 2
A = (52) (B2 ) (52 e
2 2 1 2 2 1 2
B® — ﬁ(() )ﬁg ) o +ﬁ1 )ﬁ2 )Cg )C((J)

V2
0@ = PP
(ﬁf) (1) (52 CO )2

DA —
2 )

2 2) (1) (2
E® — ﬂ§ )Bé )CE) )C(—i
\/5 ’

2 (ﬂ(2) C(QD ,

and the associated non-zero Clebsch-Gordan coefficients
(see Eq. (I2)) are given in Eq. (I3) and

2 [(N=3)(N-2) o _, [ N-2

! N(N-1) ' 7° N(N —1)
2

) =

N(N—-1)

Substituting for 8%, i = 0, 1, 2 and the Clebsch-Gordan
coefficients, we obtain the density matrix p(® in terms
of the number N of qubits, and the real parameter a.
We then evaluate the spin-squeezing parameter £ fol-
lowing the same procedure followed in subsection ITIA
while discussing the class {Dy_11}. We identify [33]
that the mean spin direction ng lies in the XZ-plane and
the element of correlation matrix 71 T fio = 0. This facil-
itates the evaluation of the spin squeezing parameter to

be £ = \/1 n2 T fi2), . We have plotted £ as a
function of the parameter a for different values of N in
Fig 2.
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FIG. 2: Spin-squeezing parameter £ as a function of the pa-
rameter a and number of qubits N in the class {Dny—_2,2} of
pure symmetric states.

In general, for any arbitrary k, we evaluate the two-
qubit density matrix p(k) = TI‘N_Q (|DN—k,k><DN—k, k|)7
in the standard two-qubit basis, in the form given in Eq.
@) with elements A®)  B&E) —c®)  pE) gk k)
given by,

k 2
AW =3 (B0

r=0
k—
Bk — L Bk B(k) r+1)7
7%
k—2
O = 37 B0 5 e L,
r=0
k—1
1 )2
DO = 53 B
r=0
k—
ym:_LE:gﬂﬂ2vﬂme
\/51“:0 e -
k—2 2
O = 3 (68,7
r=0

The mean spin direction 7y of the qubits in |Dn_g k)
lies in the XZ-plane and the spin-squeezing parame-
ter ¢ for any arbitrary state |Dy_g i) belonging to the
family {Dny_kk} can be readily evaluated ﬂé] using

\/1 TLQ T 712) where
(mm_ﬂmzwm+pm)
[4 (B8 + B®)? 4 (40) — F)?]

4 (B® + E®)? (1 — 4D®))
Pwm+3wf+mm_pwﬂ

8 (AR — p(k)) ((B(k))2 _ (E(’“))Q)
[4 (B(k) _|_E(k))2 I (A(k) —F(k))z} .

g T Ny =

In Fig. 3 we have illustrated the variation of the spin-
squeezing parameter £ in the N-qubit pure symmetric
state |Dy—_g k) with different & and N. It can be readily

N=20
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FIG. 3: Spin squeezing parameter £ of states |Dny_x k) (see
(Eq. @) for different values of k = 1,2,3,4,5 and for number
of qubits N =20 and N = 100.

seen from Fig. 3 that for a fixed N, the spin-squeezing pa-
rameter for the state |Dy_y 1) reduces with the increase
in k.

IV. CONCLUDING REMARKS

In this article we have explored spin squeezing in sym-
metric multiqubit pure states belonging to the family of



two distinct Majorana spinors. We exclusively make use
of the fact that spin squeezing is a reflection of pair-
wise entanglement and evaluation of the spin squeezing
parameter requires the knowledge of two-qubit reduced
density matrix of the N-qubit symmetric state [14]. We
have used the canonical form of pure symmetric states
|Dn_kxk) of N qubits with two distinct spinors which
are characterized by a single real parameter a (see Eq.
@) and divided the system into two parts containing
N — 2 and 2 qubits respectively. By tracing out the
N — 2 qubits we obtain the density matrix correspond-
ing to any two qubits of the N-qubit symmetric state
|Dn_k,k). The correlation matrix elements expressed in
the basis perpendicular to the mean spin direction leads
us to evaluate the spin-squeezing parameter. The varia-
tion of spin squeezing with respect to the real parameter
0 < a < 1 characterizing the state |Dy_g k) is graphi-
cally illustrated for SLOCC inequivalent family of states
{DN_k 1}, with different values of k = 1,2, .... While the

Dicke states %, % — k> constituted by two orthogoanl
spinors are not spin squeezed, our work reveals that their
generalizations viz., N-qubit symmetric states, consisting
of two non-orthogonal spinors, exhibit spin squeezing. In-
vestigations on the metrological relevance of the N qubit
states belonging to the family of two distinct Majorana
spinors is under progress and it will be presented in a

separate communication [34].
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