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Pretty good quantum state transfer in asymmetric graphs via

potential

Or Eisenberg∗ Mark Kempton† Gabor Lippner‡

Abstract

We construct infinite families of graphs in which pretty good state transfer can be induced by adding
a potential to the nodes of the graph (i.e. adding a number to a diagonal entry of the adjacency matrix).
Indeed, we show that given any graph with a pair of cospectral nodes, a simple modification of the
graph, along with a suitable potential, yields pretty good state transfer (i.e. asymptotically perfect state
transfer) between the nodes. This generalizes previous work, concerning graphs with an involution, to
asymmetric graphs.

1 Introduction

Transfer of quantum information with high fidelity through networks of locally coupled spin particles is an
important problem in quantum information processing. Information can be considered as excitation in the
network initiated at an input node, which then spreads according to the action of a Hamiltonian. The quality
of the transfer depends on how strongly the excitation can then be concentrated at a given target node. The
transfer is perfect if there is a time t at which the probability of the excitation being at the target node
is 1. Initiated by Bose [3], perfect state transfer has been extensively studied for various networks, both
from the physical [13] and the mathematical [6] point of view. It turns out that perfect state transfer is
notoriously difficult to achieve. All known constructions involve very special networks and/or very special,
highly non-uniform coupling strengths. In particular, it has been shown in [14] that for uniformly coupled
chains of length at least four there can never be perfect state transfer between endpoints, not even in the
presence of magnetic fields.

There is a somewhat less restrictive notion of a pretty good state transfer, also referred to as “almost
perfect state transfer”. This requires the transfer probability to get arbitrarily close to 1 as time passes.
While practically just as good as perfect state transfer, it is somewhat easier to achieve. The first examples of
spin chains admitting pretty good state transfer appeared in [17]. However, as demonstrated in [7, 2, 5, 16],
even pretty good state transfer is relatively rare in unmodulated spin chains with uniform couplings.

In this paper we study pretty good state transfer in the single-excitation subspace of a spin network with
XX couplings, in the presence of a magnetic field. We will use graph theoretic terminology throughout the
paper. We denote the network by G, the set of nodes (vertices) by V (G) and the set of links (edges) by
E(G). The evolution of such a system is given by its Hamiltonian

HXX =
1

2

∑

(i,j)∈E(G)

Jij(XiXj + YiYj) +
∑

i∈V (G)

Qi · Zi,

where Xi, Yi, Zi are the standard Pauli matrices, Jij denotes the strength of the XX coupling between node
i and j, and the Qi’s give the strength of the magnetic field yielding an energy potential at each node.
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Figure 1: Asymmetric, irregular graphs with cospectral nodes. In each graph, the cospectral vertices are
labeled u and v.

It has been shown [3, 4] that the restriction of this Hamiltonian to the single-excitation subspace is
modeled by a continuous-time quantum walk on a graph with transition matrix, U(t), given by

U(t) = exp(itA)

where A is the (possibly weighted) adjacency matrix of the graph.

Definition 1.1. Let G be a graph with vertices u and v.

1. We say that G admits perfect state transfer (PST) from u to v if there is some time t > 0 such that

|U(t)u,v| = 1.

2. We say G admits pretty good state transfer (PGST) from u to v if, for any ǫ > 0, there is a time t > 0
such that

|U(t)u,v| > 1− ǫ.

Our primary focus in this paper will be the effect of adding a potential induced by a magnetic field (the
Qi above). Previous work in [15] showed that in graphs with an involutional symmetry, one can often induce
pretty good state transfer between a pair of nodes by appropriately choosing a potential on the vertex set.
In [10], it is shown that a potential can induce pretty good state transfer in strongly regular graphs as well.
The contribution of this paper is to show how to construct asymmetric, non-regular graphs that admit PGST
between a pair of nodes u, v if a suitably chosen potential is added to the adjacency matrix at u and v. The
novelty of our constructions is that we do not require any symmetry or regularity in the graph. In addition,
our results apply to arbitrary real symmetric matrices (not just adjacency matrices). We note that PST has
been exhibited in asymmetric simple unweighted graphs in [1].

A necessary condition for both PST and PGST between vertices u and v of a graph is that u and v must
be cospectral (see [6, 2]), that is G \ u and G \ v have the same spectrum. One motivation for our previous
work is that symmetry in a graph always naturally leads to cospectral vertices. It also holds that pairs of
vertices in strongly regular graphs are cospectral. However, cospectral pairs can arise without any symmetry
or regularity conditions. Two relatively small examples are shown in Figure 1.

