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Abstract

With the increase in image data, the task of image recognition is also increasing. Detection of local features is the basis of
image recognition, and corners are important local features. However, the size and number of images seriously affect the speed of
corner detection. Therefore, this paper designs a quantum fast corner detection algorithm, which takes full advantage of quantum
parallelism. The algorithm is implemented in three steps: the first step selects the neighborhood of the nucleus, the second step
selects two thresholds k1 and k2, and the third step judges the corners. The first and second steps are the same with the selection
of the range of parameters in the classical corner detection algorithm. The third step is divided into two stages. The first stage
calculates the differences between the grayscale values of the nucleus and pixels in the neighborhood, followed by the comparison
of those differences with threshold k1, then performs quantum measurement on the comparison results, and finally organizes the
measured result into an array M. The second stage uses the array M for counting, followed by the comparison of those counted
results with threshold k2, and then judges the corners. It is worth noting that through the quantum-classical-quantum mode, quantum
resources can be saved greatly. The analysis of the proposed quantum fast corner detection algorithm shows that the time complexity
and quantum delay of the algorithm do not increase with the increase in the size and number of images, and its time complexity is
exponentially lower than that of the classical fast corner detection algorithm.
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1. Introduction

Quantum computers can store and process information in
parallel [1]. Larger quantum algorithms are believed to be capa-
ble of solving certain computational problems, e.g., the Shor’s
prime factorization algorithm [2] and Grover’s quantum search
algorithm [3] demonstrated the superiority and capability of
the quantum algorithms. In recent years, with the rapid devel-
opment of the computer hardware, the quantum technology is
gradually moving from theoretical research to practical appli-
cations.

Image recognition plays an important role in various fields.
Its basis is the detection of local features. One of the most in-
tuitive types of feature points is the corner. Corners are image
points that show a great change in intensity as there are two
dominant and different edge directions in the local neighbour-
hood of a corner. Corner algorithms are wildly used for match-
ing graphics [4], detecting moving objects [5], [6] and tracking
objects [7]. In the last decade, different corner algorithms were
developed [8, 9, 10, 11]. Among those corner detectors, the fast
corner detector is more faster [12, 13]. However, no quantum
fast corner detection algorithm has yet been developed.

In this paper, a quantum fast corner detection algorithm is
proposed. The main contributions made in this paper are as
follows. Firstly, a quantum full subtractor with fewer quantum
gates is designed for reducing the time complexity and quantum
delay of the whole algorithm. Secondly, a quantum fast corner

detection algorithm with high parallelism is proposed. Its time
complexity is exponentially lower than that of its correspond-
ing classical algorithm. Moreover, it is not affected by the size
and number of images to be processed. Thirdly, we adopt a
new quantum-classical-quantum mode for processing quantum
images, which can help in saving quantum resources.

The remainder of this paper is organised as follows. Section
2 describes the quantum image storage models and various op-
erations on quantum images. Section 3 elaborates the proposed
quantum fast corner detection algorithm. Section 4 calculates
the cost of quantum resources. In Section 5, the simulation of
the proposed quantum fast corner detection algorithm is imple-
mented and corner maps are obtained. Finally, Section 6 con-
cludes this work.

2. Preparatory work

In the quantum image processing, images need to be stored
first in the quantum state. For this, three models are widely
used, namely the Qubit Lattice representation model [14], FRQI
(Flexible Representation of Quantum Images) model [15], and
NEQR (Novel Enhanced Quantum Representation of Digital
Images) model [16]. The grayscale values are stored in the
probability amplitude of the quantum state in the Qubit Lat-
tice and FRQI models, and in the quantum ground state in the
NEQR model. Therefore, the NEQR model can operate with
the grayscale values more accurately. On the other hand, the
NEQR model can accurately restore the quantum image infor-
mation to the classical image information through finite quan-
tum measurements. Therefore, in this paper, the NEQR model
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Figure 1: Quantum circuit for preparing pixel with position of 01 and grayscale
value of 011

is chosen for storing quantum images. We introduce the NEQR
model and some quantum operating modules below which will
be used in the present work.

