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Abstract

Quantum correlation is a key component in various quantum information processing tasks. Deco-
herence process imposes limitations on achieving these quantum tasks. Therefore, understanding the
behavior of quantum correlations in dissipative-noisy systems is of paramount importance. Here, on the
basis of the Gaussian Rényi-2 entropy, we analyze entanglement and quantum discord in a two-mode
Gaussian state ρAB . The mode A(B) is generated within the first(second) transition of a nondegenerate
three-level cascade laser. Using realistic experimental parameters, we show that both entanglement and
discord could be generated and enhanced by inducing more quantum coherence. Under thermal noise,
entanglement is found more fragile having a tendency to disappear rapidly. While, quantum discord
exhibits a freezing behavior, where it can be captured within a wide range of temperature. Surprisingly,
we find that entanglement can exceed quantum discord in contrary to the expectation based on the
assumption that the former is only a part of the later. Finally, we show numerically as well as analyti-
cally that optimal quantum discord can be captured by performing Gaussian measurements on mode B.
The obtained results suggest that nondegenerate three-level lasers may be a valuable resource for some
quantum information tasks, especially, for those do not require entanglement.

1 Introduction

Quantum systems are correlated in manners inaccessible to classical ones [1]. A peculiar quantum charac-
teristic of correlations is quantum entanglement [2], which was defined as a nonclassical physical property
that cannot be prepared by means of local operations and classical communication [2]. Entanglement is
undoubtedly the key ingredient in most applications of quantum science [3], where it has been recognized
as the fundamental resource for, e.g., quantum teleportation [4], dense coding [5], quantum computation
[6] and quantum algorithm [7]. However, it is shown that some quantum tasks, e.g., quantum key distri-
bution [8] can be carried out by unentangled states that nevertheless possess quantum correlations [9].
In fact, it has been proven theoretically [9] as well as experimentally [10] that some quantum tasks may
be speed-up over their classical counterparts exploiting unentangled states with residual correlations that
cannot be described by any classical probability distribution. Such residual correlations are quantified
by the so-called quantum discord [11].

For bipartite quantum states endowed with finite-dimensional Hilbert spaces, the concept of dis-
cord was first introduced and defined as the mismatch between total and classical correlations [12, 13].
The definition of quantum discord involves a nontrivial optimization task which can be accomplished
solely for very simple states, including X-states [14] and two-mode Gaussian states [15]. Restricting the
minimization—implicated in the definition of quantum discord [12, 13]—to the set of Gaussian positive
operator-valued measures [16], the optimization problem has been fully solved in [17, 18]. Quantum
discord was predicted to play the main role in miscellaneous protocols, e.g., quantum state merging [19],
remote state preparation [20], security in quantum key distribution [21] and quantum channel discrimina-
tion [22]. In this regard, quantum discord has been investigated in different systems including two-qubit
states [14, 23], two resonant harmonic oscillators [24], photonic crystal cavity array [25], optomechanical
Fabry-Pérot cavities [26]. The experimental exploration of quantum discord is accomplished in [10].

Notice that steering [27] and Bell nonlocality [28] are also two other incarnations of quantum cor-
relations that can be, especially, used to implement secure quantum information processing tasks, e.g,
quantum secret sharing protocol [29] and unconditionally secure quantum key distribution [30]. An-
other fundamental aspect that marks the departure of the quantum science from the classical one is
quantum coherence [31]. Such purely quantum property constitutes a powerful resource for quantum
information processing [31, 32], and plays a fundamental role in emergent fields like quantum biology
[33] and thermodynamics [34]. In recent years, the topic of Gaussian quantum correlations has received
a significant amount of attention as it plays a crucial role in quantum computation and communication
protocols [15]. While the efficiency of quantum information schemes is strongly depends on the degree
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of quantum correlations, three-level lasers have been theoretically predicted to be a good candidate as a
source of light in a highly entangled state [35]. Scully and Zubairy [35] have established the basic tools
of a really complete theory of two-photon laser emitted by three-level atoms in a cascade configuration.
In such lasers, the major role is played by the atomic coherence [35], which can be induced either by
the injected coherence process [36] or by the driven coherence process [37]. Importantly, two-mode light
generated within the cascade transition of a three-level laser is proven to evolve in a two-mode Gaussian
state [38]. A two-photon laser, with a gain media constituted by a set of three-level atoms in a cascade
configuration, is shown to display several quantum effects such as quenching of quantum fluctuations
[39], quantum squeezing effect [40], as well as anomalous optical bistability [41].