Our constructions come in two types, based on the following two observations concerning cospectral
vertices. First, in a graph with an equitable partition (defined in Section 4.1) with a part containing exactly
two vertices, those two vertices are cospectral (see Figure 2 for an example). Second, given two graphs
with a cospectral pair, the vertices remain cospectral in the graph obtained by “gluing” the two graphs
together along those vertices (see Lemma 4.6 below). We are able to show that given any graph with a pair
of cospectral vertices, a simple modification of the graph, together with an appropriately chosen potential
on the vertex set, yields PGST between those vertices. See Corollary 4.3, and Theorems 4.5, 4.12, and 4.13
below for the precise details.

The key tool in our analysis is Theorem 2.11 below, which takes advantage of the fact that the charac-
teristic polynomial of the adjacency matrix for a graph with cospectral nodes has a factorization. We give a
simple, efficiently computable condition on the factors that implies PGST. Note, however, that the converse
of Theorem 2.11 does not hold in general. Another critical piece in our proofs, of independent interest, is
Lemma 3.2, which shows that adding a transcendental potential to a pair of cospectral nodes actually makes
them strongly cospectral (see Section 2 for the definition).
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Figure 2: A graph with an equitable partition with a part of size 2 (vertices u and v), and hence a cospectral
pair (but no involution swapping u and v).

2 Preliminaries

Let M be a symmetric matrix with entries in a field F . We use φM ∈ F [t] to denote its characteristic
polynomial. The rows and columns of M will typically be indexed by the nodes of a finite graph. We will
use V (M) to denote the set of row/column indices ofM , so we can think ofM ∈ RV (M)×V (M). If S ⊂ V (M),
we write MS for the symmetric submatrix obtained from M by removing the rows and columns indexed by
S.

Definition 2.1. For any vector z, let W (M, z) = 〈z,Mz,M2z, . . . 〉 denote the M -invariant subspace gener-
ated by z. Let us denote by ρz = ρz,M ∈ F [t] the minimal polynomial ofM relative to z, that is, the smallest
degree polynomial such that ρz(M)z = 0. It is well-known that ρz divides the usual minimal polynomial of
M and that the degree of ρz equals the dimension of W (M, z).

2.1 Cospectral nodes

Definition 2.2. Let M be a symmetric matrix. Two indices u, v ∈ V (M) are cospectral if φ(Mu) = φ(Mv).

Lemma 2.3 (Theorem 3.1 of [11]). Let M be a symmetric matrix, and let u, v ∈ V (M). Let M =
∑

λ λEλ

be the spectral decomposition of M . Here Eλ denotes the projections onto the eigenspaces of M corresponding
to the eigenvalue λ. We denote the characteristic vectors of u and v by eu, ev respectively. The following are
equivalent:

1. u and v are cospectral.

2. (Eλ)u,u = (Eλ)v,v for all λ.

3. Mk(u, u) =Mk(v, v) for all k.

4. W (M, eu + ev) is orthogonal to W (M, eu − ev).

Definition 2.4. We define P+ to be the minimal polynomial of M relative to eu + ev, and P− to be the
minimal polynomial of M relative to eu − ev.

Lemma 2.5. Given a symmetric matrixM and cospectral indices u, v ∈ V (M), the characteristic polynomial
of M decomposes as

φM = P+ · P− · P0,

where P+ and P− have no multiple roots, and there is an orthonormal basis of eigenvectors of M such that:

1. for each root λ of P+ the basis contains a unique eigenvector ϕ with eigenvalue λ and ϕ(u) = ϕ(v) 6= 0,

2. for each root λ of P− the basis contains a unique eigenvector ϕ with eigenvalue λ and ϕ(u) = −ϕ(v) 6= 0,

3. for each root λ of P0 with multiplicity k the basis contains exactly k eigenvectors with eigenvalue λ all
of which vanish on both u and v.
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In particular the degree of P± is the same as the dimension of the space W (M, eu ± ev).

