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On super quantum discord for high-dimensional

bipartite state

Jianming Zhou, Xiaoli Hu, and Naihuan Jing*

Abstract. By quantifying the difference between quantum mutual in-
formation through weak measurement performed on a subsystem one is
led to the notion of super quantum discord. The super version is also
known to be difficult to compute as the quantum discord which was cap-
tured by the projective (strong) measurements. In this paper, we give
effective bounds of the super quantum discord with or without phase
damping channels for higher-dimensional bipartite quantum states, and
found that the super version is always larger than the usual quantum
discord as in the 2-dimensional case.

1. Introduction

The quantum discord was introduced by Olliver and Zurek [1] to char-
acterize the difference between the quantum mutual information before and
after taking certain projective measurement on one part of the bipartite sys-
tem. It is known that the quantum discord may capture quantum correlation
for mixed states that goes beyond the entanglement.

Since quantum states are vulnerable to quantum measurements, the co-
herence of quantum states will be lost when the quantum states are measured
by projective operators. However, the system may not lose its coherence
completely if we perform measurements that couple the system and the mea-
suring device weakly. For this reason, Aharonov-Albert-Vaidman proposed
using weak measurement [2] in the discussion. The super quantum discord

induced by the weak measurement was studied by Singh and Pati [3] and
it turns out to be larger than the normal quantum discord captured by the
projective (strong) measurement. In fact, the super quantum discord cov-
ers all the values between the mutual information and the normal quantum
discord. Furthermore, the super version can be potentially a more useful
resource and brings new hope for further study of quantum correlations [2].
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There are extensive studies on quantum discord and super quantum discord
from different angles, most aimed at the super quantum discord for two
qubit states [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. As high-
dimension bipartite states involved a lot of more parameters, it is a difficult
problem to find an exact solution of the super quantum discord.

On the other hand, there is also an issue to formulate higher-dimensional
weak measurements. Ideally one would like to define weak measurement to
be a set of mutually orthogonal operators Pi, i = 1, . . . , d such that (1)
PiPj = 0 (i 6= j), (2) P 2

i = I + εQi for a bounded operator Qi with a
parameter ε. The quadratic equation satisfied by a weak projector resem-
bles the Hecke algebra relation in representation theory, which is certain
deformation of the rotation operator. Note that a general rotation in high-
dimension space can be realized as a product of plane rotations with vertical
axes. Along this idea, one can consider a set of weak measurements on high-
dimensional Hilbert space by focusing on deforming only three projectors.
We explore this idea and introduce a special set of weak measurements to
study the problem.

In this paper, we study an upper bound of the super quantum discord
for two classes of high-dimensional bipartite states with maximally mixed
marginal. We choose three types of generators of Lie algebra su(d) to con-
struct a family of unitary operators, from which we construct a set of weak
measurements. By considering an upper bound of the classical correlation
on this set, we obtain an upper bound of the super quantum discord for
high-dimensional bipartite states. In addition, we compare the total corre-
lation, classical correlation and super quantum discord in high-dimensional
bipartite systems. Finally, the dynamical super quantum discord for the
bipartite states under phase damping channel was discussed.

Explicitly we propose the following notion of the special weak measure-
ments. Let {Π0,Π1, · · ·Πd−1} to be a set of orthogonal projectors such that
ΠiΠj = δijΠi and

∑

i Πi = I. We introduce the special weak measurement
as a set of bounded operators {Pi(x)} such that the first two operators
satisfy the 2-dimensional weak measurement condition[18]. Namely,

Pi(x) =

√

1− (−1)i tanhx

2
Π0 +

√

1 + (−1)i tanhx

2
Π1, for i = 0, 1,

Pj(x) = Πj , for j = 3, . . . , d− 1, (1.1)

where x represents the strength of the weak measurement. In this case

(i)
∑

i

Pi(x)
2 = I;

(ii) [Pi(x), Pj(x)] = 0;

(iii) lim
x→∞

P0(x) = Π1, lim
x→∞

P1(x) = Π0.