2.1. NEQR model for image representation

We optimized quantum circuits of the NEQR model in our
previous work [17], where the number of the auxiliary qubits
became 2 (constant) due to the use of the reset operation. It
solved the problem that auxiliary qubits increase with the in-
crease in the image size. In this paper, we adopt the method pro-
posed in [17] for preparing quantum images. Next, we briefly
introduce the concept of the image preparation stage proposed
in [17].

For a quantum image of size of 2n×2n and scope of grayscale
value of [0, 2q-1], the NEQR model can be written in the form
of a quantum superposition state as expressed by Eq. (1)[16].

|I⟩ =
1
2n

2n−1∑
Y=0

2n−1∑
X=0

q−1
⊗

i=0

∣∣∣Ci
YX

〉
|YX⟩ (1)

where X and Y represent the position information along x and

y axes, and
q−1
⊗

i=0

∣∣∣Ci
YX

〉
represents the grayscale information.

Taking a 2× 2 image with the scope of the grayscale values
of [0, 7] as an example, the grayscale values can be expressed
by Eq.(2).

f2×2 =

[
7 3
5 6

]
(2)

Here, 2 qubits are needed to store the position information,
and 3 qubits are needed to store the grayscale information. Fig-
ure 1 shows a quantum circuit for preparing a pixel with posi-
tion of ’01’ and grayscale value of ’011’. The reset operation
is represented by |0⟩. The position information is encoded in
qubits p0 and p1, and the grayscale information is encoded in
qubits q0, q1 and q2. Besides, other 2 auxiliary qubits ass0 and
ass1 are used. The advantage of this quantum circuit is that the
number of auxiliary qubits does not increase with the size of the
image.
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Figure 2: Quantum circuit of quantum adder
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Figure 3: Quantum circuit of two-bit quantum comparator

2.2. Quantum adder

Figure 2 shows the specific circuit of 3-bit and 1-bit quan-
tum adders [18]. Among them, |a2a1a0⟩ is set as a 3-bit addend,
and |b0⟩ is set as a 1-bit addend, and |ass⟩ is set as an auxiliary
qubit. The final result after the addition is stored in |s3s2s1s0⟩

as the output.

2.3. Quantum comparator

In order to save qubits, the quantum comparator designed
by Xia and Li et al [19] is adopted in this paper. Taking the
comparison of two 2-digit quantum comparators as an example,
the quantum circuit diagram is shown in Fig. 3, where |a⟩ =
|a1a0⟩ and |b⟩ = |b1b0⟩ are two numbers to be compared, and
|ass0⟩ and |ass1⟩ are 2 auxiliary qubits. The comparative results
are stored in the output qubit |c⟩, which can be described as
follows: c = 0 when a ≥ b, and c = 1 when a < b.

2.4. Quantum full subtractor

In order to reduce the consumption of quantum resources,
we design an efficient quantum full subtractor. Figure 4 shows
the proposed quantum circuit of a 1-bit quantum full subtractor,
where |a⟩ is the minuend, |b⟩ is the subtrahend, and |c⟩ is the
borrow information from the previous step. The last qubit |ass⟩
is an auxiliary qubit which is initialized to |0⟩. The subtracted
result is stored in |s⟩, and the borrow from the high-order bit is
stored in |c⟩.

Figure 5 shows the quantum circuit of a 3-bit quantum full
subtractor, where |a⟩ = |a2a1a0⟩ is the minuend and |b⟩ = |b2b1b0⟩

is the subtrahend. Further, |ass0⟩ and |ass1⟩ are two auxiliary
qubits, which are used to store the borrow information and can
be reused by a reset operation. The subtracted result is stored in
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Figure 4: 1-bit quantum full subtractor
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Figure 5: 3-bit quantum full subtractor

|s⟩ = |s2s1s0⟩, and the borrow from the high-order bit is stored
in |c⟩.

Generalized to n bits, an n-bit quantum full subtractor is
implemented in the same way, where the number of auxiliary
qubits do not increase with the minuend and subtrahend. For
the n-bit quantum full subtractor, US UB can be expressed as:

US UB |a⟩ |b⟩ |ass0⟩ |ass1⟩ = |s⟩ |b⟩ |0⟩ |c⟩ (3)

where |a⟩, |b⟩ and |s⟩ are, respectively, the n-bit minuend, sub-
trahend and result; |ass0⟩ and |ass1⟩ are two auxiliary qubits;
and |c⟩ is the borrow from the high-order bit.

