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Abstract

Deep learning-based face recognition models are vulnerable to adversarial attacks.
In contrast to general noises, the presence of imperceptible adversarial noises can
lead to catastrophic errors in deep face recognition models. The primary differ-
ence between adversarial noise and general noise lies in its specificity. Adversarial
attack methods give rise to noises tailored to the characteristics of the individual
image and recognition model at hand. Diverse samples and recognition models
can engender specific adversarial noise patterns, which pose significant challenges
for adversarial defense. Addressing this challenge in the realm of face recogni-
tion presents a more formidable endeavor due to the inherent nature of face
recognition as an open set task. In order to tackle this challenge, it is impera-
tive to employ customized processing for each individual input sample. Drawing
inspiration from the biological immune system, which can identify and respond
to various threats, this paper aims to create an artificial immune system (AIS)
to provide adversarial defense for face recognition. The proposed defense model



incorporates the principles of antibody cloning, mutation, selection, and mem-
ory mechanisms to generate a distinct “antibody” for each input sample, wherein
the term “antibody” refers to a specialized noise removal manner. Furthermore,
we introduce a self-supervised adversarial training mechanism that serves as a
simulated rehearsal of immune system invasions. Extensive experimental results
demonstrate the efficacy of the proposed method, surpassing state-of-the-art
adversarial defense methods. The source code is available here, or you can visit
this website: https://github.com/RenMin1991/SIDE

Keywords: Adversarial Defense, Face Recognition, Artificial Immune System,
Self-supervised Adversarial Learning

1 Introduction

Deep learning-based feature extractors have garnered significant achievements across
diverse domains, notably in image classification [1-7], object detection [8, 9], and
semantic segmentation [10, 11]. This can be attributed to their capability of executing
non-linear mappings from raw data to high-dimension features. Despite the power-
ful expressive capabilities of deep learning models, their susceptibility to adversarial
attacks undermines their reliability and degrades their security [12-16]. Hence, numer-
ous researchers have directed their attention towards adversarial defense techniques
for deep learning models [17-24].

As a prevalent and widely adopted application of deep learning technology, deep
learning based face recognition [25-33] have demonstrated their ability to surpass
human performance in both verification and identification scenarios. The domains
where face recognition is applied, such as finance and border control, typically impose
stringent requirements on security. Nevertheless, the security of deep learning-based
face recognition systems is greatly degraded by the inherent fragility of deep learn-
ing models against adversarial attacks. Whether these attacks stem from the digital
domain [34] or are directly imposed in the physical domain [35], they effortlessly exploit
vulnerabilities within face recognition models, leading to catastrophic errors. Thus,
the pursuit of adversarial defense methods in the domain of face recognition not only
holds theoretical significance but also represents a pressing technological imperative
driven by practical application demands.

In fact, deep learning models demonstrate remarkable robustness against com-
mon types of noise, such as Gaussian and salt-and-pepper noise. Their susceptibility
to adversarial noises can be attributed to the specificity possessed by these noises.
Adversarial attack methods generate noises that are specifically tailored to the charac-
teristics of the target image and recognition model. As a consequence, distinct samples
and recognition models can lead to the creation of specific patterns of adversarial
noise, thus imposing considerable challenges when devising effective mechanisms for
adversarial defense.

Facial recognition can be applied to both close-set scenarios, where all identities are
available, and open-set scenarios, where the identities encountered during testing are
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unavailable. This challenge poses great difficulties for the face recognition task due to
the fact that face recognition tasks involve dealing with a substantially larger number
of unique identities, especially in open-set scenarios. Hence, adversarial samples in the
context of face recognition demonstrate a great degree of diversity, complexity, and
unpredictability in their adversarial noise patterns. The specificity inherent in adver-
sarial noises amplifies their detrimental impact, thereby intensifying the vulnerability
of face recognition models to adversarial attacks.

In response to this challenge, we propose a novel adversarial defense model for
face recognition. The proposed model provides individualized manners for removing
adversarial noises, thus endowing each facial image with a tailored and specific defense
against adversarial noises. This approach draws inspiration from the biological immune
system, which exhibits powerful attributes such as self-learning, dynamic adaptation,
and memory capabilities [36]. The immune system can generate specific antibodies
against various viruses through processes of antibody cloning, mutation, selection, and
memory. These mechanisms enable the production of effective antibodies that bind
specifically to antigens, thus achieving effective immunity.

In the proposed method, adversarial noises can be analogous to antigens, while
the noise removal ways are analogous to antibodies. When devising the structure of
antibodies, the perturbation inactivation methodology of PIN [37] is assimilated. This
method is an adversarial defense approach that utilizes eigenvectors of facial images
to filter noise and restoring essential facial features. However, PIN fails to consider the
specificity of adversarial noises during noise removal, making it challenging to effec-
tively differentiate between the harmful information introduced by adversarial noises
and the inherent information of the face itself. As a result, striking a balance between
adversarial noise removal and facial sample restoration becomes difficult. This issue is
also encountered by most adversarial defense methods based on noise removal. In con-
trast, we propose an artificial immune system that provides customized noise removal
ways for facial samples. This is achieved through the generation, cloning, mutation, and
memory mechanisms of antibodies within the immune system. The proposed defense
model consists of three essential components: the antigen analyzer, the antibody gen-
erator, and the memory module. The antigen analyzer is responsible for analyzing
the characteristics of adversarial noises, whereas the antibody generator emulates the
processes of antibody cloning, mutation, and selection to optimize the antibodies.
Concurrently, the memory module is employed to store patterns of adversarial noises
during the optimization process.

In addition, we propose a self-supervised adversarial training mechanism that
collaborates with the aforementioned adversarial defense model. This mechanism inte-
grates a momentum-updated siamese network of the adversarial defense model to
generate on-the-fly adversarial samples. Self-supervised adversarial training can offer
more precise guidance for the process of antibody selection, leading to a gradual
enhancement in their defense capabilities. This process is analogous to how the immune
system continuously enhances its immune capabilities through repeated confrontations
with viral invasions.

The main contributions of this paper can be summarised as follows:



® In this paper, we introduce a novel face recognition adversarial defense model based
on the principles of specific immunity. By emulating the intricate process of spe-
cific immune evolution observed in biological systems, this model provides tailored
denoising ways for individual input facial images. This model effectively mitigates
the challenges posed by the specificity of adversarial noise to face recognition models,
enabling robust and reliable recognition performance.

® We introduce a self-supervised adversarial training mechanism that contributes
to the selection of “antibodies” within the proposed adversarial defense model.
This mechanism facilitates iterative refinement through self-adversarial training,
empowering the model to enhance its defensive capabilities against adversarial
noises.

® The effectiveness of the proposed adversarial defense method has been experimen-
tally validated across diverse types of adversarial attacks and multiple datasets. The
experimental results demonstrate its superior performance compared to existing
state-of-the-art adversarial defense methods. Furthermore, we offer a comprehen-
sive experimental analysis, providing valuable insights into the effectiveness and
robustness of the proposed method.

The remainder of this paper is organized as follows: Section 2 presents a brief
literature review of the related work. The proposed adversarial defense model and the
self-supervised adversarial training mechanism are described in detail in Section 3.
The configurations and results of experiments are presented in Section 4. Finally, the
conclusion of this paper is summarized in Section 5.

2 Related Work

2.1 Deep Learning Based Face Recognition

Deep learning-based face recognition has achieved remarkable advancements in recent
years. The pioneering work of CNN-based face representation was introduced by Taig-
man et al. [25] and Yi et al. [26]. In these studies, face recognition is regarded as a
multi-class classification challenge. To address this, deep convolutional neural network
(CNN) models are initially implemented to acquire features from extensive datasets
containing multiple identities. However, due to the fact that face recognition is an
open-set task, meaning testing identities that are different from the ones used for train-
ing, there is a significant difference between face recognition and image classification
tasks. As a result, researchers have increasingly tended to model it as a metric learn-
ing task, aiming to learn a feature space mapping model with strong discriminative
power through constraints imposed on the feature space. In the pursuit of obtaining
a 128-D face embedding representation, Schroff et al. utilized a triplet loss function
in their research [27]. To further enhance feature embedding, numerous methods have
been proposed, such as SphereFace [28], CosFace [29], ArcFace [30], among others. In
addition, to facilitate the deployment of facial recognition models, researchers have
also focused on the study of lightweight face recognition models [38, 39].

In spite of the considerable progress made in this field, deep learning models utilized
for face recognition remain susceptible to adversarial attacks, as indicated by previous



studies [34, 35, 40]. This vulnerability presents a profound concern and jeopardizes
the overall security of face recognition systems.