(1.2)
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With the weak measurements {PA
i (x)} on subsystem A, the reduced

density operator ρi for a bipartite state ρAB is given by

ρi =
1

pi
TrA[(P

A
i (x)⊗ I)ρAB(PA

i (x)⊗ I)], (1.3)

where pi = Tr[(PA
i (x)⊗I)ρAB(PA

i (x)⊗I)] is the probability of the outcome
i. Then the variant quantum mutual information can be defined by [19]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1.4)

where S(ρX) stands for the von Neumann entropy of the quantum state on
system X. And the classical information is given by [20]

J (ρAB) = sup
{PA

i
(x)}

I(ρAB|{PA
i (x)}), (1.5)

where I(ρAB|{PA
i (x)}) = S(ρB) − S(ρAB |{PA

i (x)}) is the variant of quan-
tum mutual information (with respect to weak measurements {PA

i (x)}) and
S(ρAB|{PA

i (x)}) =
∑

i piS(ρi) is the quantum conditional entropy.
The so called the super quantum discord of a bipartite quantum state

ρAB with the local weak measurement {PA
i (x)} on subsystem A is the dif-

ference between the mutual information I(ρAB) and the classical correlation
J (ρAB)[3], i.e.

SD(ρAB) = I(ρAB)− J (ρAB). (1.6)

This paper is organized as follows. In section II we give analytic for-
mulas of the super quantum discord for two higher-dimensional states. We
consider the relationships among the quantum mutual information I(ρAB),
the classical correlation J (ρAB) and the super quantum discord SD(ρAB)
for high-dimensional quantum states. In section III we give the dynamics
super quantum discord under non-dissipative channels. The conclusion is
given in section IV.

2. The upper bounds of the super quantum discord for

high-dimensional bipartite states

It is well-known that projective measurements can be generated by the
action of the special unitary Lie algebra su(d) on a fixed canonical orthonor-
mal set, so the set of projective measurements has d2 − 1 real parameters
on a d-dimensional space. In general it is difficult to calculate the super
quantum discord for most quantum states given that weak measurements
are more complicated. In this article, we consider some special situations of
high-dimensional bipartite quantum states and compute their super quan-
tum discords. On the space HA ⊗HB = C

d ⊗ C
d we consider the following

quantum state:

ρAB =
1

d2
(I ⊗ I +

|A|
∑

i=1

ciσi ⊗ σi), (2.1)
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where σ are elements of the prescribed basis, say the Gell-Mann basis, and
A is a subset of the generators of su(d).

Let X = {vij , uij , wk|0 ≤ i < j < d, 0 < k < d} be the set of generators
for the unitary Lie algebra su(d), where

uij = |i〉〈j| + |j〉〈j|, vij =
√
−1(|j〉〈i| − |i〉〈j|),

wk =

√

2

k(k + 1)
(

k
∑

i=0

|i〉〈i| − k|k〉〈k|).
(2.2)

Select A = {v01, u01, w1, vij , uij |1 < i < j < d} ⊂ X and name the
first three generators as σ1 = u01, σ2 = v01, σ3 = w1, and the remaining
generators are denoted by σi, so A = {σi|1 ≤ i ≤ |A|}. Note that σi, i =
1, 2, 3 can be viewed as the Pauli spin matrices, which generate the special
Lie algebra su(2). Let V0 = tI +

√
−1

∑3
i=1 yiσi with t, yi ∈ R and t2 +

∑

i y
2
i = 1.
Let {|i〉, i = 0, 1, · · · , d − 1} be the computational basis of H, and con-

sider the weak measurement operators {P̃A
i (x)} on subsystem A as follows.

P̃A
0 (x) =

√

1− tanhx

2
V0Π0V

†
0 +

√

1 + tanhx

2
V0Π1V

†
0 ;

P̃A
1 (x) =

√

1 + tanhx

2
V0Π0V

†
0 +

√

1− tanhx

2
V0Π1V

†
0 ;

P̃A
i (x) = V0ΠiV

†
0 = Πi for 2 ≤ i ≤ d− 1,

(2.3)

where Πi = |i〉〈i| for i = 0, 1, · · · , d− 1. We have the following relations

Π0σ3Π0 = Π0; Π1σ3Π1 = −Π1;

ΠjσkΠj = 0 for j = 0, 1, k = 1, 2;

ΠkσlΠk = 0 for l = 4, · · · , |A|, k = 2, · · · , d− 1.