3. Quantum fast corner detection algorithm

In this section, the proposed quantum fast corner detection
algorithm is presented. Firstly, its steps are given, and then
those are introduced in detail and the corresponding quantum
circuits are designed.

3.1. Steps of quantum fast corner detection algorithm
Firstly, the concepts related to the corner detection are in-

troduced. The center pixel of a circle is called the ’nucleus’
[20]. A compact region in the circle is similar to the nucleus
in the grayscale value, which is referred to as USAN (Univalue
Segment Assimilating Nucleus) [20]. Figure 6 shows three rep-
resentative shapes of USAN, where the nucleus of Fig. 6(a) is
inside USAN, the nucleus of Fig. 6(b) is an edge point, and
that of Fig. 6(c) is a corner. The task of the fast corner detec-
tion algorithms is to detect corners through image processing
methods.

(a) Nucleus is inside the USAN (b) Nucleus is an edge point (c) Nucleus is a corner

Figure 6: Three representative shapes of USAN
.
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Figure 7: Neighborhood for corner detection

Next, an efficient method for judging corners in the classi-
cal fast corner detection algorithm is briefly introduced [21]. Its
first step selects the neighborhood of the nucleus, whose pixels
participate in the subsequent operations. The second step se-
lects various thresholds. The judgment for a corner needs to
select two thresholds k1 and k2. The first threshold k1 is de-
termined by the contrast of an image, which decreases as the
contrast of the image decreases. The second threshold k2 is de-
termined by the accuracy of the corners, which decreases as the
accuracy of the corners decreases. The third step is to determine
the corners. Among all the neighborhood pixels, if the differ-
ence between the grayscale values of the pixels of consecutive
N points and the grayscale value of the nucleus p is greater than
or equal to the threshold k1, and N is greater than or equal to
k2, then the nucleus p is a corner. The first two steps of the
quantum fast corner detection algorithm designed in this paper
are the same with those of the classical fast corner detection
algorithm. The third step is implemented in two stages.

The implementation steps of the proposed quantum fast cor-
ner detection algorithm are introduced below.

Step 1: The neighborhood of the nucleus is selected, which
is shown in Fig. 7. If point p is selected as the nucleus, the
selected neighborhood will be the pixels on a circle with p as
the center and 3 pixels as the radius [21]. The neighborhood of
the nucleus is marked as 0→ 15 by the red dashed line.

Step 2: Two thresholds are selected. Following the recom-
mended range of [5, 30] [20], k1 in this paper is set to be 20 ac-
cording to the contrast of the image. The recommended range
of k2 is [9, 12] [8], and accordingly we choose its value to be
11.

Step 3: In the first stage, the difference between each nu-
cleus and its neighboring pixels is calculated and compared
with threshold k1, and the compared all such results are mea-
sured and sorted into an array M. In the second stage, array M
is used for counting, then the counted results are compared with
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threshold k2, and finally the corner is determined. The follow-
ing content of this paper mainly focuses on the two stages of
this third step. The first stage is described in Section 3.2, and
the second stage is discussed in Section 3.3.

3.2. Stage 1: Calculation and comparison of differences
3.2.1. Extraction of nucleus image and neighborhood informa-

tion
In order to facilitate the introduction, in this paper an image

of size of 14×14 and grayscale range of [0, 255] is selected. The
image and its grayscale values are shown in Figs. 8(a) and 8(b),
respectively. As shown in the red box in Fig. 8(a), the image
formed by its internal pixels is called the nucleus image. Each
nucleus pixel has 16 neighborhoods. In order to increase the
parallelism of the overall algorithm, we use 16 auxiliary images
each of size of 8× 8 to represent all the neighborhood informa-
tion. The first auxiliary image is shown in the green dashed box
in Fig. 8(a), which stores the neighborhood information of all
the pixels in the nucleus image as marked as ’0’. By analogy,
the second to sixteenth auxiliary images store the neighborhood
information of all the pixels as marked as 1 → 15. Taking the
third auxiliary image as shown in the yellow box as an exam-
ple, the corresponding relationship between the auxiliary image
and neighborhood information can be established as follows: if
the position of the pixel of the auxiliary image is the same as
that of the nucleus image, then the grayscale value of the aux-
iliary image is the neighborhood marked ’2’ of the nucleus im-
age. For example, when both of the nucleus image and the third
auxiliary image are at position ’a’ as shown in Fig. 8(a), the
grayscale value of 240 in the auxiliary image is the neighbor-
hood marked ’2’ of the grayscale value 70 in the nucleus image.
When both of them are at position ’b’, the grayscale value 250
in the auxiliary image is the neighborhood marked ’2’ of the
grayscale value 255 in the nuclear image, and so on.