2.2 Adversarial Attack

The adversarial attack technique for computer vision tasks has become a prominent
area of research. Szegedy et al. [12] is the first to demonstrate the vulnerability of deep
neural networks to adversarial noises. Since then, numerous methods for adversarial
attacks have been proposed. Goodfellow et al. [13] introduced an efficient single-step
attack method called FGSM, which is based on gradient calculations. DeepFool [41]
aims to identify the nearest decision boundary in order to confuse the model. C&W [42]
addresses the joint optimization of the objective function and the scale of noises.
Projected gradient descent (PGD) [43] iteratively applies the gradient signal of deep
learning models, which is the most powerful first-order adversarial attack method [43].
Su et al. [44] propose an intriguing approach that confuses deep learning models by
altering just a single pixel in the image. Additionally, there have been reports on the
generalization of adversarial noises [45-49]. Universal adversarial noises based attack
methods are proposed in several studies [14, 50-52].

Recently, there have been reports of targeted adversarial attack techniques specif-
ically tailored for face recognition systems. Dong et al. [34] introduce a decision-based
adversarial attack method for face recognition. The rapidly evolving field of transfer-
able facial adversarial attack techniques has provided additional avenues for black-box
facial adversarial attacks [53, 54]. Furthermore, instances of physical domain adver-
sarial attacks have also been documented in the literature. Sharif et al. [55] presented
a systematic approach for generating physically feasible attacks by printing a pair of
eyeglass frames. Another method, known as sticker attack, was proposed by Komkov
et al. [35], which involves using a specially designed rectangular paper sticker to
deceive the face recognition system. Recently, there have been further developments in
sticker-based adversarial attacks on faces. Yang et al. [56] introduce a sticker genera-
tion method that can adhere to the three-dimensional shape of faces. These real-world
attacks pose new challenges to the adversarial defense for face recognition systems.

2.3 Adversarial Defense

The extant adversarial defense methods can be broadly categorized into two distinct
groups. The first group encompasses methods that strive to enhance the robustness
of neural networks against adversarial examples. These methods concentrate on for-
tifying the network’s capacity to withstand noises and maintain accurate predictions
in the presence of such malicious input. On the other hand, the second group involves
methodologies that aim to eliminate the adversarial noises from the adversarial sam-
ples prior to their presentation to the recognition model. This category of approaches
focuses on cleansing the input data by removing the embedded harmful alterations,
thereby reducing the potential impact of adversarial attacks.

A prevalent strategy of the first type involves training neural networks using
adversarial examples [13, 17-19, 57]. This strategy is straightforward and aims to



enhance the network’s resistance against adversarial attacks. To improve the robust-
ness against gradient-based attacks, several learning strategies have been proposed.
Ross et al. [20] trained models with input gradient regularization. Other techniques,
such as network distillation [58], region-based classifier [59], generative model [60, 61],
and self-supervised learning [62] have also been adopted to enhance model robustness.
Rakin et al. [63] introduced a trainable randomness method for adversarial training to
improve robustness. A novel loss function for adversarial defense is proposed for adver-
sarial defense in [64]. Mustafa et al. [65] achieved elevated robustness by constraining
the hidden space of deep neural networks. Zhong et al. [66] utilized margin-based triplet
embedding regularization to train the recognition model. Cazenavette et al. [67] aimed
to enhance the adversarial robustness of CNNs by reframing each layer as a sparse cod-
ing model. Jin et al. [68] present an approach for analyzing the noise pattern by Taylor
expansion. However, these methods often exhibit poor generalization to adversarial
noise that does not appear in the training set, as verified by our experiments in this
paper. This is because the patterns of adversarial noise are more complex and diverse
in face recognition tasks, and relying solely on adversarial training is insufficient to
cope with them.

The other type of approaches are devised to eliminate the adversarial noises prior to
the recognition model’s processing [37, 69-73]. Das et al. [69] proposed the application
of JPEG compression to remove these noises. In a study by Guo et al. [70], image quilt-
ing and total variation minimization (TVM) were assessed as possible techniques for
this purpose. Meng et al. [71] introduced a two-pronged defense strategy to effectively
eliminate adversarial noises. Liao et al. [72] incorporated the U-Net [74] as a denoising
module, thereby enabling the removal of adversarial noises. The work presented in [73]
employed PixelCNN [73] to transform adversarial examples into clean images. Bai et
al. [75] further improved the defense performance by incorporating Hilbert scan into
PixelCNN. Dezfooli et al. [76] and Sun et al. [77] utilized sparse coding to reconstruct
image patches. Gupta et al. [78] attempted to identify the most influential regions of an
image for reconstruction. Xie et al. [79] employed a self-attention layer to recover the
original information within the feature space. Zhou et al. [80] utilized self-supervised
learning to eliminate adversarial noise in the class activation feature space. PIN [37]
utilizes eigenvectors of facial images to filter noise and restoring essential facial fea-
tures. However, it is worth noting that most of these methods were primarily developed
for general image classification tasks. Furthermore, they are unable to provide specific
noise removal ways, rendering them unsuitable for face recognition tasks.

2.4 Algorithms Inspired by the Immune System

The biological immune system is an evolved defense mechanism in vertebrates to pro-
tect the organism from the invasion of “non-self” entities such as pathogens. Due to
its superior characteristics, including self-learning, memory mechanisms, and dynamic
adaptability [36], the biological immune system has provided abundant biomimetic
inspiration for solving various problems. Artificial immune systems (AIS) [81] con-
struct algorithms by simulating the functions, principles, and models of the biological
immune system.



Among numerous immunological theories, the clonal selection theory [36] has pro-
vided significant inspiration for the development of computer algorithms [81-85]. The
clonal selection theory explains the fundamental characteristics of adaptive immune
response under antigen stimulation. Its basic concept is that only those cells capable
of recognizing antigens are selected for proliferation, while those incapable of antigen
recognition are not selected. The selected cells undergo proliferation and mutation
processes to enhance their affinity.

Drawing inspiration from the principles of the clonal selection theory, researchers
have put forth numerous algorithms that have yielded fruitful research outcomes in
domains such as dynamic programming [84] and multi-objective optimization [85].
Clonal selection algorithms commonly incorporate the following essential components:
affinity calculation, which quantifies the quality of antibodies; selection, which involves
the screening of existing antibodies; cloning, which encompasses the replication of
antibodies; mutation, which entails modifying the structure of antibodies; and memory,
which involves the storage of information regarding antibodies [81].

This paper stands as a pioneering effort that amalgamates the clonal selection algo-
rithm with deep learning methodologies for adversarial defense. We propose a novel
approach to address the specificity and complexity of adversarial noise in face recog-
nition tasks by implementing the aforementioned components of the clonal selection
algorithm. This approach has successfully achieved adversarial defense tailored for face
recognition.

3 Methodology

This section provides a comprehensive description of the proposed defense method.
Firstly, we present the preliminaries of the method, encompassing symbol representa-
tion and the definition of antibodies. Building upon this foundation, we introduce the
structure and overview of the proposed model. Subsequently, we delve into the defense
model optimization and the self-supervised adversarial defense training. Finally, we
provide the implementation details of the method.

3.1 Preliminaries

A face recognition model can be regarded as a mapping function that transforms facial
images into the feature space. Given a facial image represented as z € REXHXW the
deep feature f can be extracted using a face recognition model denoted as F":

f=F(z) (1)

Adversarial samples are generated by the adversarial attack method according to the
facial image « and the face recognition model F:

Zadv = Attacker(x, F) (2)

where Attacker is the adversarial attack method, x,4, is the adversarial sample. The
adversarial noise is the difference between x and x,4,. In this paper, we propose an



adversarial defense model, denoted as D, in this paper for recovering x from z,q,:

Lrecon = De(xadv) (3)
where 6 is the parameters of the proposed model.

Definition of Antibody:

In the context of adversarial defense, the adversarial noises in adversarial samples can
be viewed as antigens, while noise removal methods can be seen as antibodies. The
fundamental motivation behind the design of antibody form lies in facilitating the anal-
ysis and removal of noise. Given the intricate and diverse nature of adversarial noises
in facial recognition, modeling the distribution of clean facial images in pixel space
serves as a foundation for mitigating the challenges associated with noise analysis. By
acquiring a comprehensive understanding of the underlying distribution of clean facial
images, we can establish a solid basis for reducing the complexity involved in noise
analysis and consequently lowering the difficulty in effectively removing adversarial
noises.