Proof. Since M is diagonalizable, its minimal polynomial doesn’t have multiple roots, and hence neither
does P+ nor P−. The roots of P+ are exactly those eigenvalues λ for which Eλ(eu + ev) 6= 0, and for such
λ the eigenvector ϕ = Eλ(eu + ev) satisfies that ϕ(u) = ϕ(v). Similarly for P−. By cospectrality of u and
v, the eigenvectors obtained for P+ and for P− are pairwise orthogonal. Finally, extending to an orthogonal
basis for M , it is clear that each remaining eigenvector satisfies ϕ(u) = ϕ(v) = 0.

Remark 2.6. Since the coefficients of P+ give the unique linear dependency among eu + ev,M(eu +
ev), . . . ,M

k(eu + ev), they belong to the same field as the entries of M . The same is true for P−, and
thus for P0.

Definition 2.7. The indices u, v ∈ V (M) are strongly cospectral if ϕ(u) = ±ϕ(v) for every eigenvector ϕ of
M .

Lemma 2.8. The following are equivalent:

1. u and v are strongly cospectral.

2. u and v are cospectral, and P+ and P− do not have any common roots.

3. Eλeu = ±Eλev for all λ.

2.2 Pretty good state transfer

The discrete Schrödinger equation, for an n× n matrix M , is given by

∂tψt = iMψt,

where ψt ∈ Cn. The solution of this equation can be written in the form

ψt = eitMψ0.

Definition 2.9. M has PGST from u to v if ψ0 = eu implies that lim supt→∞ |ψt(v)| = 1, or equivalently
if lim supt→∞ |eitM (u, v)| = 1.

The following is a characterization of PGST (see Theorem 2 in [2]).

Lemma 2.10. Let u, v ∈ V (M) for the symmetric matrix M . Then pretty good state transfer from u to v
occurs if and only if the following two conditions are satisfied:

1. The indices u and v are strongly cospectral.

2. Let {λi} be the roots of P+, and {µj} the roots of P−. Then for any choice of integers ℓi, mj such that

∑

i

ℓiλi +
∑

j

mjµj = 0

∑

i

ℓi +
∑

j

mj = 0,

we have
∑

i

mi is even.

Note that the first conditions could be weakened to just cospectral, since the second condition implies
that P+ and P− do not share any roots, so this implies strongly cospectral if the nodes are cospectral.

The following theorem generalizes a result from [15] and a lemma from [10].
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Theorem 2.11. Let M be a symmetric matrix with strongly cospectral indices u, v ∈ V (M), and assume
that P+ and P− are irreducible polynomials. Then if

Tr(P+)

deg(P+)
6=

Tr(P−)

deg(P−)
,

where Tr denotes the trace (i.e. the sum of roots) of a polynomial, then there is PGST from u to v.

Proof. Our proof uses a technique from [15].
Suppose we have integers ℓi, mj satisfying

∑

i

ℓiλi +
∑

j

mjµj = 0

∑

i

ℓi +
∑

j

mj = 0.

To use Lemma 2.10, we wish to show
∑

i ℓi is even.
We will use a tool from Galois theory called the field trace of a field extension. For a Galois field extension

K of F , we define TrK/F : K → F by

TrK/F (α) =
∑

g∈Gal(K/F )

g(α).

The field trace is the trace of the linear map taking x 7→ αx. In Lemma 6.1 of the Appendix we record a
few basic facts about the field trace that we will use.

Now, let F be the base field (the field containing all the entries of M), let L/F be the splitting field for
P+, J/F the splitting field for P−, and K/F the smallest field extension containing both L and J . Let us
denote r = deg(P+) and s = deg(P−). Since P+ and P− are irreducible, then L and J are Galois extensions
of F . Let us examine the field trace of the individual roots of P+ and P−. We have

TrL/F (λi) =
∑

g∈Gal(K/F )

g(λi)

and since L is a Galois extension, the group acts transitively on the roots of P+, so each of the λk’s shows
in this sum, and each will appear |Gal(L/F )|/r times. Thus

TrL/F (λi) =
[L : F ]

r

∑

k

λk.