Over the past 2 decades, miscellaneous works focused only on inseparable quantum correlations (steer-
ing, entanglement, and Bell nonlocality) in three-level lasers coupled to either vacuum or squeezed reser-
voirs. For instance, Ping et al. [42] and Alebachew [43] have studied Bell nonlocality, where the atomic
coherence is induced via the driven coherence process and the injected coherence process, respectively.
They found that violation of Bell’s inequality of the entangled states is possible even in the presence
of cavity losses. Recently, El Qars [44] has investigated Gaussian quantum steering, where the atomic
coherence is induced by initially preparing the three-level atoms in a coherent superposition of the upper
and lower levels. It is found that due the positivity of the intensity difference of the two emitted laser
modes, one-way steering behavior can be detected only in one direction. Opposed to these works, the
entanglement properties in three-level lasers have been extensively examined. Proposals include, but not
limited to, [38, 40, 45, 46, 47], where the sufficient and necessary inseparability criterion proposed in
[48, 49] is employed as an entanglement witness.

In realistic quantum systems, quantum correlations are inevitably effected by the surrounding envi-
ronment which leads generally to their degradation [24]. This is a challenging issue for generating and
preserving quantum correlations in dissipative-noisy quantum optical systems, which are of great impor-
tance for quantum information processing [1]. Due to the increasing interest in the quantum properties
of correlated emission lasers, we propose here to investigate, against decoherence effect, both entangle-
ment and discord in a nondegenerate three-level laser where the atomic coherence is initially induced
by the injected coherence process. To this aim, we consider a two-mode Gaussian state ρAB coupled
to a common two-mode thermal reservoir. The modes A and B are generated, respectively, during the
first and second transitions of a single three-level atom. We use the Gaussian Rényi-2 entanglement
and the Gaussian Rényi-2 discord to quantify, respectively, entanglement and quantum discord between
the two laser modes A and B. Finally, we emphasize that entanglement and Gaussian quantum discord
defined via the Rényi-2 entropy have been studied in an optomechanical system subjects to dissipation
and thermal noise by El Qars et al. [26].

The remainder of this paper is organized as follows. In Sect. 2, we introduce the system under
consideration. Next, by applying the master equation governing the dynamics of the state ρAB , we derive
the explicit expression of the stationary covariance matrix fully describing the two-mode Gaussian state
ρAB . In Sect. 3, using realistic experimental parameters, we quantify and study the Gaussian Rényi-2
entanglement and the Gaussian Rényi-2 discord in the state ρAB . Finally, in Sect. 4, we draw our
conclusions.

2 A nondegenerate three-level cascade laser

Inside a resonant cavity, we consider a set of three-level atoms in interaction with two bosonic modes
of the quantized cavity radiation [35]. The jth bosonic mode can be characterized by its annihilation
operator ςj, decay rate κj and frequency ωj . We suppose that the atomic system is injected in the
cavity with a rate r [50]. As illustrated in Fig. 1, the notations |l1〉, |l2〉 and |l3〉 are used to indicate,
respectively, the upper excited, intermediate and ground levels of a single three-level atom.

The interaction between the two cavity modes ς1 and ς2 and a single atom can be described by the
Hamiltonian [35]

Hint = i~
[

υ12ς1|l1〉〈l2|+ υ23ς2|l2〉〈l3| − υ12|l2〉〈l1|ς†1 − υ23|l3〉〈l2|ς†2
]

, (1)

where υ12 are υ23 being the coupling constants corresponding to the first |l1〉 → |l2〉 and second |l2〉 → |l3〉
transitions, respectively [50]. In addition, we suppose that the three-level atoms are initially prepared
in an arbitrary quantum coherent superposition of the excited upper level |l1〉 and the ground level |l3〉.
Therefore, the initial state |Ψsa〉 as well as the density operator ρsa for a single atom read [51]

|Ψsa〉 = p1|l1〉+ p3|l3〉, (2)