(2.4)

It is readily seen that the projectors {P̃A
i (x)} satisfy (1.2). Recall that

J (ρAB) is the supremum by traversing over general weak measurement. The

above weak measurement is a special one, so the supremum J̃ (ρAB) over

this one obeys J (ρAB) ≥ J̃ (ρAB). One can directly check the following
relations

V
†
0 σ1V0 = (t2 + y21 − y22 − y23)σ1 + 2(y1y2 + ty3)σ2 + 2(y1y3 − ty2)σ3;

V
†
0 σ2V0 = (t2 + y22 − y21 − y23)σ2 + 2(y2y3 + ty1)σ3 + 2(y1y2 − ty3)σ1;

V
†
0 σ3V0 = (t2 + y23 − y21 − y22)σ3 + 2(y1y3 + ty2)σ1 + 2(y2y3 − ty1)σ2;

V
†
0 σkV0 = σk for k = 4, · · · , |A|.

(2.5)
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Introduce new variables z1, z2, z3 by z1 = 2(y1y3 − ty2), z2 = 2(y2y3 +

ty1), z3 = (t2 + y23 − y21 − y22), then
∑3

i z
2
i = 1. From Eq.(1.3), we have

ρ0 =
1

d
(I −

3
∑

i=1

ciziσi tanhx);

ρ1 =
1

d
(I +

3
∑

i=1

ciziσi tanhx);

ρk =
I

d
for k = 2, · · · , d− 1,

(2.6)

and pi =
1
d
for i = 0, · · · , d− 1. The eigenvalues of ρi are given by

λlρ0 = λlρ1 =
1

d
(1 + (−1)lθ) for l = 0, 1;

λjρ0 = λjρ1 =
1

d
for j = 2, · · · , d− 1;

λj
′

ρk
=

1

d
for j′ = 0, · · · , d− 1,

(2.7)

where θ =
√

c21z
2
1 + c22z

2
2 + c23z

2
3 tanhx. Let H(x) = (1+x) log2(1+x)+(1−

x) log2(1− x) be the entropic function, then

S(ρ0) = S(ρ1) = log2 d−
1

d
H(θ);

S(ρ2) = · · · = S(ρd−1) = log2 d.
(2.8)

By definition we have I(ρAB|{P̃A
i (x)}) = S(ρB)−S(ρAB |{P̃A

i (x)}) = 2
d
H(θ).

Let F (θ) = 2
d
H(θ), then ∂F

∂θ
= 2

d
log2

1+θ
1−θ

. Therefore, F (θ) is an increas-

ing function with respect to θ ∈ [0, 1]. Set c = max {|c1|, |c2|, |c3|}, then
θ ≤ c tanhx, and the equality can be achieved by appropriate choice of t
and yi. Hence, we can get max{P̃A

i
(x)} θ = c tanh x. Then,

J̃ (ρAB) = S(ρB)− min
{P̃A

i
(x)}

S(ρAB |{P̃A
i (x)}) = 2

d
H(c tanh x). (2.9)

Note that the overall minimum for all the weak measurements is less than
the minimum over this special one. Hence, we have the following result.

Theorem 2.1. The upper bound of the super quantum discord for states

in (2.1) is given by

SD(ρAB) = I(ρAB)− J (ρAB)

≤ I(ρAB)− J̃ (ρAB) = I(ρAB)− 2

d
H(c tanh x).

(2.10)

Note thatH(x) is an even function and dH
dx ≥ 0 when x ∈ (0,∞), soH(x)

is strictly monotonically decreasing in (−∞, 0) and strictly monotonically
increasing in (0,∞). Therefore, the right hand side of (2.10) decreases as
|x| increases, and when |x| → ∞, the right hand side of (2.10) matches with
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the results in [21]. That is to say, the upper bound of the super quantum
discord for the quantum state in (2.1) is larger than the quantum discord
(defined by projective measurements).