A total of 16 auxiliary images and 1 nucleus image are ex-
tracted, which lay the foundation for parallel processing of the
subsequent steps.

3.2.2. Preparation of nucleus and auxiliary images based on
NEQR model

Both nucleus and auxiliary images are prepared into a quan-
tum superposition state. The grayscale information about the
nucleus image is encoded into 8 qubits |b7b6b5b4b3b2b1b0⟩. The
grayscale information about the 16 auxiliary images shares 8
qubits |a7a6a5a4a3a2a1a0⟩. Four qubits |c3c2c1c0⟩ are used to
distinguish these 16 auxiliary images, which are called as the
marker qubits. These nucleus and auxiliary images share the
position information, which is encoded into 6 qubits |d5d4d3d2d1d0⟩.
In addition, two auxiliary qubits |ass0⟩ and |ass1⟩ are required.

Figure 9 shows the preparation of a quantum circuit for a
nucleus pixel and one of its neighborhood pixel. The posi-
tion of this nucleus pixel is ’000000’ and its grayscale value
is ’01000110’. The marker qubit of the neighborbood pixel is
’1111’ and its grayscale value is ’11110100’.

The advantage of the method for preparation of the nucleus
and auxiliary images is that we use 4-bit marker qubits to en-
code the grayscale values of 16 auxiliary images into 8 qubits.

a

a

b

b

(a) Image to be detected (the first auxiliary image is in the green dashed box, the nucleus
image is in the red solid box, and the third auxiliary image is in the red solid box)

(b) Grayscale value of image to be detected, nucleus image and third auxiliary image

Figure 8: Grayscale values of the image to be detected

a4

a0

a1

a2

a3

a5

a6

a7

b4

b0

b1

b2

b3

b5

b6

b7

c0

c1

c2

c3

d4

d0

d1

d2

d3

d5

ass0

ass1

X

X

X

X

X

X

X

X

X

X

X

X

X

0

0

0

0

0

0

0

0

0

0

Figure 9: Quantum circuits of a nucleus and one of its neighborhood pixel

Compared with the way that each auxiliary image uses 8 qubits
to store its grayscale values, this method greatly saves the con-
sumption of qubits and computational resources.
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Figure 10: Quantum circuits of the first stage of quantum fast corner detection

3.2.3. Calculation of difference D and its comparison with thresh-
old k1

The red block in Fig. 10 shows the quantum circuit that cal-
culates the differences between the grayscale values of the nu-
cleus and neighbohood auxiliary images, where |a7a6a5a4a3a2a1a0⟩

is the minuend, |b7b6b5b4b3b2b1b0⟩ is the subtracted, SUB rep-
resents the quantum full subtractor, and QA is the quantum
adder. We use an 8-bit quantum full subtractor for calculat-
ing the difference between the grayscale values of the auxiliary
images and nucleus. It is worth noting that the subtracted result
is displayed in a 2’s complement form. |a7a6a5a4a3a2a1a0⟩ is
the value of the 2’s complement form, and the last borrow bit
|ass0⟩ is its sign bit. However, we should convert the 2’s com-
plement form into the true form as the value of the true form
needs to be used in the subsequent comparison. Finally, the ab-
solute values of the differences between the grayscale values of
the nucleus and auxiliary images are obtained and stored in the
quantum register |a7a6a5a4a3a2a1a0⟩. In the following part, we
use D to represent the absolute value of the difference.