ρsa = ρ11|l1〉〈l1|+ ρ13|l1〉〈l3|+ ρ31|l3〉〈l1|+ ρ33|l3〉〈l3|, (3)
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Figure 1: A three-level laser coupled to a common two-mode thermal reservoir. We adopt the notations
|l1〉, |l2〉 and |l3〉 for representing, respectively, the upper, intermediate, and ground levels for a single
three-level atom. The first(second) transition |l1〉 → |l2〉(|l2〉 → |l3〉) at the optical frequency ω1(ω2) and
spontaneous emission decay rate γ12(γ23), is assumed to be in resonance with the quantized cavity mode
ς1(ς2). While, the transition |l1〉 → |l3〉 is dipole forbidden [50]. The gain media of the laser is constituted
by an ensemble of three-level atoms in a cascade configuration. We focus on the situation in which the
atoms are initially prepared in a coherent superposition of the upper excited level |l1〉 and the ground
level |l3〉. r denotes the rate at which the atoms are placed in the cavity. When a single atom makes
a transition from the top level |l1〉 to the bottom level |l3〉 via the intermediate level |l2〉, two strongly
correlated photons are emitted with the frequencies ω1 and ω2. If ω1 6= ω2, which we consider here, the
laser is a nondegenerate three-level laser, and a degenerate three-level laser if ω1 = ω2.

where ρ11 = |p1|2 and ρ33 = |p3|2 represent, respectively, the probabilities for a single three-level atom
to be initially in the excited upper level and the ground level. While ρ13 = ρ∗31 = p1p

∗
3 is the initial

coherence of a single three-level atom [50]. For simplicity, we take the same spontaneous decay rates for
the transitions |l1〉 → |l2〉 and |l2〉 → |l3〉, i.e., γ12,23 = γ, the same coupling transitions, i.e., υ12,23 = υ,
and the same damping rates, i.e., κ1,2 = κ.

The dynamics of the reduced density operator ρAB for the two laser modes A and B—emitted during
the first and second transitions, respectively—is described by the master equation [52, 53]

dρAB

dt
=

−i

~
Trsa[Hint, ρ{sa+AB}] +

∑

j=1,2

(

κj(nth,j + 1)

2
L [ςj] ρAB +

κjnth,j

2
L[ς†j]ρAB

)

, (4)

with ρ{sa+AB} being the density operator describing the two laser modes A and B together with a single
three-level atom, and Trsa denotes the partial trace over the subsystem constituted by a single atom. In

Eq. (4), the Lindblad operator L [ςj] ρAB = 2ςjρABς
†
j −

[

ς†jςj , ρAB

]

+
is added to take into account the

coupling between the jth cavity mode and the jth thermal bath having mean thermal phonon number
nth,j [35].

Applying the linear-adiabatic approximation [54] in the good cavity limit, i.e., κ ≪ γ [35] with
common thermal bath, Eq. (4) would be [44, 55]

dρAB

dt
=

κ(nth + 1)

2
[2ς1ρABς

†
1 − ς†1ς1ρAB − ρABς

†
1ς1] +

κnth

2
[2ς†2ρABς2 − ς2ς

†
2ρAB − ρABς2ς

†
2] +

1

2
(Aρ11 + κnth) [2ς

†
1ρABς1 − ς1ς

†
1ρAB − ρABς1ς

†
1] +

1

2
(Aρ33 + κ(nth + 1)) [2ς2ρABς

†
2 − ς†2ς2ρAB − ρABς

†
2ς2] +

Aρ13
2

[ρABς
†
1ς
†
2 − 2ς†1ρABς

†
2 + ς†1ς

†
2ρAB − 2ς2ρABς1 + ς1ς2ρAB + ρABς1ς2], (5)

with A = 2rυ2/γ2 being the linear gain coefficient that quantifies the rate at which the atoms are injected
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into the cavity [35]. In Eq. (5), the term proportional to ρ33(ρ11) represents the losses(gain) of the mode
B(A), while that proportional to ρ13 represents the coupling between the two modes A and B [35].

Now, utilizing Eq. (5) and the formula 〈dOdt 〉 = Tr
[(

dρAB

dt

)

O
]

, we get the dynamics of the first and

second moments of the variables associated with the laser modes A and B, i.e.,

d

dt
〈ςj〉 =

−∅j
2

〈ςj〉+
(−1)jAρ13

2
〈ς†3−j〉 for j = 1, 2, (6)

d

dt
〈ς2j〉 = −∅j〈ς2j 〉+ (−1)jAρ13〈ς†1ς2〉, (7)

d

dt
〈ς†jςj〉 = −∅j〈ς†jςj〉+

(−1)jAρ13
2

[

〈ς†1ς
†
2〉+ 〈ς1ς2〉

]