Next we are going to consider the following quantum state with maxi-
mally mixed marginals:

ρAB =
1

d2
(I ⊗ I +

A
∑

j=1

3
∑

k=1

tjkσj ⊗ σk). (2.11)

Then we have

ρ0 =
1

d2
(I − tanhx

3
∑

j=1

3
∑

k=1

tjkzjσk);

ρ1 =
1

d2
(I + tanhx

3
∑

j=1

3
∑

k=1

tjkzjσk);

ρk =
I

d2
for k = 2, · · · , d− 1,

(2.12)

with the probability pi(x) =
1
d
for i = 0, · · · , d− 1.

Let θ̄ =
√

∑3
j=1(

∑3
i=1 tijzi)

2 tanhx. If follows from definition that

I(ρAB|{P̃A
i (x)}) = S(ρB)− S(ρAB |{P̃A

i (x)}) = 2

d
H(θ̄). (2.13)

To compute the super quantum discord, let’s estimate the minimum of
S(ρAB|{P̃A

i (x)}). For this we claim that

max
{pA

i
(x)}

θ̄ ≥ t̄ tanhx,

where t̄ = max {
√

∑3
j=1 t

2
1j ,

√

∑3
j=1 t

2
2j,

√

∑3
j=1 t

2
3j}.

In fact, choose |t| = |y1| =
√
2
2 , y2 = y3 = 0, i.e., |z2| = 1, z1 = z3 = 0,

then θ̄ =
√

∑3
j=1 t

2
2j tanhx. Similarly choose |t| = |y2| =

√
2
2 , y1 = y3 = 0,

i.e., |z1| = 1, z2 = z3 = 0, then θ̄ =
√

∑3
j=1 t

2
1j tanhx. Then choose |t| =

|y3| =
√
2
2 , y1 = y2 = 0, i.e., |z3| = 1, z1 = z2 = 0, so θ̄ =

√

∑3
j=1 t

2
3j tanhx.

By the triangular inequality the claim holds.
Using the claim, we have that

J̃ (ρAB) = S(ρB)− min
{P̃A

i
(x)}

S(ρ|{P̃A
i (x)}) ≥ 2

d
H(t̄ tanhx). (2.14)

Note that the weak measurement is a special one, thus we have proved the
following result.
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Theorem 2.2. The upper bound of the super quantum discord for the

state in (2.11) is given by

SD(ρAB) = I(ρAB)− J (ρAB)

≤ I(ρAB)− J̃ (ρAB) ≤ I(ρAB)− 2

d
H(t̄ tanhx).

(2.15)

Theorem 2.2 shows that the super quantum discord is larger than the
quantum discord. When x >> 0, the right in (2.15) becomes the upper
bound of the quantum discord in [21].

In particular, we analyze the super quantum discord for the following
quantum state:

ρAB =
1

d2
(I ⊗ I +

3
∑

j=1

cjσj ⊗ σj), (2.16)

which is a special case of Eq.(2.1) and Eq.(2.11). The eigenvalues of ρAB

are

λi =
1

d2
(1− c1 + (−1)i(c2 + c3)) for i = 0, 1;

λj =
1

d2
(1 + c1 + (−1)j(c2 − c3)) for j = 2, 3;

λ4 = λ5 = · · · = λd−1 =
1

d2
.

(2.17)

Since the eigenvalues are nonnegative, |c1| + |c2| + |c3| ≤ 1. The reduced
density operators of ρAB are given by

ρA = ρB =
I

d
. (2.18)

Set τk = d2λk for k = 0, 1, 2, 3, then the quantum mutual information is

I(ρAB) =
1

d2

3
∑

k=0

τk log2 τk. (2.19)

The upper bound of the super quantum discord for the state in Eq.(2.16) is

SD(ρAB) = I(ρAB)− J (ρAB) ≤ I(ρAB)− J̃ (ρAB)

=
1

d2
[

3
∑

k=0

τk log2 τk − 2H(c tanh x)],
(2.20)

where c = max {|c1|, |c2|, |c3|}.
Example 1. Let c1 = c2 = c3 = −c in Eq.(2.16), where c ∈ [0, 1].