The blue block in Fig. 10 shows the comparison of |a⟩
with the threshold k1, where CMP is the quantum comparator.
Firstly, we use the reset operation to clean the previously gen-
erated garbage output bits |b7b6b5b4b3b2b1b0⟩ and |ass1ass0⟩.
Then, the threshold value k1 (the value of k1 is ’00010100’) is
stored in |b7b6b5b4b3b2b1b0⟩. D is compared with the threshold
k1 using a quantum comparator, and the comparative result is
stored in s. The obtained results are as follows: s is 0 when D
is less than k1, and s is 1 when D is greater than or equal to k1.

It is worth noting that because of the quantum parallelism,
when the calculation and comparison of a nucleus and its neigh-
bors are complete, the same operations for all the pixels are also
completed at the same time.

3.2.4. Quantum measurement and data restructuring
Suppose that Fig. 8 shows an image to be detected. After

the above calculation, a probability histogram can be obtained,

which would an array P with a total of 1024 elements. Each
element is a binary number containing 1-bit comparative result,
6-bit positional information and 4-bit marker information. For
the convenience of displaying, we extract one out of every 16
elements to form the data as shown in Fig. 11. The abscissa
of the histogram represents 64 elements obtained by quantum
measurement, and its ordinate represents the probability. Take
the first element ”000000010000” for example. The first bit ’0’
from left to right is the compared result which indicates that |a⟩
is less than k1, the second to seventh bits ’000001’ are the posi-
tional information of the second pixel in the nucleus image, and
the eighth to eleventh bits ’0000’ are the marker qubits which
point to the first auxiliary image.

After the 1024 elements of array P are sorted in ascend-
ing order using the positional information, the array is divided
into a total of 64 groups by taking every 16 adjacent elements
as a group, where the 2 → 7 bits in each group are identi-
cal. The first bit of every element in each group and one el-
ement from the 2 → 7 bits are combined to form a new bi-
nary number. That is, the 1024 elements of P will be combined
into 64 elements, which is denoted by M. Take the ith ele-
ment ”0000000110000000000001” in array M as an example:
”0000000110000000” from left to right is the comparative re-
sults, which can be denoted as Mi

0 − Mi
15. Here, ”000001” rep-

resents the position of the nucleus pixel, which can be denoted
as Mi

16 − Mi
21. Figure 12 shows the positional relationship be-

tween the individual qubit of each element of M and the image
pixel, where the ’0’ marked in red is the starting position of
the neighborhood pixel, and the ’0’ highlighted in yellow is its
ending positing.

3.3. Corner detection
Based on the comparative result M, we use the count mod-

ule to obtain the result. If the result is greater than or equal
to the threshold k2, the nucleus pixel point becomes a corner.
Next, we introduce the counting module.

3.3.1. Counting module
Here, T is used to represent the result and it is initialized to

0. One number participates in the counting each time, which is
either ”0” or ”1”. T is incremented by 1 when the number par-
ticipating in the counting is ”1”, and all the previous numbers
participating in the counting are made ”1”. When the number
participating in the counting is ”0”, the result T remains un-
changed regardless of whether the subsequent number involved
in the counting is ”0” or ”1”. Next, take ’1111100011’ as an
example to show the counting method. T is initialized to 0, the
first five numbers participating in the count are all ”1”, and the
sixth number is ”0”. Therefore, T remains 5, no matter what
values appear after the sixth number.

3.3.2. Preparation of array M
In order to accomplish the task of counting, the array M

should be encoded into a quantum superposition state. Firstly,
the binary information about the last 6 bits M16 −M21 of the ar-
ray M is stored in the 6 qubits |d5d4d3d2d1d0⟩. Then, the neigh-
borhood comparison results M0 − M15 for each element should
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Figure 11: Probability histogram of 64 data in array P
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Figure 12: Comparative results of the neighborhood at position 000001 in the
nucleus image

be encoded. Although there are a total of 16 neighborhood com-
parison results in each element, in order to save qubits, we se-
lect only one comparison result at a time for preparation. After
completing the counting of M0, prepare M1 for counting. Thus,
M16 −M21 are prepared in the qubit |a⟩. Further, two additional
auxiliary qubits |ass1ass0⟩ are required. Figure 13 shows the
preparation the quantum circuits of M7 and M16 − M21 for the
second element ”000000011000000000001” of the array M.