In the realm of facial image distribution modeling, researchers have already made
significant strides, providing valuable insights for further investigation. Among these
noteworthy contributions, EigenFace [86] stands out as a pioneering and groundbreak-
ing approach. Following the lead of EigenFace, we can model the distribution of facial
images in pixel space by the eigenvectors that characterize the data distribution. Each
eigenvector represents a distinct dimension in pixel space, and the components of facial
images across different eigenvectors express various types of features. This provides
a favorable foundation for us to design noise removal methods, namely antibodies.
Therefore, we define antibodies using eigenvectors: an antibody is a composition of
eigenvectors:

a={ei,eq,....en} (4)
where @ is an antibody, e; € R%, d = C x H x W is an eigenvector of the facial images,
n is the number of eigenvectors of the antibody, and 0 < n < d.

The eigenvectors comprising antibodies have the ability to selectively filter features

of a facial image, retaining the characteristics corresponding to these eigenvectors:

o = ET(xflat — Tmean) (5)

where E € R¥" is a matrix composed of the eigenvectors from an antibody, wherein
. flat d - . . .
each column represents an eigenvector, x;,~ € R? is obtained by reshaping x4, into
a flattened vector, Tmean € R? is the mean vector of the facial samples in the pixel
space. a € R” represents the component of the input image along the eigenvectors of
the antibody, encompassing only the characteristic information associated with these

eigenvectors. After obtaining «, the facial image can be reconstructed:
_ . T
Trecon = B + Tmean (6)

By performing the aforementioned processing steps, the reconstructed image will
only contain the features corresponding to the eigenvectors of the antibody, while the
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Fig. 1 The architecture of the proposed adversarial defense method. The proposed adversarial
defense model encompasses three key components: the antigen analyzer, the antibody generator, and
the memory module.
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Fig. 2 The process of using antibodies for noise removal (omitting mean for brevity). The eigenvec-
tors comprising antibodies have the ability to selectively filter facial features in an image, retaining
the characteristics corresponding to these eigenvectors while removing the remaining information.

features corresponding to eigenvectors not present in the antibody are removed. For
different adversarial samples, employing distinct antibodies enables the removal of
different features, thereby facilitating a tailored and specific noise removal manner for
each input sample.

3.2 Model Architecture

The proposed adversarial defense model encompasses three key components: the
antigen analyzer, the antibody generator, and the memory module, as shown in Fig. 1.

In order to provide specific treatment for each input adversarial face image, it is
essential to conduct an effective analysis of these images. To this end, we adopt a deep
neural network, serving as a noise analyzer for adversarial samples, namely the antigen



analyzer. Given an adversarial sample z,q4,, the antigen analyzer, denoted as H, takes
the adversarial sample as its input and produces the noise feature f,, € R as output:

fn= H(xad'u) (7)

The noise information of the input image is contained in f,.

Inspired by the memory mechanisms in the immune system, a memory module is
incorporated into the proposed defense model. This memory module is used to store the
noise patterns of adversarial samples, enabling the defense model to explicitly model
vulnerabilities in the face recognition model and guide the generation of “antibodies”.
The memory module, represented by the noise feature matrix M € R%*9m  serves
as a repository of noise patterns, with d,, denoting the number of memory items.
Before generating antibodies, f,, is utilized to retrieve noise features from the memory
module M. Subsequently, a self-attention mechanism is employed to aggregate the
retrieved noise features as the input of antibody generator fn The detailed process of
feature retrieval and aggregation, as well as the updating of the memory module, will
be described in Section 3.3.

The antibody generator initially maps the aggregated noise feature fn onto the
eigenvector selection space through a feature mapping layer:

fe = S’Lng’Ld(G(fn)) (8)

where G is the mapping layer, Sigmoid function is employed to normalize the output
within the range of (0,1). The dimension of f. is the same as the number of eigen-
vectors, with each dimension corresponding to the probability of including a specific
eigenvector in the antibody. Subsequently, an antibody, which is a combination of
eigenvectors, is obtained by sampling based on f.. After obtaining the antibody, a tai-
lored and specific noise removal manner for each input sample can be implemented as
described in Section 3.1.

3.3 Memory Mechanism

In the immune system, the memory mechanism enable the retention of antigenic
information, empowering it to swiftly generate effective antibodies upon encounter-
ing similar antigens. Taking inspiration from this phenomenon, we leverage a memory
module to store the noisy features captured during the training process.

Memory Reading:

Upon obtaining the noise feature f,,, we employ it as a query to retrieve the items in
the memory module M € R»Xdm.

mifr?

[l [1full’

r, =

i=1,2,....dp (9)

where m; € R is the i-th item of M, d,, is the number of memory items, r; is the
similarity between the query f,, and the i-th item. Subsequently, by aggregating the
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memory items by soft-attention, we can accomplish memory retrieval and obtain the
output of the memory module:

dﬂl
fo= Zﬁmi (10)
i—1

Memory Updating:

During the training process, continuous updating of the memory model is necessary to
adapt to changes in model parameters. To achieve this, we first identify the memory
item that is most similar to f,:

T
7 = argmax

= 1,2, d (11)
il ([ fall

Afterwards, the memory module is updated via a moving average of f:

mi P (12)
em; + (1 —¢€)f, i=1i*

where € € (0,1) is the decay rate of memory updating. This means that the model
updates only the memory item that is most similar to f,, each time while leaving the
other items unchanged. As new adversarial noises continue to emerge, the memory
module can store previous noise features.

3.4 Model Optimization

To train the defense model presented in the previous subsection, this subsection intro-
duces the method for optimizing the model. Drawing inspiration from the immune
system’s generation and selection process of antibodies, we propose an antibody opti-
mization approach that includes the following elements: antibody affinity, cloning and
mutation, antibody screening, and model updating. In this subsection, we introduce
each of these elements in detail and then present the antibody optimization algorithm
based on them.

Antibody affinity:

In immunology, antibody affinity refers to the strength of the bond between an anti-
body and an antigen. The higher the affinity, the better the antibody’s ability to
neutralize the antigen and the more effective the immune response. We borrow this
concept to measure the effectiveness of noise removal in adversarial defense. The
definition of antibody affinity is as follows:

s(a) = Arcosine(F(Trecon ), F(2)) — Xo||Trecon — x||2 — As|al (13)
where cosine(-, -) refers to cosine similarity, F'(-) refers to the face recognition model,

A1, A2, A3 are the weights of losses. The antibody affinity includes three items, the
first two items are: the cosine similarity between the denoised facial image and the
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original image in the deep feature space; the Euclidean distance between them in the
pixel space. These two items measure the difference between the denoised image and
the original clean image in both feature space and pixel space, which directly reflects
the effectiveness of removing adversarial noise. The third item is the regularization
term of the antibody, which constrains the number of eigenvectors contained in the
antibody. In other words, it is desired that the antibody can extract the most critical
features of the facial image with as few eigenvectors as possible.

Cloning and Mutation:

In the immune system, the cloning and mutation of antibodies are two important
mechanisms. On the one hand, antibody cloning can maintain the characteristics of
effective antibodies relatively stably. On the other hand, an appropriate degree of
mutation during the clonal process allows for antibody variation, enabling the immune
system to effectively respond to changes in antigens. It is the effective coordination
of these two mechanisms that endow the immune system with strong dynamic adapt-
ability. In the task of adversarial defense for face recognition, it is also necessary to
balance the stability and dynamic adaptability of antibodies.

Therefore, in the optimization of antibodies, we achieve the cloning and mutation
of antibodies by sampling according to f. in Eq. 8. As described in Section 3.2, each
component of f. represents the probability of incorporating an eigenvector into the
antibody. Therefore, during the optimization process, we sample k£ antibodies based
on f., which serves as the cloning process of the antibodies. When the sampling
probabilities in f. are close to 0 or 1, the k£ antibodies obtained by sampling will have
strong consistency, and the probability of antibody mutation is small. Conversely, when
the probability within f, is close to 0.5, the probability of antibody mutation increases,
and the differences between the sampled antibodies also become larger. Through the
aforementioned sampling process, we complete the cloning and mutation of antibodies.

Antibody Screening and Model Updating:

After obtaining the sampled antibodies {a1,as, ..., a;}, the defensive ability of each
antibody can be measured using Eq.13: {s(a1), s(az), ..., s(ar)}. For antibodies with
stronger defensive abilities, we hope to increase their probability of being sampled
based on f, in order to obtain more similar antibodies. Conversely, for antibodies with
weaker defensive abilities, we hope to decrease their probability of being sampled, in
order to reduce the number of similar antibodies.