According to Theorem 2.2, we have

SD(ρAB) = I(ρAB)− J (ρAB) ≤ I(ρAB)− J̃ (ρAB) = SD(c, x), (2.21)
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where

SD(c, x) =
1

d2
[3(1 − c) log2(1− c) + (1− 3c) log2(1− 3c) − 2H(c tanh x)].

(2.22)

The equality of (2.22) can be achieved when d = 2. Fig. 1 describes the
behavior of the super quantum discord and the quantum discord at d = 2.
It can be seen that the super quantum discord approaches the quantum
discord when |x| → ∞. Meanwhile, the super quantum discord increases
as |x| → 0 and reaches its maximum value at x = 0, indicating that the
weak measurement is the weakest. Fig. 2 shows the value distribution of
the upper bound SD(c, x) at d = 2 and d = 3. In addition, the upper bound
in (2.21) is zero when lim d → ∞, which implies that the super quantum
discord of the state defined by (2.16) will vanish.

Figure 1. Graphs of the super quantum discord (blue sur-
face) and the quantum discord (red place) for state of (2.16)
with c1 = c2 = c3 = −c and d = 2.
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Figure 2. Behavior of SD(c, x) for d = 3 and d = 2. The
right graph represents the overall diagram when d = 2 (gray
surface) and d = 3 (blue surface), respectively. The left graph
shows that our results are equivalent to those of [21] when
x >> 0, where the blue line represents the upper bound when
d = 3, the red line represents the upper bound when d = 2.

For a bipartite state ρAB , the quantum mutual information I(ρAB), the
classical correlation C(ρAB) and the quantum discord Q(ρAB) are explained
as the quantity of the total correlation, classical correlation and quantum
correlation after measurement, respectively [1, 20]. Their relations have
been studied in detail for high-dimensional quantum states in [21]. In the
sequel we will examine further relations among the quantum mutual infor-
mation I(ρAB), the classical correlation J (ρAB) and the super quantum
discord SD(ρAB) for higher-dimensional quantum states.

We know that for any two-qudit pure state ρAB = |ψ〉〈ψ|, |ψ〉 has

Schmidt decomposition |ψ〉 =
∑d−1

j=0 aj |j〉⊗|j〉 and E = −
∑d−1

j=0 |aj |2 log2 |aj |2
is its reduced von Neumann entropy [22]. Then the reduced von Neumann
entropy is equal to its supper quantum discord. i.e.,

I(ρAB) = 2E, J (ρAB) = E, SD(ρAB) = E. (2.23)

Therefore, the total correlations are evenly divided into classical correlations
and quantum correlations in this case. Let’s consider another extreme case
in [21], when ρ can be represented as

ρAB =

d−1
∑

i=0

d−1
∑

j=0

pij |i〉〈i| ⊗ |j〉〈j| (2.24)

with a bivariate probability distribution p = {pij}. In this case, all correla-
tions are classical and there are no quantum correlation, i.e.,

I(ρAB) = I(p), J (ρAB) = I(p), SD(ρAB) = 0, (2.25)
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where I(p) is the classical mutual information. We know that in the quantum
discord version, C(ρAB) ≥ Q(ρAB) hold on most case. And the above two
examples also show that J (ρAB) ≥ Q(ρAB), but J (ρAB) ≥ Q(ρAB) is
incorrect for all states.

We now conduct numerical analysis of the super quantum discord. Re-
call that J (ρ) and J̃ (ρ) are the supremums by traversing the general weak

measurements {PA
i (x)} and the special subset {P̃A

i (x)} respectively. We
denote by D(ρ) = J (ρ)−SD(ρ) the difference between the classical correla-
tion and the super quantum discord. Next we consider the state in (2.16)).