+ (2− j)Aρ11 + κnth, (8)

d

dt
〈ς1ς2〉 = −∅1 + ∅2

2
〈ς1ς2〉+

Aρ13
2

[

〈ς†1ς1〉 − 〈ς†2ς2〉+ 1
]

, (9)

d

dt
〈ς1ς†2〉 = −∅1 + ∅2

2
〈ς1ς†2〉+

Aρ13
2

[

〈ς21〉 − 〈ς†22 〉
]

, (10)

where ∅1 = κ−Aρ11 and ∅2 = κ+Aρ33.
By introducing the population inversion η defined by ρ11 = (1−η)/2 with −1 6 η 6 1 [35], and using

both ρ11 + ρ33 = 1 and |ρ13| =
√
ρ11ρ33 we get ρ33 = (1 + η)/2 and ρ13 =

√

1− η2/2.

Finally, by using the steady-state condition, i.e., d〈.〉
dt = 0 in Eqs. (6)-(10), we get the non-zero

correlations

〈ς†1ς1〉 =
nth (η + 1)

2η2
+

[Aη (η − 1) + 2κnth] (1− η)

4 (κ+Aη) η2
+

(

η2 − 1
)

(4κnth −Aη)

2 (2κ+Aη) η2
, (11)

〈ς†2ς2〉 = −nth (η − 1)

2η2
+

[Aη (η − 1) + 2κnth] (1 + η)

4 (κ+Aη) η2
+

(

η2 − 1
)

(4κnth −Aη)

2 (2κ+Aη) η2
, (12)

〈ς1ς2〉 =
nth

√

1− η2

2η2
+

[Aη (η − 1) + 2κnth]
√

1− η2

4 (κ+Aη) η2
−

√

1− η2 (4κnth −Aη)

2 (2κ +Aη) η2
, (13)

which are physically meaningful only if η > 0, then 0 6 η 6 1. The case η = 0 or equivalently ρ11 = ρ33 =
ρ13 = 1/2 corresponds to maximum injected initial atomic coherence in the cavity. While, for η = 1, we
have ρ11 = ρ13 = 0 and ρ33 = 1, thus no initially atomic coherence are injected.

As mentioned above, it has been demonstrated in [38] that the two-photon light generated by a
nondegenerate three-level laser evolves in a two-mode Gaussian state, so, the two-mode Gaussian state
ρAB can be described by means of its covariance matrix defined as [VAB]jj′ = 〈UjUj′ + Uj′Uj〉/2, where
UT = (X1,Y1,X 2,Y2), with Xj = (ς†j + ςj)/

√
2 and Yj = i(ς†j − ςj)/

√
2. Based on the results given by

Eqs. [(11)-(13)], the covariance matrix V can be rewritten as

VAB =

( VA VA/B

VT
A/B VB

)

, (14)

where VA = a1l2, VB = b1l2, and VA/B = diag(c, c′), which corresponds to an asymmetric two-mode

squeezed thermal state [17], with a = 〈ς†1ς1〉 + 1/2, b = 〈ς†2ς2〉 + 1/2 and c = −c′ = 〈ς1ς2〉. The
submatrices VA and VB describe the two laser modes A and B, respectively, while VA/B describes the
correlations between them.

Equations (13) and (14) show that if A = 0 or η = 1, detVA/B = −c2 = 0, which turns ρAB into
a Gaussian product state, i.e., ρAB = ρA ⊗ ρB without any correlations (quantum and classical) [17].
Consequently, neither entanglement nor discord could be created between the modes A and B. This
because detVA/B < 0 is a necessary condition required for the inseparability of the bi-mode Gaussian
state ρAB [48]. Next, using the Gaussian Rényi-2 entropy, we study two different kinds of quantum
correlations, i.e., entanglement and quantum discord in the cavity radiation of the studied nondegenerate
three-level laser.
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Figure 2: Plot of the Gaussian Rényi-2 entanglement ER and the Gaussian Rényi-2 discords D←R and
D→R against the population inversion η using nth = 5 as value of the mean thermal phonon number and
κ = 3.85 kHz as value of the cavity decay rate. For the linear gain coefficient, we used A = 100 kHz in
panel (a), A = 1 MHz in panel (b), and A = 50 MHz in panel (c). Remarkably, ER = D←R = D→R = 0
for η = 1 regardless of the values of A. However, optimal entanglement and quantum discord could be
achieved by preparing the three-level atoms in a relatively stronger coherent superposition (A ≫ 1 with
η → 0). Panel (a) shows that quantum discord could be manifested without entanglement, while panel
(c) shows that entanglement may exceed discord, which clearly indicates that quantum discord can not
be viewed as a sum of entanglement and some other nonclassical correlations.