To achieve this objective through the updating of model parameters, we first cal-
culate the likelihood of each antibody: I(a;). The gradient of I(a;) with respect to the
parameters of the proposed model 8 represents the direction of increasing likelihood
of a;. Therefore, we adjust the gradient using antibody affinity to obtain the direction
of model updating, and then implement model update through gradient descent:

0« 60—

>

k k
> (s0 = s(ai))Val(ai), st so= %Zs(ai) (14)
i=1 1=1
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where ¢ is the learning rate, sy provides a baseline for the evaluation of antibodies.
The likelihood of antibodies with an affinity higher than sy will increase, while the
likelihood of antibodies with an affinity lower than sy will decrease.

The pseudo-code for the proposed model optimization algorithm is shown in
Algorithm 1.

Algorithm 1: Model Optimization Algorithm

Input: raw facial images {z'}, corresponding adversarial samples {z% , }, Dy,
number of sampling k, learning rate ¢

1 for i + 1 to number of facial images do

2 get fl by feeding x° ,, into the defense model;

3 get {a},ab,...,at} by cloning according to fi;

4 for j < 1 to k do

5 get the likelihood I(a%);

6 get antibody affinity s(aé-) according to Eq.13;
7 end

8 update 8 accroding to Eq.1/

9 end

3.5 Self-supervised Adversarial Training

In order to provide effective guidance for model optimization, we propose a self-
supervised adversarial training mechanism. This mechanism involves generating
adversarial samples to purposefully train the proposed adversarial defense model. The
effectiveness of adversarial training relies on two conditions. Firstly, generating an
ample amount of adversarial samples is crucial to prevent the model from taking
shortcuts and ensure its generalization. Secondly, the generation process of adversarial
samples needs to exhibit consistency to maintain training stability. However, these two
aspects are contradictory under the constraint of limited storage space. While ensur-
ing consistency, the limited storage space restricts the number of adversarial samples
involved in training.

To address this contradiction, we draw inspiration from MoCo [87] and employ a
siamese model Dj for the defense model, where its parameters are updated with an
exponential moving average of Dy:

00+ (1-¢)0 (15)

where £ € (0,1) is the decay rate of updating. As £ approaches 1, the differences
between the adversarial samples from different mini-batches are relatively small,
thereby satisfying both the requirement for sample quantity and the demand for con-
sistency. For each facial image x, a corresponding adversarial sample can be generated
using this siamese model. When generating adversarial samples, we employ FGSM,
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which perturbs the facial sample by making small adjustments in the direction of the
gradients of the siamese model:

Tadv = T + 1 sign(V,L(z)) (16)

L(z) =1 — cosine(F(x), F(Dg(x))) (17)
where sign(-) refers to sign function, cosine(-, -) refers to cosine similarity, F(-) refers
to the face recognition model, 7 is the scale of adversarial noises.

Through the proposed adversarial self-supervised training, we have established
a training mechanism that concurrently fulfills the requirements of both adversarial
sample quantity and consistency. This mechanism serves as an effective guidance for
the optimization of the adversarial defense model.

3.6 Implementation Details

The implementation details of the proposed adversarial defense method are introduced
in this subsection.

The antigen analyzer H in Eq.7 is ResNet-18 [7], which consists of a compendium
of 17 convolutional layers complemented by a fully connected layer. The dimension of
fn, which is the output of H, is 512. The number of memory items d,, in Eq.9 is set
to 128. The feature mapping layer G in Eq.8 is a fully connected layer, which maps
the noise features onto the eigenvector selection space. During the training process,
we exclusively consider the top 1500 eigenvectors with the largest eigenvalues and
disregard the rest by assigning a probability of zero to their selection. Consequently,
the dimension of the eigenvector selection space is 1500, resulting in the dimension of
fe, which is the output of G, is 1500.

The proposed adversarial defense model is trained on the CelebA Dataset [88],
which comprises a substantial collection of 202,599 facial images. To ensure consis-
tency, all training images underwent alignment [30] and were resized to 112 x 112.
Additionally, a transformation is applied to convert them to grayscale, facilitating the
computation of eigenvectors. The eigenvectors are obtained on the gray-scale facial
images of CelebA Dataset.

The decay rate of memory updating € in Eq.12 is set to 0.999. The loss weights
A1, A2, Az in Eq.13 are set to 8, 1, and 0.003, respectively. The decay rate of siamese
model updating £ in Eq.15 is set to 0.999. The noise scale during self-supervised
adversarial training 7 in Eq.16 is set to 0.04. The hyper-parameter that determines
the number of sampled antibodies, denoted as k in Algorithm 1 is set to a value of 10
during the training. The impact of k will be discussed in Section 4.

Stochastic gradient descent (SGD) with momentum is adopted for training with
a batch size of 4. The learning rate is set to 0.01, the momentum is set to 0.9. The
face recognition model F(-) in Eq. 13 and Eq. 17 employs ArcFace (ResNet-50) [30].
Prior to conducting self-supervised adversarial training, a warm-up training phase of
50 thousand steps is performed. During this phase, no noise was added to the input
images, and the model is solely tasked with completing the facial reconstruction task.
Following the warm-up training, the self-supervised adversarial training is carried out
for an additional 250 thousand steps.
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4 Experiments

In this section, we evaluate the proposed approach through a series of experiments.
Firstly, we evaluated the defensive performance of the proposed method by employ-
ing the general adversarial attack methods and compared it with the state-of-the-art
adversarial defense methods. Following that, we evaluated the defensive performance of
the proposed method using adversarial attack techniques tailored for the realm of facial
recognition tasks. To conduct a comprehensive examination of the proposed approach,
we further employed adaptive attack strategies to rigorously test its efficacy. More-
over, in order to delve deeper into the proposed approach, we conducted an extensive
analysis of the generated antibodies by the model. Finally, through ablation studies,
we validated the effectiveness of the proposed model as well as the self-supervised
adversarial training.

4.1 Evaluation under General Attacking Methods

This subsection employs general adversarial attack methods to evaluate the proposed
defense method. We utilize the Equal Error Rate (EER) as the evaluation metric for

recognition performance:

ppp - D15 >T)

N, (18)
2 LS. > 1)
FAR = =N (19)

where FRR is the false rejection rate, FAR is the false acceptance rate, T is the
similarity threshold, S, is the similarities of positive pairs, N, is the number of positive
pairs, S, is the similarities of negative pairs, N, is the number of negative pairs. EER
refers to the FAR (or FRR) when the threshold T is set in such a way that FAR equals
FRR. EER is a concise performance index that serves as a comprehensive evaluation
of the discriminative ability of a face recognition model.

Gradient-based adversarial attacks are the most prevalent white-box strategies
employed. In the context of white-box attacks, the target model remains fully visible to
the attack methods, rendering it an arduous test for defense methods. We have chosen
three gradient-based white-box attack methods for testing: FGSM [13] is a classic one-
step adversarial attack approach; DeepFool [41] utilizes gradient signals in an iterative
manner for adversarial attacking; PGD [43] is the most powerful first-order adversarial
attack method. The magnitude of the adversarial noises is quantified by the ratio
between the scale of the noise and the scale of the clean image: I(¢) = ||¢||/||z||, where
¢ is the adversarial noises. I(() is set to 0.04 in the experiments of this subsection.

The experiments are conducted using two datasets: Labeled Faces in the Wild
(LFW) [89] and MegaFace [90]. For the LFW dataset, we adhere to the official bench-
mark protocol!, which involves selecting 3,000 positive pairs and 3,000 negative pairs
of images for face verification. Regarding MegaFace, we choose 80 identities from the
subset facescrub that have more than 50 images per subject. From each identity, we
randomly select 10 images for testing. Consequently, there are 7,200 positive pairs and

Yhttp://vis-www.cs.umass.edu/1fw/pairs.txt
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Table 1 Defensive performances on LFW (EER). Lower EER is preferable. The proposed method
excels in all three adversarial attacking scenarios while simultaneously delivering comparable
performance on clean facial images.

Defense Method | Clean] | FGSM| | DeepFool| | PGDJ]
No Defense 0.44% 41.97% 89.49% 99.71%
Quilting [76] 8.77% 9.04% 25.10% 45.79%

TVM [70] 2.95% 19.94% 73.21% 96.62%
PixelDefend [73] 2.05% 18.09% 70.31% 97.70%
MagNet [71] 1.51% 7.86% 14.48% 46.04%
PIN [37] 1.95% 6.15% 7.86% 29.77%
HGD [72] 1.08% 17.35% 20.48% 49.69%
Xie et al. [79] 0.93% 20.33% 28.87% 31.29%
MTER [66] 2.62% 10.03% 24.89% 61.06%
Ours 1.01% | 4.46% 5.01% 14.19%

Table 2 Defensive performances on MegaFace (EER). Lower EER is preferable. The proposed
approach demonstrates superior performance under most adversarial attacking, particularly showing
a significant advantage against challenging PGD attacks.