3.3.3. Counting and judgement of corners
In this paper, the threshold k2 is taken to be 11. Figure

14 shows an example of counting, where p is the nucleus, 16
surrounding neighborhood pixels store the comparative results
M0 − M15 in the array M, and 0 to 15 are their indices.

The whole process of counting and judging is divided into
3 parts: first round of counting, second round of counting, and
the third part is for the corner judgment. Taking Fig. 14 as an
example, these three parts are elaborated below.

Firstly, the first round of counting:
Step 1: From M0 to M11, K2 numbers are selected in the

clockwise direction, for which the specific counting sequence
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Figure 13: Preparation quantum circuit for an element of array M

Figure 14: An example for counting

becomes ”11111110100”. Using the counting module to count,

6



the number of consecutive ’1’s from the beginning of the se-
quence is found to be 7. So, the result of T1 is 7. Step 2: From
M15 to M5, K2 numbers are selected in the counterclockwise
direction, for which the specific counting sequence becomes
’11111001011’. The number of consecutive ’1’s from the be-
ginning of the sequence is found to be 5. So, the result of the
first round is T1 = 12 (7+5=12).

Secondly, the second round of counting:
Step 1: From M7 to M13, K2 numbers are selected in the

counterclockwise direction, for which the specific counting se-
quence becomes ’01111111111’. The number of consecutive
’1’s from the beginning of the sequence is found to be 0. So,
the result of T2 is 0. Step 2: From M8 to M2, K2 numbers
are selected in the clockwise direction, for which the specific
counting sequence becomes ’10011111111’. The number of
consecutive ’1’s from the beginning of the sequence is found to
be 1. So, the result of T2 is 1 (0+1).

Thirdly, judging corners:
The counting results T1 and T2 are compared with k2. If

both T1 and T2 are less than the threshold 11, p will not be a
corner. Otherwise, p is a corner. In this example, T1 is greater
than the threshold 11. So, p is the corner.

Note that independent pixels need to be eliminated in the
process of judging corners. If all the 16 comparative results
M0 − M15 are 1 only, then the nucleus is an independent pixel
point and it does not belong to any corner. So, it needs to be
screened out. In this algorithm, 4 qubits are chosen to store
the final result. Its maximum value is 1111, which is 15 when
converted in to decimal value. If all the 16 comparative results
are 1 only, then the adder will overflow and the result will be 0.
Therefore, no special operation is required to exclude indepen-
dent pixels.

Algorithm 1 shows the process of the first round of count-
ing. The second round of counting is similar to the first round
of counting.

As shown in Fig. 15, the quantum circuit for corner detec-
tion is designed, where registers |b3b2b1b0⟩ are used to store the
counting results T1 and T2, which are initialized to |0000⟩. It is
necessary to judge the status of both current and previous bits
during the counting. So, add a register |c⟩ to save the status of
the previous bit. QA represents the quantum adder. The quan-
tum circuit in the red rectangle shows the first count of the first
round. The quantum circuit in the first purple rectangle is the
comparison operation, which compares T1 with k2, and stores
the result in register |e⟩. The quantum circuit in the green rect-
angle shows the last count of the second round. The quantum
circuit in the second purple rectangle is the comparison opera-
tion, which compares T2 with k2, and stores the result in regis-
ter |ass1⟩. Finally, the quantum circuit in the yellow rectangle
makes the final judgement, and stores the result in register |a⟩.
a = 0 means that the corresponding pixel is a corner, and a = 1
means that the corresponding pixel is not a corner.

4. Calculation of cost of quantum resources

The cost in this work is calculated from the aspects of qubit
cost, time complexity and quantum delay. The qubit cost is the

algorithm 1 First round of counting

Input Threshold value k2 ∈ (9, 10, 11, 12)
Output The comparative result of the first round T1

1: Prepare a qubit to store the comparative result a of array M
2: Prepare 4 qubits to store the result of the addition b3b2b1b0
3: b3b2b1b0 ← 0000
4: c← 1
5: for number← 0 to k2 do
6: a← pnumber+1
7: if number ≥ 7 then
8: if c == 1 and a == 1 then
9: c← a&c