3 Gaussian Rényi-2 quantum correlations

3.1 Gaussian Rényi-2 entropy

The set of Rényi-α entropies have been first introduced by Alfred Rényi to generalize the concept of
entropy [56]. These entropies encompass the usual entropic measures, i.e., the Shannon entropy and the
von Neumann entropy [57]. Mathematically, the Rényi-α entropies of a quantum state ρ read as [18]

Sα(ρ) =
1

1− α
ln [Tr (ρα)] with α ∈ (0, 1) ∪ (1,+∞). (15)

The Sα(ρ)-entropies satisfy the following series of important mathematical properties: they are con-
tinuous, invariant under the unitary operations, and additive on tensor-product states [18]. Notice that
the Rényi α-entropies Sα(ρ) of discrete probability distributions are always positive. However, they can
be negative in continuous case [58]. In the limit α → 1, the entropies Sα(ρ) reduce to the conventional
von Neumann entropy S(ρ) =−Tr (ρ ln ρ) [57]. We notice that such entropy is intensively used in various
fields of sciences as well as in quantum information theory (see [26] for more details).

In pure quantum bipartite states, the von Neumann entropy—commonly known as the entropy of
entanglement—is the only quantifier of entanglement [3]. Whereas, for mixed states, entanglement can
be discriminated from separability by means of miscellaneous measures, which can be distinguished to
each other due to their operational meaning and their mathematical properties [59]. Using α = 2 in Eq.
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(15), we simply obtain S2(ρ) = − ln
[

Tr
(

ρ2
)]

, which corresponds to the Rényi-2 entropy [18]. For an
arbitrary tripartite state ρABC , it has been proven that the entropy S2(ρ) satisfies the so called strong
subadditivity inequality, i.e., S2 (ρAB) + S2 (ρBC) > S2 (ρABC) + S2 (ρB) [18], which allows to develop
various measures of quantum correlations including entanglement and quantum discord.

3.2 Gaussian Rényi-2 entanglement

For a bipartite Gaussian state with covariance matrix VAB (14), the Gaussian Rényi-2 entanglement is
defined as [18]

ER(VAB) := inf
{σxy |0<σxy≤VAB, det σxy=1}

S2(σx), (16)

where S2(̺) =
1
2 ln[detΘ] is the Gaussian Rényi-2 entropy of the state ̺ having the covariance matrix Θ

[18]. In Eq. (16), the optimization is taken over a pure two-mode Gaussian state with covariance matrix
σxy smaller than VAB, with σx being the marginal covariance matrix of party x obtained from σxy by
partial tracing over party y.

For generally mixed two-mode Gaussian states ρAB , Eq. (16) admits a complicated expression [18].
In particular, for the two-mode Gaussian squeezed thermal state ρAB with the covariance matrix (14),
Eq. (16) reads [59]

ER =







1
2 ln

[

(g+1)s−
√

[(g−1)2−4d2][s2−d2−g]

4(d2+g)2

]2

if 2|d|+ 1 ≤ g < 2s − 1,

0 if g > 2s− 1,

(17)

where s = (a+ b) /2, d = (a− b) /2 and g =
√
detVAB.

It is interesting to notice here that a comparative analysis performed in [55], between the Gaussian
Rényi-1 entanglement (that is the entanglement of formation defined via the von Neumann entropy) and
the Gaussian Rényi-2 entanglement given by Eq. (17), showed that the former may not be the best choice
for characterizing entanglement even when restricted to the simple case of two-mode Gaussian states.

3.3 Gaussian Rényi-2 discord

In the spirit of the measures proposed in [17], where Gaussian quantum discord has been defined via the
conventional von Neumann entropy, Adesso and the co-workers [18] have obtained closed formula of the
Gaussian Rényi-2 discord for generally mixed two-mode Gaussian states.

In a two-mode Gaussian state ρAB, the Gaussian Rényi-2 discord DR is defined as the difference
between the total correlations, quantified by the Gaussian Rényi-2 mutual information IR, and the
Gaussian Rényi-2 classical correlations CR [60, 61], i.e.,

DR(ρAB)
.
= IR(ρAB)− CR(ρAB), (18)

where IR(ρAB) is defined by

IR(ρAB) = S2(ρA)+S2(ρB)−S2(ρAB), (19)

=
1

2
ln

detVA detVB

detVAB
. (20)

From an operational point of view, the Gaussian Rényi-2 mutual information (20) quantifies the
phase space distinguishability between the Wigner function of the two-mode Gaussian state ρAB and the
Wigner function of the product of the marginal ρA ⊗ ρB.