Defense Method | Clean| | FGSM| | DeepFool] | PGDJ]
No Defense 1.31% 50.87% 95.41% 99.09%
Quilting [76] 14.23% 18.08% 20.54% 47.13%

TVM [70] 3.66% 21.59% 76.24% 95.12%
PixelDefend [73] 2.41% 25.10% 77.75% 94.03%
MagNet [71] 2.51% 10.79% 24.51% 47.11%
PIN [37] 3.78% 7.82% 9.20% 33.37%
HGD [72] 2.44% 16.15% 29.09% 52.27%
Xie et al. [79] 1.89% 16.21% 34.27% 48.76%
MTER [66] 3.08% 11.50% 33.44% 66.95%
Ours 2.23% 7.27% 9.17% 18.63%

632,000 negative pairs available. During testing, adversarial noises are introduced to
one image within each pair, while the other image remains unchanged.

We select a set of representative adversarial defense methods for comparison in
this subsection. The first group of methods focuses on pixel space denoising, aiming to
remove adversarial noises or restore clean images in the pixel space, including Quilt-
ing [76], TVM [70], PixelDefend [73], MagNet [71], and PIN [37]. The second group of
methods focuses on enhancing the robustness of the recognition model. Among them,
MTER [66] solely relies on the adversarial training strategy. Additionally, HGD [72]
and Xie et al. [79] combine specially designed model architectures with adversarial
training to enhance the robustness of the recognition model. The official implemen-
tation of PIN, HGD, and MTER is used in our experiments. PixelDefend, MagNet,
and Xie et al. are trained from scratch on the same dataset with the proposed model
for a fair comparison. For the denoising-based methods, ArcFace (ResNet-50) [30] is
uniformly employed as the recognition model for implementation.
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The experimental results on the LFW dataset are presented in Table 1, while
the results on the MegaFace dataset are shown in Table 2. The proposed adversarial
defense method demonstrates superior defense performance on both datasets in most
cases. From the experimental results, it can be observed that denoise-based meth-
ods often face a trade-off between the performance on clean samples and adversarial
defense performance, making it difficult to strike a balance between the two sides. This
is because these methods typically attempt to employ the same denoising approach
to counter all adversarial noises, making it challenging to cope with the diversity and
complexity of adversarial noises in face recognition. Although the adversarial training
based methods achieve satisfactory performance under FGSM attacking, its perfor-
mance fluctuates significantly under different attacking methods, indicating a lack
of generalization to different types of adversarial noises. In contrast, the proposed
method is capable of achieving superior defense performance while only sacrificing a
slight decrease in recognition performance on clean face images comparing to Xie et
al. [79]. This is attributed to the fact that adversarial training methods (including Xie
et al. [79]) retrain the facial feature extractor, thereby maintaining its performance
on clean images, whereas the proposed method based on noise removal operate under
the premise of a fixed facial feature extractor.

4.2 Evaluation under Attacking Methods Tailored for Face
Recognition

Due to the importance and uniqueness of facial recognition tasks, researchers have
proposed adversarial attack methods specifically targeting facial recognition. In the
real-world scenarios, black-box attacks are more common than white-box attacks
since the former do not require access to the recognition model’s information, making
their execution plainer and more straightforward. To ascertain the effectiveness of the
proposed method against black-box attacks, we experimented with various forms of
black-box attacks tailored for face recognition in this subsection. Compared to gen-
eral adversarial attack methods, these methods pose a greater threat to the practical
application of facial recognition systems.

The adversarial attack methods employed include the following three: DFANet [40]:
DFANet is a transfer-based black-box attack method specifically designed for facial
recognition models. It adopts gradient-based attack techniques for facial recognition
tasks, making it a powerful transfer-based attacking method for face recognition. Fvo-
lutionary [34]: Evolutionary is a black-box attack method targeting facial recognition
systems. It directly exploits the decision outcomes of the facial recognition system,
without requiring access to the gradient information of the recognition model. Sticker
attacking [35, 56]: Sticker attacking is a category of black-box attack methods that
operate in the physical domain. By making subtle modifications to the physical appear-
ance of the target object, it produces powerful attacks and can be easily carried out by
an attacker without any prior knowledge about the recognition model. These methods
significantly reduce the cost of adversarial attacks, posing a substantial threat to facial
recognition systems. The comparative methods employed in this subsection remain
consistent with the ones used in Section 4.1. Similarly, ArcFace is employed as the
recognition model for conducting experiments on denoising-based methods as well.
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Table 3 The experimental results on TALFW. The proposed method demonstrates the most
outstanding defensive performance.

Defense Method EER/]
No Defense 39.711%
Quilting [76] 24.33%

TVM [70] 30.90%
PixelDefend [73] 33.22%
MagNet [71] 22.50%
PIN [37] 21.95%
HGD [72] 39.23%
Xie et al. [79] 40.33%
MTER [66] 39.16%
Ours 20.43%

DFANet:

The experiments under the DFANet attacking are conducted using the TALFW
dataset [91]. The adversarial samples of TALFW are crafted by utilizing DFANet,
with the source images being obtained from LFEW. TALFW serves as an official test
benchmark offered by DFANet. The evaluation on TALFW still utilizes EER as the
performance index for assessment.

The testing results on TALFW are presented in Table 3. The proposed method
demonstrates superior defensive performance compared to the comparative methods.
Through experimentation, it can be observed that methods based on adversarial train-
ing perform almost on par with the performance without any defense mechanisms,
exhibiting a significant gap when compared to methods based on denoising. Adver-
sarial training based methods extensively incorporate adversarial samples into the
training set and continually seek out vulnerabilities in the recognition model. However,
since adversarial training is a dynamic process with new data constantly emerging,
the model often focuses only on the latest training data during the training process,
which can lead to a situation where fixing one problem leads to another. This results
in the performance of the model being nearly identical to that of models without any
defense mechanisms when facing attacking of DFANet. On the other hand, the pro-
posed memory module possesses the capacity to preserve adversarial noise patterns,
thereby mitigating the challenges associated with adversarial training throughout the
self-supervised adversarial training procedure.

FEvolutionary:

When employing the Evolutionary method to adversarial attacks, the attacking
process revolves around continuously optimizing the adversarial samples under the
constraint of achieving successful attacks. The objective is to gradually minimize the
disparity between the adversarial samples and the clean facial images. Hence, we
utilize the defense performance metric proposed officially within the realm of Evo-
lutionary methods, namely the mean squared error (MSE) between the adversarial
samples and the clean facial images under the same number of optimization steps.
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Table 4 MSE on LFW under Evolutionary attacking. At the same step of the iteration, a higher
average distortion indicates better performance of the defense method. The proposed method
surpasses the listed comparative methods.

Number of Attack Steps 1000 1 | 500017 | 100001
No Defense 3.1e-3 | 2.5e-4 8.9e-5
MagNet [71] | 1.0e-2 | 7.7e-3 | 5.8e-3

PIN [37] 7.5e-2 | 5.5e-2 3.1e-2

Dodging HGD [72] | 8.7e-3 | 6.3e-3 | 3.9¢-3
Xie et al. [79] | 7.4e-3 | 5.8¢-3 | 2.7e-3

MTER [66] 9.9e-3 6.5e-3 4.9e-3

Ours l.1e-1 | 7.5e-2 | 4.7e-2

No Defense 2.4e-3 2.4e-4 5.9e-5

MagNet [71] | 8.3e-3 | 5.7e-3 | 3.1e-3

Impersonation | PIN 37| 4602 | 3.6e2 | 2902
HGD [72] 1.1e-3 | 7.2e-4 | 4.8¢4

Xie et al. [79] | 9.7e-4 | 6.6e-4 | 4.le-4
MTER [66] | 1.7e-3 | 9.3e-4 | 6.1e-d
Ours 1.3e-1 | 9.2e-2 | 7.9e-2

The larger this error, the more challenging the attack becomes, signifying a stronger
defense performance. There are two experimental configurations: dodging and imper-
sonation. Dodging refers to adversarial attacks attempting to recognize positive facial
image pairs as negative ones, while impersonation is the opposite, attempting to rec-
ognize negative facial image pairs as positive ones. The experimental testing dataset
employed in this experiment remains consistent with those in Section 4.1. Due to their
high computational complexity, Quilting, TVM, and PixelDefend are difficult to imple-
ment for Evolutionary attacking experiments. Consequently, we select the remaining
comparative methods discussed in Section 4.1 for this experimentation.