10: b3b2b1b0 ← b3b2b1b0 + c
11: end if
12: else if number ≥ 3 and number < 7 then
13: if c == 1 and a == 1 then
14: c← a&c
15: b2b1b0 ← b2b1b0 + c
16: end if
17: else if number ≥ 1 and number < 3 then
18: if c == 1 and a == 1 then
19: c← a&c
20: b1b0 ← b1b0 + c
21: end if
22: else if number == 0 then
23: if c == 1 and a == 1 then
24: c← a&c
25: b0 ← b0 + c
26: end if
27: end if
28: end for
29: c← 1
30: for number← 0 to k2 do
31: number2 ← 16 − number
32: a← pnumber2

33: if c == 1 and a == 1 then
34: c← a&c
35: b3b2b1b0 ← b3b2b1b0 + c
36: end if
37: end for
38: if b3b2b1b0 ≥ k2 then
39: T1 ← 0
40: else
41: T1 ← 1
42: end if
43: return T1

total number of qubits required to design a quantum circuit. The
time complexity is calculated as follows: the time complexity
of each of CNOT and NOT gates is 1, and that of Toffoli gate
is 5 [22]. The quantum delay is calculated by combining the
time complexity and ”depth” as follows: the quantum delay of
each of CNOT and NOT gates is 1, and that of Toffoli gate is 5.
The quantum delay at the same depth takes the maximum time
complexity of the depth [23].

7



e

ass0

ass1

b3

a

b0

b1

b2

c

50
dd ®

X

X

X

X

X

The first count of the 

first round

The last count 

of the second round
Comparison of T2 and k2

6

X

X

X

Comparison of T1 and k2

X

a

50
dd ®

0 0

0

0 0

0 0

0

0

0

Figure 15: Quantum circuits for the second stage of quantum fast corner detection algorithm

Table 1: Time complexity and quantum delay of quantum full subtractors

Time complexity Quantum delay

Cheng [24] 16n 16n
Yuan [25] 16n 14n
Proposed 12n 12n

4.1. Cost of quantum full subtractor

We presented the design of an efficient quantum full sub-
tractor in subsection 2.4, the cost of which is calculated as fol-
lows:

For each additional bit, the quantum full subtractor adds 2
CNOT gates and 2 Toffoli gates, which increases the time com-
plexity leading to the quantum delay of 12.

It can be seen in Table 1 that the quantum full subtractor
proposed in this paper outperforms the those designed in [24]
and [25] in terms of both time complexity and quantum delay.

4.2. Cost in this work

Assume that the size of the image to be detected is 2n × 2n,
where the range of the grayscale values is [0, 2m − 1], and the
second threshold is k2.

Qubit cost: The whole algorithm is divided into two stages.
In the first stage, the image preparation consumes 2m + 2n + 6
qubits. Due to the use of the quantum reset operation, the con-
sumption of qubits does not increase in the following opera-
tions. Hence, the qubit cost in the first stage becomes 2m+2n+
6. After the quantum measurement, all the qubits are released.
In the second stage, the preparation step consumes 2n+3 qubits,
where 4 qubits are used to store the counting result. At the same
time, 2 auxiliary qubits are needed. The second stage eventu-
ally consumes 2n + 9 qubits. Therefore, the largest number of
qubits consumed in the two stages is the number of the qubits

consumed by the entire quantum corner detection algorithm,
which is 2m + 2n + 6.

Time complexity: The first stage uses 1 quantum full sub-
tractor, 1 quantum adder, 1 quantum comparator, 2 NOT gates
and m CNOT gates. The time complexities of individual sub-
tratcor, adder and comparator are 12m, 6m and 14m−6, respec-
tively. The total time complexity of the first stage is 12m +m +
6m + 2 + 14m − 6 = 33m − 4. The second stage consists of
4k2 counts, 2 comparisons and 1 OR operation. The 4k2 counts
include k2 Toffoli gates, k2 cnot gates, and 4k2 adders. Among
them, the 4k2 adders include 2 1-bit adders, 4 2-bit adders, 8
3-bit adders, and 4k2 − 14 4-bit adders. The time complexity
of 4k2 counts is 102k2 − 132. Two comparisons involve 6 NOT
gates and 6 Toffoli gates. So, its time complexity is 36. The
OR operation includes 2 NOT gates and 1 Toffoli gate. So, its
time complexity is 7. The time complexity of the second stage
is 102k2−132+36+7 = 102k2−89. The total time complexity
is 33m + 102k2 − 93, obtaining by summing up the individual
time complexities of the two stages.