Following [18, 60, 61], the Gaussian Rényi-2 mutual information IR(ρAB) can be interpreted as
the degree of extra-discrete information that requires to be transmitted among a continuous variable
channel for reconstructing the complete joint Wigner function of the two-mode Gaussian state ρAB
rather than just the two marginal Wigner functions of the two modes A and B. IR is always positive and
vanishes only on product states, i.e., ρAB = ρA⊗ρB . Besides, the Gaussian Rényi-2 classical correlations
CR(ρAB) are defined in terms of how much the ignorance about the state of a party, saying A, is reduced
when the most informative local measurement is implemented on party B [17]. Operationally, we define
C←R (ρAB)(C→R (ρAB)) as the maximum decrease in the Gaussian Rényi-2 entropy of party A(B), when a set
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Figure 3: Plot of the Gaussian Rényi-2 entanglement ER and the Gaussian Rényi-2 discords D←R and
D→R versus the mean thermal phonon number nth using η = 0.35 and κ = 3.85 kHz. For the linear gain
coefficient, we used A = 200 kHz in panel (a) and A = 20 MHz in panel (b). As shown, ER is more
degradable under thermal noise, having a tendency to vanish rapidly. In contrast, the discords D←R and
D→R are more robust against thermal noise, where they are significantly nonzero for nth > 100 in panel
(a) and for nth > 5× 103 in panel (b). These observations entail that the decoherence effect induced by
high values of nth could be overcome via preparing the atoms with a higher degree of quantum coherence,
i.e., A ≫ 1 and η → 0.

of Gaussian local measurements have been implemented on party B(A), provided that the optimisation
is over all possible Gaussian measurements [17]

C←R (ρAB) = sup
ΓM
B

[

1

2
ln

detVA

det ṼM
A

]

, (21)

where ṼM
A = VA − VA/B(VB + ΓM

B )−1VT
A/B is the covariance matrix of the mode A after an optimised

Gaussian measurement is performed on mode B, with ΓM
B being a positive operator valued measure [16].

C→R (ρAB) can be obtained from Eq. (21) by performing the double exchange VA ↔ VB and ΓM
B → ΓM

A .
For the two-mode Gaussian states ρAB with covariance matrix (14), Eq. (18) reads [18]

D←R (ρAB)
.
= IR(ρAB)− C←R (ρAB), (22)

D←R (ρAB) = inf

[

1

2
ln

detVB det ṼM
A

detVAB

]

, (23)

with

inf
[

ln det ṼM
A

]

=











a
(

a− c2

b

)

if
[

ab2c′2 − c2
(

a+ bc′2
)] [

ab2c2 − c′2
(

a+ bc2
)]

< 0,
[

|cc′|+
√

[a(b2−1)−bc′2][a(b2−1)−bc2]

b2−1

]2

otherwise.
(24)

In general, the Gaussian Rényi-2 discord is nonsymmetric by exchanging the roles played by the
modes A and B, i.e., D←R 6= D→R , where the discord D←R (D→R ) is obtained after Gaussian measurements
have been performed on mode B(A). Moreover, form Eqs. (23) and (24), we remark that if c = 0 or
c′ = 0, the discords D←R and D→R vanish, which turns the state ρAB into a product state with no position
or momentum correlations between the modes A and B.

Notice that a comparative study [23] between the entanglement of formation and quantum discord,
in a two-qubit state, showed that these two measures of quantum correlations are not only quantitatively
but also qualitatively different.

For realistic estimation of the Gaussian Rényi-2 entanglement ER and the Gaussian Rényi-2 discords
D←R and D→R we use parameters from [45, 62]: the cavity decay rate κ = 3.85 kHz, the atomic decay rate
γ = 20 kHz, the coupling constant υ = 43 kHz, the rate at which the atoms are injected into the cavity

r = 22 kHz. Using these values, we get A = 2rυ2

γ2 ≈ 200 kHz for the linear gain coefficient.