The experimental results are shown in Table 4 and Table 5. The experimental
results demonstrate that the proposed approach outperforms other methods in most
cases across both datasets. As Evolutionary attack relies on continuously exploring
the decision boundaries of the target recognition model to optimize adversarial noises,
the performance metrics at larger numbers of attack iterations better reflect the effec-
tiveness of defense methods. The advantage of the proposed approach becomes more
prominent with a larger number of attack steps. This is attributed to the fact that the
proposed adversarial defense methodology exhibits the capacity to analyze and retain
crucial information from each facial sample, leading to a more robust decision bound-
ary. As a corollary, the task of mounting the Evolutionary attack becomes noticeably
more formidable.

Sticker Attacking:

Sticker attacking is a category of physical domain adversarial attack methods, where
adversarial stickers are applied to specific areas of faces to introduce adversarial noises
during the image acquisition process. Adversarial stickers can be directly applied to
the face [56] or attached to accessories [92], and can even be achieved through makeup
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Table 5 MSE on MegaFace under Evolutionary attacking. It particularly demonstrates the
advantages of the proposed method when the number of iterations increases, as it provides a better
reflection of the performance of defense methods.

Number of Attack Steps 10007 | 50001 | 100001
No Defense 3.5e-3 | 8.5e-4 9.7e-5
MagNet [71] | 9.8e-2 | 6.5¢-3 | 2.2e-3

PIN [37] 9.2e-2 | 8.4e-2 | 6.7e-2

Dodging HGD [72] | 8.8¢2 | 6.0e-3 | 1.9e-3

Xie et al. [79] | 7.2e-3 | 5.5e-3 | 2.3e-3

MTER [66] 9.7¢-3 | 6.6e-3 5.1e-3

Ours 9.5e-2 | 8.3e-2 | 6.9e-2

No Defense 2.4e-3 | l.1le4 5.5e-5

MagNet [71] | 7.9e-3 | 2.1e-3 1.4e-3

. PIN [37] | 7.7e-2 | 6.8¢2 | 6.2¢-2
Impersonation

HGD [72] | 7.2e3 | 1.7e-3 | 8.4ed
Xie et al. [79] | 6.5e-3 | 3.7e-3 | 1.8e-3
MTER [66] | 7.9e-3 | 4.6e-3 | 2.9¢-3
Ours 7.6e-2 | 7.1e-2 | 6.6e-2

techniques [93]. These methods do not require intervention in the data processing
pipeline of the face recognition system, making them cost-effective and posing a threat
to the actual deployment of face recognition systems.

In practical scenarios, both dodging and impersonating types of sticker attacks
are prevalent. But these two forms of attack typically target different modules of face
recognition systems. Dodging attacks usually deceive the face detection module to pre-
vent the attacker from being detected, while impersonating attacks, conducted after a
face has been successfully detected, usually confuse the facial feature extraction com-
ponent to misidentify the attacker as another individual. Actually, simply obscuring
key regions of the face (e.g., by wearing masks or hats) suffices to achieve the desired
result of dodging attacks. If faces can not be successfully detected, adversarial defenses
for facial feature extraction are not needed. Given that this work focuses on adversar-
ial defenses in facial feature extraction, we have specifically conducted experiments on
impersonating attacks.

In our experiments, we employ AdvHat [92] as the adversarial attack method. We
simulated the generation process of adversarial stickers and then applied the generated
stickers to the facial images for the attack, as shown in Fig. 3. Unlike other adversarial
attack methods, the sticker attack does not impose a restriction on the intensity of
adversarial noises.

A total of 1000 facial images from different individuals are randomly selected from
the LFW for the test. The generated adversarial sticker is applied on the foreheads
of these test facial images. The objective of the adversarial attack is to manipulate
the facial recognition model into identifying all 1000 test faces as the target identity.
The size of the adversarial sticker was set to 20 x 72. The decision similarity thresh-
old for facial recognition was deliberately set at 0.2 to ensure that the recognition
model (ArcFace) correctly identifies the majority of positive pairs while maintaining
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Fig. 3 The sticker attacking employs the adversarial sticker strategically overlaid on specific regions
of facial images to induce mistakes in recognition models.

Table 6 The accuracy of recognition under sticker attacking. The proposed method surpassed all
comparative methods, yielding the best results.

Defense Method Accuracy 1
No Defense 25.6%
Quilting [76] 92.2%

TVM [70] 86.0%
PixelDefend [73] 92.7%
MagNet [71] 95.9%
PIN [37] 97.6%
HGD [72] 89.1%
Xie et al. [79] 90.7%
MTER [66] 93.4%
Ours 98.4%

an acceptable false negative rate (TAR=99.89%, FRR=2.09%) on clean facial images.
This stringent configuration serves as a rigorous benchmark for evaluating defense
methods. The accuracy of recognition serves as the performance index in the experi-
mentation. When the similarity between a test facial image with the added adversarial
sticker and the target facial image is below 0.2, it is considered a correct identification.
Conversely, if the similarity exceeds 0.2, it is considered an incorrect identification. A
higher accuracy indicates better performance of the defense method.

The recognition accuracy under sticker attacking is shown in Table 6. Experimental
results demonstrate that the proposed method achieved the best recognition outcomes.
The adversarial noises in the physical domain differ significantly from that in the
digital domain, as their intensity is no longer constrained, posing a great challenge
for noise removal. Due to the significant alterations caused by adversarial stickers, the
resulting facial images deviate notably from the distribution of clean facial images.
Therefore, the key to denoising in such cases lies in effectively modeling and utilizing
the distribution of clean facial images. The proposed method achieves this through the
designed antibodies. Moreover, the proposed adversarial defense approach offers an
ability to provide customized defensive measures for each individual sample, making
it arduous for adversarial stickers to have a universal impact across diverse facial
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Table 7 The experimental results of the adaptive attacking (EER).

Attack Method | FGSM| | DeepFool| | PGD/]
No Defense 16.39% 33.55% 54.86%
Ours 10.76% 24.92% 38.68%

samples. As a result, the practical applicability of sticker attacks in real-world scenarios
is significantly diminished.

4.3 Evaluation under Adaptive Attacking

For real-world deployment of face recognition systems, if attackers become aware of
adversarial defense mechanisms, they are likely to face adaptive attacking. An adaptive
attack poses a formidable challenge. In this type of attack, attackers not only target
the recognition model but also optimize their strategies to circumvent the defense
mechanisms. These attacks rigorously test the efficacy of defense methods, as attackers
have the capability to adjust their tactics based on the employed defenses, leaving the
defense mechanisms unable to adapt in response.

In this subsection, we present an adaptive attack against the proposed adversarial
defense method to evaluate its defensive capabilities. Given that the proposed defense
method is built upon antibodies, the composition of antibodies serves as the foundation
of the entire method. Therefore, in the adaptive attack, all possible antibodies involved
in the proposed method are considered within the attack scope. Specifically, during the
optimization of adversarial noises, the input facial images undergo preprocessing with
a specific antibody a*, which consists of the top 1500 eigenvectors with the largest
eigenvalues:

a* = {61,62,...,61500} (20)
This means that all possible antibodies are subsets of a*, which means the optimization
direction will encourage the adversarial noises to avoid being removed by any possible
antibodies. This poses a rigorous test for the proposed method. We utilized the three
adversarial attack methods outlined in Section 4.1 for the optimization of adversarial
noises in the adaptive attack. The intensity of the adversarial noises I({) is also set
as 0.04, and the experiment is conducted on LFW.

The experimental results are presented in Table 7. Comparing with Table 1, the
experimental results reveal a significant decline in recognition performance of the pro-
posed defense method when subjected to adversarial noise generated by the adaptive
attacking. This can be attributed to the targeted nature of the adaptive attacking,
which diminishes the effectiveness of the antibodies generated by the defense method.
However, even under the adaptive attacking, the proposed method still outperforms
most of the comparative methods listed in Table 1. Furthermore, when contrasting
with the first row of Table 1, it is evident that the adaptive attacking have a signifi-
cantly reduced impact on the model without any adversarial defense measures. This
indicates the substantial cost incurred by adversarial noises in bypassing the proposed
defense method, resulting in a greatly weakened attack effect in the absence of any
defense measures. This further highlights the superior defensive performance of the
proposed method.
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Fig. 4 The number of eigenvectors contained within antibodies during the training process. During
the training process, the number of eigenvectors present in the antibodies initially rises and then
declines. This progression enables the antibodies to first enhance their reconstruction capabilities,
followed by a selective refinement of eigenvectors to bolster their denoising prowess. As a result, the
antibodies achieve the remarkable ability to effectively eliminate adversarial noise while preserving
vital facial features.

4.4 Quantitative Analysis of Antibodies

In order to conduct a more comprehensive analysis of the proposed defense method,
this section focuses on the quantitative analysis of the antibodies generated by the
proposed method, unveiling the evolutionary process of antibodies during model train-
ing. This analysis primarily encompasses three aspects of antibodies: their sparsity,
mutation probability, and specificity.