Quantum delay: In the first stage, the quantum delay of 1
m-bit comparator is 4m − 5 less than the time complexity. The
first stage also has 2 NOT gates at the same depth. Hence, the
quantum delay of the first stage is 29m. Similarly, the quantum
delay of the second stage is 102k2 − 88. The consumed total
quantum delay is 29m + 102k2 − 88.

Since any existing quantum image corner detection algo-
rithm could not be found, we compare the time complexity of
the proposed algorithm with that of the classical image corner
detection algorithm.

Table 2 shows the comparison between the time complexi-
ties of the quantum fast corner detection and classical fast cor-
ner detection algorithms. As can be seen in table 2, the pro-
posed quantum fast corner detection algorithm could reduce the
time complexity at an exponential rate compared with the cor-
responding classical algorithm.

8



Table 2: Comparison of time complexity

Fast corner detection algorithm Time complexity

Trajković [20] O(22n)
Rosten [21] O(22n)

Present proposal O(m + k2)

(a) Schematic of the image to be detected (14 × 14)

(b) Schematic diagram of corner map (8 × 8)

Figure 16: Schematic of the image to be detected and corner map obtained by
quantum corner detection algorithm

5. Simulation of quantum fast corner detection algorithm

The proposed quantum algorithm is simulated in the IBM Q
Experience platform. It is an online platform with several quan-
tum devices and quantum simulators, which can be accessed
using the Qiskit framework [26]. As the quantum simulator has
5000 qubits, we adopt it to perform our simulation.

The image to be detected is shown in Fig. 16(a). The size of
the image is 14 × 14 and the range of its grayscale values is [0,
255]. A point on the upper left corner of this image is consid-
ered as an independent point. The middle area of this image is
a square with 4 corners. The corner map can be obtained using
the proposed quantum fast corner detection algorithm, which is
shown in Fig. 16(b). The size of the corner map is 8 × 8, the
grayscale value of each of its four corners is 0, and the grayscale
value of other pixels is 1.

Figure 17 shows the probability histogram of the corner
map in the quantum fast corner detection algorithm. Each el-
ement of the abscissa contains 7 qubits. For example, the first
element is ’0010111’, where the first ’0’ indicates that it is a
corner, and the remaining six qubits ’010111’ determine the
position of the corner. The ordinate is the probability of its oc-
currence during the quantum measurement.

Figure 17: Probability histogram of corner map

6. Conclusions

We have proposed a new quantum algorithm, called as the
quantum fast corner detection algorithm. Based on the reset
operation, 16 auxiliary images and 4 marker qubits take full
advantage of the quantum parallelism. Through the quantum-
classical-quantum mode, quantum resources could be saved greatly.
The proposed approach has been simulated using a quantum
simulator through the Qiskit framework, and compared with
the classical fast corner detection algorithm. The contributions
made in this paper are summarized below:

1) An efficient quantum full subtractor is designed.
2) When preparing 16 auxiliary images, we make them to

share grayscale information by using 4 auxiliary qubits, which
can save a large number of qubits.

3) It is assumed that the size of the image is 2n × 2n, the
range of grayscale values is [0, 2m−1], and the second threshold
is k2. Under these considerations, it is found that the qubit cost
of the quantum fast corner detection algorithm is 2m + 2n + 6,
time complexity is 33m + 102k2 − 93, and quantum delay is
29m+102k2−88. Therefore, the time complexity and quantum
delay are irrelevant to the size and number of images.

4) The time complexity of the quantum fast corner detection
algorithm is exponentially lower than that of the classical fast
corner detection algorithm.

In conclusion, the quantum fast corner detection algorithm
proposed in this paper fills the gap in the design of quantum
fast corner detection algorithm, which is the foundation of a
quantum feature point extraction algorithm. Furthermore, the
idea discussed in this paper will provide efficient solutions for
many problems in the area of big data analysis. More interest-
ing practical applications involving quantum image processing
and machine learning can be explored based on the proposed
algorithm.
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