7



Figure 4: (a) Density plot of the difference D←R − D→R against η and A using κ = 3.85 kHz and nth = 5.
(b) Density plot of the difference D←R −D→R against nth and A using κ = 3.85 kHz and η = 0.35. Under
various conditions, we remark that D←R ≥ D→R , meaning that more quantumness of the studied three-level
laser could be captured by performing Gaussian measurements of mode B that emitted during the second
transition |l2〉 → |l3〉.

In Fig. 2, we plot simultaneously ER, D←R and D→R against the population inversion η using nth = 5
as value of the mean thermal phonon number. For the linear gain coefficient, we used A = 100 kHz in
Fig. 2a, A = 1 MHz in Fig. 2b, and A = 50 MHz in Fig. 2c. Quite remarkably, for η = 1, neither
entanglement nor discord in both directions could be detected (ER = D←R = D→R = 0) irrespective of
the values of A. This can be understood as follows: since η = 1 corresponds to the situation in which
all the three-level atoms are populated in the ground level |l3〉, then it will be no possibility for laser
emission by the atoms via the cascade transition |l1〉 → |l2〉 → |l3〉. Consequently, correlated laser modes
in the cavity are not expected. On the other hand, by preparing the atoms in a quantum coherent
superposition of the upper |l1〉 and ground |l3〉 levels, i.e., η 6= 1, quantum features of the cavity radiation
of the nondegenerate three-level laser could be well detected. In particular, when the atoms are initially
prepared in a maximum coherent superposition, i.e., η = 0, we remark that, solely, the Gaussian Rényi-2
discords D←R and D→R can capture the quantumness of correlations of the cavity light.

Figure 2a illustrates that, for A = 100 kHz, the Gaussian Rényi-2 entanglement ER is always zero
regardless of the values of η. In contrast, the Gaussian Rényi-2 discords D←R and D→R are always nonzero
for all values of the population inversion η except for η 6= 1. However, by augmenting the values of
the coefficient A, we remark that, in addition to quantum discord, the entanglement ER could be also
detected. As clearly indicated in Figs. 2b and c, high values of A = 2rυ2/γ2 allow to generate maximum
entanglement and discord provided that the three-level atoms are initially prepared in a relatively stronger
coherent superposition (η → 0). This entails that quantum correlations can be enhanced via augmenting
the rate r at which the atoms are injected into the cavity or augmenting the coupling strength υ, or using
the two mechanisms at the same time. Manifestly, Fig. 2c shows an interesting situation in which the
entanglement ER exceeds the quantum discords D←R and D→R in contrary to the predictions based on the
assumption that entanglement is only a part of quantum discord [63].

The situation in which quantum discord is found less than entanglement reminds us of the analogous
feature observed within two-qubit states in [23]. This can be explained as follows: purely quantum
correlations captured by means of quantum discord often emerge as a consequence of quantum coherence
property [12]. Whereas, entangled states may involve more than purely quantum correlations, that
is, entangled states usually carry classical ones [3]. On the other hand, inspired by the results [13,
61] postulated that classical correlations should not be less than quantum ones. Therefore the case
corresponds to ER > Max[D←R ,D→R ] can be viewed as a situation in which entanglement is a certain
mixture of purely quantum and purely classical correlations. Overall, Fig. 2 shows that when the
Gaussian Rényi-2 entanglement ER failed to capture quantum correlations in the state ρAB , the Gaussian
Rényi-2 discord can capture them even when less coherence are injected in the cavity (small values of
the linear gain coefficient A with η → 1).

Now, we focus our attention on the behavior of the entanglement ER and the discords D←R and D→R
under influence of thermal effect. In Fig. 3, we plot simultaneously ER, D←R and D→R against the mean
thermal phonon number nth using A = 200 kHz in Fig. 3a and A = 20 MHz in Fig. 3b. In both
panels, we used η = 0.35. As shown, the three measures of nonclassicality ER, D←R and D→R are maximum
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for nth = 0 and decrease with increasing nth. Obviously, the entanglement ER is found more affected
by thermal noise than quantum discord, having a tendency to vanish quickly. However, by using high
values of the linear gain coefficient A, entangled states could be preserved over a wide range of nth. This
means that by injecting more and more quantum coherence into the cavity, it is possible to overcome the
decoherence effect induced by thermal noise. Besides, the discords D←R and D→R are found more robust
against thermal noise, where they decrease monotonically with increasing nth, but never vanish.