As a matter of fact D(ρ) = J (ρ)−SD(ρ) = 2J (ρ)−I(ρ) ≥ 2J̃ (ρ)−I(ρ) =
D(c1, c2, c3, x). Then by Eq.(2.20), D(c1, c2, c3, x) is also a lower bound of
D(ρ), where

D(c1, c2, c3, x) =
1

d2
[4H(c tanh x)−

3
∑

k=0

τk log2 τk]. (2.26)

Figure 3. Behavior of D(c1, c2, c3, x) with c1, c2, c3 ∈ [0, 1]
for ρAB in Eq.(2.16) when x = 0.5 and d = 3. These points
are concentrated in the tetrahedron because c is limited by
the non-negative eigenvalue λi.

Fig.3 shows the graph of D(c1, c2, c3, x) when d = 3 and x = 0.5 for
state defined by (2.16), while its statistical distribution is depicted in Fig.
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4. About 27.66% values of D(c1, c2, c3) are non-negative. This value of
the discord version is about 88.55% in [21]. Moreover, D(c1, c2, c3, x) is
strictly monotonically increasing when x ∈ (0,∞) and independent from
the dimension d. Therefore, we conclude that as |x| decreases, the measure-
ment intensity weakens and J (ρ) ≤ SD(ρ) holds for fewer high-dimensional
quantum states in (2.16).

Figure 4. The statistical distribution of D(c1, c2, c3) at d =
3 and x = 0.5 containing 332980 samples. The x- and y-
coordinates respectively represent the values of D(c1, c2, c3)
and the number of samples distributed in the corresponding
interval. About 27.66% values of D(c1, c2, c3) are non-
negative.

3. Dynamics of super quantum discord under nondissipative

channels

In this section, we will discuss the behavior of the correlations for the
state in (2.1) through the phase damping channels with the Kraus operators.
The Kraus operators is defined by

E0 =
√
γI, E1 =

√

1− γ





0 1 0
1 0 0
0 0 Id−2



 , (3.1)
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where γ ∈ [0, 1] and
∑

iEiE
†
i = I. The Kraus operaotrs characterize the evo-

lution of super quantum discord under bit-flip noise. For two-qudit states,
the action of the phase damping channel ε on ρAB is given by

ε(ρAB) = (E0 ⊗ I)ρAB(E0 ⊗ I)† + (E1 ⊗ I)ρAB(E1 ⊗ I)†. (3.2)

The quantum states in (2.1) under the phase damping channel are changed
into

ρ̃AB = ε(ρAB) =
1

d2
[I ⊗ I + c1σ1 ⊗ σ1

+ (2γ − 1)(c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3) +

|A|
∑

k=4

ckσk ⊗ σk].

(3.3)

By theorem 2.1, we can get the following results.

Theorem 3.1. For the states in (2.1) through the phase damping chan-

nel, the upper bound of their super quantum discord is given by

SD(ρ̃AB) ≤ I(ρ̃AB)− J̃(ρ̃AB) = I(ρ̃AB)− 2

d
H(c̄ tanhx). (3.4)

where c̄ = max {|c1|, |(2γ − 1)c2|, |(2γ − 1)c3|}.

We see that the parameter γ also determines the degree of noise in-
fluence for the super quantum discord after the channel. Obviously, the
super quantum discord remains unchanged when γ = 0. Meanwhile, the
upper bound of the super quantum discord is a decreasing function with
respect to x. Therefore, it is meaningful to observe the dynamic evolution
of SD(ρ̃AB) under phase damped channel. The state in (2.16) through the
phase damping channels is changed to

ρ̃AB =
1

d2
[I ⊗ I + c1σ1 ⊗ σ1 + (2γ − 1)(c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3)], (3.5)

which is a special case in (3.3). The eigenvalues of ρ̃AB are

λi =
1

d2
(1− c1 + (−1)i(2γ − 1)(c2 + c3)), for i = 0, 1;

λj =
1

d2
(1 + c1 + (−1)j(2γ − 1)(c2 − c3)), for j = 2, 3;

λ4 = λ5 = · · · = λd−1 =
1

d2
.