Sparsity of Antibodies:
The sparsity of antibodies is determined by the number of eigenvectors they contain,
and a smaller quantity of eigenvectors indicates a higher level of sparsity in the anti-
bodies. The number of eigenvectors present in antibodies represents their selection of
features for noise removal and facial sample reconstruction. A greater number of eigen-
vectors suggests that the antibodies are biased towards reconstructing more intricate
details of the input samples, while a smaller number indicates their inclination towards
extracting a smaller subset of essential features. To quantitatively measure the spar-
sity of antibodies, we employ the number of eigenvectors contained within them as a
metric to evaluate their sparsity.

The number of eigenvectors contained within antibodies during the entire training
process is depicted Fig. 4 (average number of antibodies per mini-batch). Several key
observations can be summarized from Fig. 4:
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During the initial warm-up training phase, the number of eigenvectors in anti-
bodies rapidly increases. This is because, at this stage, the model focuses solely
on facial image reconstruction without incorporating self-supervised adversarial
training. By increasing the number of eigenvectors in antibodies, the model can
reduce reconstruction errors. Therefore, during antibody optimization, the model
quickly increases the number of eigenvectors, thereby reducing antibody sparsity
and improving reconstruction results.

In the warm-up training phase, the number of eigenvectors in antibodies reaches
around 1100 and fluctuates around this value. This occurs due to the regularization
term in Eq.13, which penalizes the number of elements in antibodies. The bene-
fits of adopting more eigenvectors are suppressed by the penalty imposed by the
regularization term in Eq.13.

Once self-supervised adversarial training is introduced, the number of eigenvectors
in antibodies gradually decreases, indicating an increase in antibody sparsity. This
is because, in self-supervised adversarial training, the model no longer focuses solely
on reconstructing input samples but tracks its target at removing adversarial noise
by refining the eigenvectors.

The Fig.5 illustrates the recovery effects of antibodies at different training stages.
When training concludes, the number of eigenvectors in generated antibodies has
decreased to around 500. Although this number is lower compared to the initial
750, the recovery effects have significantly improved compared to the initial phase
of training. Compared to the end of the warm-up training phase, the antibodies at
the final stage retain crucial facial information and effectively remove adversarial
noise by filtering out some eigenvectors.

Xadv

100 steps 50,000 steps 300,000 steps

Fig. 5 Examples of the recovery performance of antibodies on input face images at different stages
of training.

Through the aforementioned analysis, it can be observed that the number of eigen-

vectors contained within the antibodies initially increases and then decreases during
the entire training process. However, during this process, the defense model does not
stand still but goes through a process of first improving its reconstruction ability
and then refining the denoising ability by eliminating crude components from the
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eigenvectors. Eventually, this results in an effective removal of adversarial noise while
preserving the key features of the face.

Mutation Probability:

During the optimization process of the proposed defense model, the antibody mutation
plays a crucial role. Adequate antibody mutation during training not only enhances
antibody diversity but also effectively prevents the model from getting trapped in local
optima during optimization. However, if the degree of antibody mutation is excessively
high, it may lead to difficulties in the convergence of the defense model. In order
to further investigate the optimization process of the proposed defense method, we
analyze the probability of antibody mutation.

The antibody mutation refers to the changes that occur in the eigenvectors com-
prising the antibodies. In order to quantitatively measure the probability of antibody
mutation, we calculate the average probability of reversing the selection of antibodies
for each eigenvector (whether to include it or not) as a metric of evaluation:

k
Prutation = % 2(0.5 — (fe(i) = 0.5)]) (21)

where k is the dimension of fe, | - | refers to absolute value. The closer f,(%) is to 0.5,

the more likely it is for the selection of the i-th eigenvector to undergo mutation.
The mutation probability of antibodies during the entire training process is shown

in Fig. 6 (the mean of each mini-batch). From Fig. 6, we can draw several conclusions:

® During the initial state, the probability of mutation for antibodies is high, but during
the warm-up training phase, this probability decreases rapidly. This is due to the
model quickly honing in on the critical eigenvectors for face image reconstruction,
resulting in a rapid decrease in the mutation probability of these eigenvectors.

e Upon entering the self-supervised adversarial training phase, the mutation prob-
ability of antibodies slightly increases. This is due to a change in the training
objective of the model, and the model adapts by increasing the mutation probability
of antibodies to better fit this new objective.

® The mutation probability of antibodies eventually converges and approaches 0, indi-
cating that the model gradually finds the best antibody for each input sample after
training, and no longer mutates.

Through the fluctuations in the mutation probability of antibodies, we can observe
how the proposed defense method possesses the capability to adaptively modify the
mutation probability to align with the evolving training objective. As the training
objective undergoes changes, the model augments the mutation probability, promot-
ing the flexibility of the defense system and diversifying the antibodies. Consequently,
this enables a readaptation to the new objective at hand. Conversely, when the train-
ing objective stabilizes, the model progressively diminishes the mutation probability
of antibodies, fostering convergence. Thus, the proposed method exhibits dynamic
adaptability akin to that of an immune system.
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Fig. 6 The mutation probability of antibodies during the training process. The proposed defense
approach demonstrates the ability to adaptively adjust the mutation probability of antibodies during
the training process, aligning them with the evolving training objective. When the training objective
undergoes changes, the model responds by increasing the mutation probability, thereby enhancing
the overall flexibility of the defense model. Conversely, as the training objective stabilizes, the model
gradually reduces the mutation probability of antibodies, allowing for a progressive convergence of
the model.

Specificity of Antibody:

Due to the particular nature of facial recognition tasks, the specificity and diversity
of adversarial noises in facial recognition are remarkably pronounced. Therefore, we
aspire for the defense approach to furnish tailored noise removal strategies for each
input facial image, thereby addressing this formidable challenge. In order to investigate
whether the proposed defense method indeed confers specificity to the antibodies, we
examine the specificity of antibodies during the training process.

The specificity of antibodies can be discerned through differences manifested
between antibodies of different samples. To quantitatively assess the specificity
of antibodies, we propose a metric that measures the dissimilarity between two
antibodies:

J(a;,a;) =#{ellecaiheda;)V(eda;Ne€a;)} (22)
which means the number of eigenvectors that are uniquely present in either one of the
antibodies. Based on J(a;,a;) it is possible to quantitatively measure the specificity
of a set of antibodies:

V{1, az, ., an}) = ﬁzzJ(ai,aJ) (23)

(n T i
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Fig. 7 The specificity of antibodies during the training process. The specificity of antibodies under-
goes a process of initial decline followed by a subsequent recovery during the training. The decrease
in specificity during the warm-up training phase can be primarily attributed to the rapid reduction
in antibody mutation probability. On the other hand, the gradual increase in antibody specificity
observed during the self-supervised adversarial training is a result of the model progressively provid-
ing tailored noise removal strategies for each individual sample to effectively eliminate adversarial
noise.

The specificity of each mini-batch of antibodies throughout the entire training
process is illustrated Fig. 7. Several observations can be made from Fig. 7:

® At the beginning of the training process, the specificity of the antibodies is initially
high, due to the high probability of antibody mutation (as shown in the Fig. 6) and
the instability of the antibodies. After the warm-up training, the specificity rapidly
decreases to 100. The reason is that facial images contain shared characteristics
and the goal of the warm-up training is to reconstruct facial images, rendering high
antibody specificity unnecessary.

e Upon commencing self-supervised adversarial training, the specificity of the anti-
bodies undergoes a gradual enhancement and eventually settles at approximately
200. This implies that, on average, there are 200 distinct eigenvectors between every
pair of antibodies. It indicates that the defense model progressively commences pro-
viding noise removal manners tailored to each specific adversarial sample during the
course of self-supervised adversarial training.

Although the specificity of the antibodies experienced a process of decline and
then recovery during the training process, this does not mean that the defense model
returned to the initial state. The decline in specificity observed during the warm-up
training phase primarily stems from the swift reduction in antibody mutation probabil-
ity and the enhancement of antibody stability. Conversely, the gradual augmentation
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Table 8 The experimental results of ablation study for self-supervised adversarial training and
memory module (EER). SSAT refers to self-supervised adversarial training. These results also
demonstrate the significant improvement in the defense capability of the model by self-supervised
adversarial training and memory module.

Attack Method | Clean] | FGSM| | DeepFool | | PGD|]
w/o SSAT 1.04% 11.99% 12.08% 40.60%
w/o Memory 1.06% 9.06% 9.75% 22.41%
Ours 1.01% | 4.46% 5.01% 14.19%

of antibody specificity throughout the self-supervised adversarial training arises from
the model’s provision of tailored noise removal solutions for each individual sample,
thereby eliminating adversarial noises.