Strikingly, the Gaussian Rényi-2 discords D←R and D→R still nonzero up to nth = 100 using A =
200 kHz in Fig. 3a and up to nth = 5 × 103 using A = 20 MHz in Fig. 3b. These results assert
that the quantumness of correlations in a nondegenerate three-level laser could be captured even in high
environmental temperature provided that the atoms are initially prepared in the cavity with a high degree
of quantum coherence, i.e., A ≫ 1 and η → 0. Also, it is interestingly to observe from Fig. 3 that within
separable states (ER = 0), the discords D←R and D→R remain almost constant, reaching an asymptotic
regime over a wide range of nth. Such behavior is commonly known as the freezing behavior of quantum
discord beyond entanglement, where an insightful physical interpretation of this phenomenon is given in
[11, 32].

It is not hard to remark from Figs. 2 and 3 that the two discords D←R and D→R reveal rather different
trends in similar conditions. This means that inferring on the laser mode A based on the measurements
implemented on the laser mode B is completely different from the reverse process, which is an important
example of the role played by the observer in quantum mechanics [44]. Quite remarkably, in various
circumstances, the discord D→R obtained by performing Gaussian measurements on mode A, emitted
during the first transition |l1〉 → |l2〉, remains less or equal to the discord D←R obtained by performing
Gaussian measurements on mode B, emitted during the second transition |l2〉 → |l3〉. In what follows,
we show that such behavior is independent of the values of physical and environmental parameters (η, κ,
A, nth) of the state ρAB .

In Fig. 4a, we plot D←R − D→R using a density values of the parameters η and A for nth = 5 and
κ = 3.85 kHz. While, in Fig. 4b we plot D←R − D→R using a density values of the parameters nth and A
for η = 0.35 and κ = 3.85 kHz. As vividly illustrated the difference D←R −D→R is always superior or equal
to zero in various circumstances, which implies that D←R ≥ D→R . Furthermore, employing Eqs. (14) and
(23), we obtain

D←R −D→R = ln

[

ab+ b

ab+ a

ab+ a− c2

ab+ b− c2

]

, (25)

where the discord D→R can be obtained from the expression of D←R by performing the exchange a ↔ b.
With some algebra, one can show that the difference D←R −D→R given by Eq. (25) and the difference a− b
have the same-sign. On the other hand, using the expressions of a and b defined from the covariance
matrix (14), we get

a− b = 〈ς†1ς1〉 − 〈ς†2ς2〉 =
A (1− η + 2nth)

2 (κ+Aη)
, (26)

which is always positive or equal to zero since κ, A and nth are positive, and 0 6 η 6 1. Therefore,
we conclude that the situation D←R ≥ D→R is always fulfilled by the state ρAB, which asserts that more
quantumness of correlations, in the state ρAB , can be captured by performing Gaussian measurements on
the laser mode B that emitted during the second transition |l2〉 → |l3〉. Finally, with the cavity-quantum
electrodynamics approaches [64, 65] and the strategy of homodyne measurement [15], our results may be
verified experimentally.

4 Conclusion

In a two-mode Gaussian state ρAB, coupled to a common two-mode thermal bath, a comparative study
between two indicators of nonclassicality (entanglement and discord) is presented. The mode A(B) is
generated within the first(second) transition of a nondegenerate three-level cascade laser. The stationary
covariance matrix of the state ρAB is evaluated within the good cavity limit and the linear-adiabatic
approximation. The Gaussian Rényi-2 entanglement ER is used to quantify entanglement, while the
Gaussian Rényi-2 discords D←R and D→R are employed for capturing the quantumness of correlations. It is
found that both entanglement and discord could be generated and enhanced via controlling the physical
and environmental parameters of the state ρAB. Optimal entanglement and discord can be achieved when
the atoms are initially prepared in a relatively strong coherent superposition, i.e., A ≫ 1 and η → 0.
Quite remarkably, the entanglement ER is found more fragile against thermal effect, suffering a sudden
death-like behavior. In contrast, quantum discord is found more robust, seeming to be captured in a wide
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range of environmental temperatures. Numerical as well as analytical analysis showed that the discord
D←R remains always superior or equal to the discord D→R , meaning that more quantumness of correlations
can be captured by performing Gaussian measurements on the mode B that generated during the second
transition.

These results fairly indicate that, over lossy-noisy channels, nondegenerate three-level lasers can
be useful in implementing some quantum information tasks, especially for that do need entanglement.
Finally, it would be interesting to investigate the conditions under which the quantum correlations of
the two laser modes A and B can be transferred to two mechanical modes for generating, e.g., quantum
steering between them. We hope to report on this in a forthcoming work.
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