(3.6)

Set τ̃ = d2λk for k = 0, 1, 2, 3, we have

SD(ρ̃AB) ≤ 1

d2
[

3
∑

k=0

τ̃ log2 τ̃ − 2(1 + c̄ tanhx) log2(1 + c̄ tanhx)

− 2(1− c̄ tanhx) log2(1− c̄ tanhx)].

(3.7)
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Example 2. For the state in (2.16) with c1 = c2 = c3 = −c and c ∈ [0, 1],
the dynamical super quantum discord is given by

SD(ρ̃AB) ≤ 1

d2
[2(1 − c) log2 (1− c) + (1− c+ 4γc) log2 (1− c+ 4γc)

+ (1 + 3c− 4γc) log2 (1 + 3c− 4γc)− 2H(c tanh x)].
(3.8)

The state is a Werner state when d = 2, and the equality of (3.8) holds. The
difference between super quantum discord and dynamical super quantum
discord of the Werner state is given by

SD(ρAB)− SD(ρ̃AB) =
1

4
[(1− c) log2(1− c) + (1 + 3c) log2(1 + 3c)

− (1− c+ 4γc) log2 (1− c+ 4γc)

− (1 + 3c− 4γc) log2 (1 + 3c− 4γc)].

(3.9)

Let T (c, γ) = SD(ρAB) − SD(ρ̃AB). The derivation of T (c, γ) with respect
to γ is

∂T (c, γ)

∂γ
= c log2

1 + c− 2(2γ − 1)c

1− c+ 2(2γ − 1)c
≥ 0. (3.10)

Then, T (c, γ) is a strictly increasing function with respect to γ. Thus,
minT (c, γ) = T (c, 0) = 0 for c ∈ [0, 1]. It shows that SD(ρAB) ≥ SD(ρ̃AB),
which implies that the super quantum discord of the Werner state is reduced
under the phase damping channel. This is consistent with the results dis-
cussed in [9]. In addition, according to [21], we can get the quantum discord
version of the difference with or without the phase damping channel for the
Werner state, i.e.,

T̄ (c, γ) = Q(ρAB)−Q(ρ̃AB)

=
1

4
[(1 − c) log2(1− c) + (1 + 3c) log2(1 + 3c)

− (1− c+ 4γc) log2 (1− c+ 4γc)

− (1 + 3c− 4γc) log2 (1 + 3c− 4γc)].

(3.11)

Obviously, T (c, γ) = T̄ (c, γ). It means that weak measurements capture as
much information as projective measurements for the Werner state. There-
fore, super quantum discord and quantum discord are different resources.

Example 3. For a state in (2.16), when c1 = 0.2, c2 = 0.35, c3 = 0.1, γ =
0.9, x = 4, d = 2, we have SD(ρAB) − SD(ρ̃AB) = −0.0180. Therefore, we
obtain SD(ρAB) ≤ SD(ρ̃AB).

These models show that usually the super quantum discord of the state
in (2.1) may decrease or increase under the phase damping channel.

4. Conclusions

It is known that quantum discord can capture quantum correlations
for mixed states that goes beyond the entanglement. Meanwhile the super
quantum discord induced by the weak measurement covers all the values
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between the mutual information and the normal quantum discord. There-
fore, the super quantum discord may be potentially a more useful quantum
resource and brings new hope for further study of quantum correlations [2].

In this paper, we have considered a high-dimensional generalization of
the super quantum discord by embedding the 2-dimensional weak measure-
ments into the high-dimensional system. This is done by joining the 2-
dimensional weak measurements by a particular orthogonal complementary
subsystem. We then compute the super quantum discord and find out that
some of the distinguished feature of quantum discord are still viable in the
high-dimensional case. We have derived analytic solutions of super quantum
discord for two classes of higher-dimensional states and the bounds of the
special cases are drawn in graphs. The relationships among the quantum
mutual information I(ρAB), the classical correlation J (ρAB) and the super
quantum discord SD(ρAB) are discussed. Then, we also compute the dy-
namical super quantum discord under phase damping channels. We show
that the dynamical super quantum discord can be more and less than the
usual super quantum discord through examples.
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