4.5 Ablation Study

In this subsection, we first verify through experiments the impact of self-supervised
adversarial training and the memory module on defense performance, then explore the
applicability of the proposed defense method to different recognition models. Finally,
we conduct sensitivity analysis on key hyper-parameters in the model optimization
process.

Ablation Study for Self-supervised Adversarial Training:

Self-supervised adversarial training is a crucial component of the proposed defense
method. Its purpose is to enhance the noise removal ability of defense models by
introducing adversarial noises during the training process. To evaluate the effectiveness
of this training strategy, we compared the model without self-supervised adversarial
training to the original model. We conducted experiments on LFW using three types
of adversarial attacks: FGSM, DeepFool, and PGD. The experimental protocols are
consistent with Section 4.1.

The experimental results are shown in Table 8. The results indicate that the impact
of self-supervised adversarial training on the recognition of clean facial images is not
significant. However, the performance of the model without self-supervised adversarial
training exhibited a significant decline in adversarial defense, especially under the
strongest PGD attack. This is because, if self-supervised adversarial training is not
conducted, the model’s training objective is face image reconstruction, and it will tend
to incorporate all eigenvectors into the antibody to reconstruct all the details of the
input image. Although the regularization term in Eq. 13 constrains the number of
eigenvectors contained in the antibody to encourage the model to focus on important
eigenvectors, the model’s performance in adversarial defense is significantly reduced
because it has not undergone targeted adversarial noise removal training. These results
also demonstrate the significant improvement in the defense capability of the model
by self-supervised adversarial training.
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Table 9 Experimental results in conjunction with MobiFace (EER).

Attack Method Clean| | FGSM| | DeepFool | | PGDJ|
MobiFace w/o defense | 0.67% | 57.72% 82.58% 99.19%
MobiFace with defense | 1.56% 7.37% 7.59% 24.82%

ArcFace w/o defense | 0.44% | 41.97% 89.49% 99.71%
ArcFace with defense | 1.01% 4.46% 5.01% 14.19%

Ablation Study for Memory Module:

Drawing inspiration from the memory mechanisms of the immune system, a mem-
ory module is incorporated into the proposed defense model. The memory module
can store noise patterns during the training process and guide for generating anti-
bodies through memory retrieval. To verify the effectiveness of the memory module,
we trained and tested the model without using the memory model and compared its
defense performance with the original model. When the memory module is not uti-
lized, fn in Eq. 8 is simply substituted with f,. We conducted experiments using
three adversarial attack methods, namely FGSM, DeepFool, and PGD, on the LFW
dataset. The testing protocol of the experiment is also consistent with Section 4.1.

The experimental results are shown in Table 8. The results indicate that when the
memory module is not utilized, the proposed method performs similarly to the original
model on clean facial images, but the adversarial defense performance decreases. This
is because the recognition performance on clean facial images only depends on the
model’s reconstruction ability, while the adversarial defense capability also requires the
model to have strong noise removal ability. The noise features stored in the memory
module can provide guidance for generating antibodies, preventing the model from
the scenario where fixing one vulnerability leads to the emergence of another.

Transferability to Different Face Recognition Models:

In previous experiments, face recognition models that were compatible with the pro-
posed defense method all utilized ArcFace (ResNet-50) [30]. The purpose of conducting
this experiment is to answer the question of whether the proposed defense method
can be implemented with other face recognition models for adversarial defense. Mobi-
Face [39], as a lightweight face recognition model, has many differences in design and
structure compared to ArcFace. MobiFace is utilized in tandem with the proposed
defense model without undergoing retraining, but instead, directly integrated with
it. The experiments also employed FGSM, DeepFool, and PGD as adversarial attack
methods, conducted on LEW with experimental settings consistent with Section 4.1.

The experimental results are shown in Table 9. It can be observed that the proposed
defense model performs worse than ArcFace when used in conjunction with MobiFace.
This is mainly due to two reasons: Firstly, MobiFace itself is a lightweight model
with weaker recognition ability than ArcFace, which can be demonstrated by the
performance difference between them on clean facial images. Secondly, the cooperation
between ArcFace and the defense model is more harmonious, as ArcFace participates
as the face recognition model in both antibody affinity measurement and adversarial
self-supervised training. However, even so, the proposed method still outperforms the
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Table 10 Sensitivity analysis on the number of cloned antibodies k.

Attack Method | Clean| | FGSM| | DeepFool | | PGD|
k=10 1.01% 4.46% 5.01% 14.19%
k=20 1.12% 4.43% 5.13% 14.09%
k=30 0.87% 4.36% 4.85% 13.98%

compared methods in Table 1, which indicates its ability to be directly applied to
other face recognition models without retraining.

Sensitivity Analysis on Hyper-parameters:

There is a key hyper-parameter in Algorithm 1, which is the number of cloned antibod-
ies k at each iteration. To investigate the effect of the number of cloned antibodies on
the defense performance, we conducted comparative experiments with different values
of k, namely k = 10, k = 20, and k = 30. Other than the number of cloned antibod-
ies, the training settings for the three defense models were consistent with Section 3.6.
FGSM, DeepFool, and PGD are utilized as adversarial attack methods for testing on
LFW, with experimental settings consistent with Section 4.1.

The experimental results are shown in Table 10. When k£ = 10 and k& = 20, the
model’s performance is quite comparable. When k = 30, the model’s performance is
optimal, in terms of both recognition accuracy on clean facial images and its abil-
ity to defend against adversarial attacks. In general, increasing the number of cloned
antibodies can enhance the model’s defense performance. This is due to the fact that
increasing the quantity of cloned antibodies enables the model to undertake a broader
exploration during the optimization process, and also facilitates the exploitation of
antibody mutation. It is worth noting, however, that the performance improvement
resulting from increasing the number of cloned antibodies is limited, and it also
amplifies the computational complexity of model optimization.

4.6 Failure Cases Analysis

In this subsection, we delve into the analysis of the model’s failure cases. Such an
examination is instrumental in gaining a more profound insight into the proposed
model, significantly enhancing our understanding of its defensive performance.

JEH

Fig. 8 Examples of failure cases. The first three samples of defense failure exhibit significant head
postures. The last sample is an occluded face image.

3

Fig. 8 displays four samples where adversarial defense failed. It is evident from
Fig. 8 that the first three samples of defense failure exhibit significant head postures.
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The reason for the model’s failure on these samples lies in the composition of the anti-
bodies. The facial images with large head postures exhibit a substantial difference in
data distribution compared to frontal face images. Since the eigenvectors constituting
the antibodies are derived from a data distribution predominantly composed of frontal
face data (CelebA), their capacity to recover data with significant head postures, such
as side faces, is limited. This limitation adversely affects the defensive capabilities of
the antibodies.

The fourth failure sample is an occluded face image. Occlusions have a notable
impact on face feature extraction, and the intra-class distance between clean images
significantly increases due to occlusions. This leads to samples, post adversarial noise
removal, being challenging to recognize normally.

5 Conclusion

In response to the challenges posed by the specificity and diversity of adversarial
noises in face recognition, we draw inspiration from the working mechanism of the
immune system and propose an adversarial defense method specifically designed for
face recognition tasks in this paper. Extensive experimental results demonstrate the
efficacy of the proposed method, surpassing state-of-the-art adversarial defense meth-
ods. Through a series of experiments and analyses, the advantages of the proposed
method can be summarized as follows:

® Regarding the strong specificity of adversarial noise in facial recognition, the pro-
posed method can offer specific noise removal strategies for each input sample. This
enables the effective removal of adversarial noises while preserving essential facial
features.

® Through the proposed self-supervised adversarial training, the contradiction
between the quantity and consistency of adversarial samples is resolved, thereby
providing effective guidance for the optimization of defense models.

® The proposed method possesses dynamic adaptability, allowing it to autonomously
adjust the optimization process of the defense model to accommodate changes in
training data and objectives. This aspect holds inspiring implications for researchers
to design novel methodologies based on this foundation.

® The proposed method demonstrates a high level of applicability across various facial
recognition models, as it can be directly employed without the need for retraining
when applied to different facial recognition systems.

® The Artificial Immune System proposed in this paper also offers inspiration for
other face-related security tasks, such as defense against face presentation attacks
and DeepFakes attacks. Incorporating the principles of antibody cloning, muta-
tion, selection, and memory mechanisms into these tasks could enhance the model’s
performance, particularly in terms of dynamic adaptability and generalization capa-
bilities against various attack methodologies. This improvement presupposes the
design of appropriate antibody forms and optimization objectives.
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