Note further that
∑

k λk = Tr(P+), so we have shown

TrL/F (λi) =
[L : F ]

r
(Tr(P+))

for any i. In a similar way, by examining P− we obtain

TrJ/F (µj) =
[J : F ]

s
(Tr(P−))

for any j.
Now apply the field trace to our linear combination of the λi and µj , and using the properties above we
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have,

0 = TrK/F

(

∑

ℓiλi +
∑

mjµj

)

= TrK/F

(

∑

ℓiλi

)

+TrK/F

(

∑

mjµj

)

= [K : L] TrL/F

(

∑

ℓiλi

)

+ [K : J ] TrJ/F

(

∑

mjµj

)

= [K : L]
∑

ℓiTrL/F (λi) + [K : J ]
∑

mj TrJ/F (µj)

=
[K : L][L : F ]

r
Tr(P+)

∑

ℓi +
[K : J ][J : F ]

s
Tr(P−)

∑

mj

= [K : F ]

(

Tr(P+)

r

∑

ℓi +
Tr(P−)

s

∑

mj

)

This, along with our assumption at the beginning give us

Tr(P+)

r

∑

ℓi +
Tr(P−)

s

∑

mj = 0
∑

ℓi +
∑

mj = 0.

This is a system of two equations in the variable
∑

λi,
∑

µj , and so if

Tr(P+)

r
6=

Tr(P−)

s
,

then these two equations are linearly independent, and we obtain

∑

λi =
∑

mj = 0.

In particular, each sum is even, so Lemma 2.10 implies that we get pretty good state transfer.

3 Diagonal perturbation

In this section we investigate how, given a symmetric matrixM with cospectral indices u, v ∈ V (M), adding
a diagonal matrix D to M can be used to achieve strong cospectrality of u, v and irreducibility of P+ and
P−. We are going to do this by choosing D to have two non-zero values only. To establish notation, for any
set of indices S ⊂ V (M), let DS denote the diagonal matrix with 1s in the positions belonging to S and 0s
elsewhere. Let D = Q ·Duv.

Lemma 3.1. If u, v ∈ V (M) are cospectral indices for M , then they are also cospectral for M +D.

Proof.
φ(M+D)u = φMu

−Q · φMuv
= φMv

−Q · φMuv
= φ(M+D)v .

3.1 Achieving strong cospectrality

The benefit of adding such a diagonal perturbation is that we can actually turn a pair of cospectral indices
into strongly cospectral ones.

Lemma 3.2. Let M be a symmetric matrix with connected support whose entries are in a field F ≤ R, and
assume u, v ∈ V (M) are cospectral. Suppose Q is transcendental over F , and D = Q · Duv, then u and v
are strongly cospectral for M +D.

6



Proof. By simple expansion, and using that cospectrality means φMu
= φMv

, we can write

φM+D = φM + 2QφMv
+Q2φMuv

.

By [11, Lemma 8.4] it is sufficient to show that φMuv
/φM+D has only simple poles. Proving this by contra-

diction we can assume that φM+D is not irreducible. However, for transcendental Q, it then has to factor
over F [Q]. So we can either write

φM+D = h · (Qf1 + f0) · (Qg1 + g0),

or possibly
φM+D = h · (Q2f2 +Qf1 + f0),

where all the factors but h are irreducible and fi, gj, h ∈ F [x]. In both cases it follows that φMuv
= h · ψ

and thus
φMuv

φM+D
=

ψ

(Qf1 + f0) · (Qg1 + g0)

or
φMuv

φM+D
=

ψ

(Q2f2 +Qf1 + f0)
.

The second option immediately implies that all poles are simple. In order to have non-simple poles in
the first case, the two irreducible factors in the denominator must have a common root, but then they
must be identical. This means that φM = hf2

0 , φMu
= φMv

= hf1f0, φMu,v
= hf2

1 . Thus ψu,v =
φMu

φMv
− φMφMu,v

= 0 so, by [8, Lemma 1.1, Chapter 4.1], we get (Eλ)u,v = 0 for all λ, so (Mk)(u, v) = 0
for all k. This contradicts the assumption thatM has connected support, so u, v must be strongly cospectral
for M .

3.2 Trace

We see from Theorem 2.11 that the trace of P+ and P− can be useful in proving that there is PGST
between two cospectral nodes. In this section we prove some important properties of TrP± under diagonal
perturbation.

Lemma 3.3. Let M be a symmetric matrix whose elements are in a field F ≤ R. Suppose u, v ∈ V (M) are
cospectral for M and let D = Q ·Duv where Q ∈ R is transcendental over F . Let φM+D = P+ · P− · P0 as
in Lemma 2.5. Then TrP+ −Q ∈ F and TrP− −Q ∈ F .

Proof. Let us recall that P± are the minimal polynomials of M +D relative to eu ± ev, and that φM+D =
P+ · P− · P0. Since Q is transcendental over F , we have to have P+, P−, P0 ∈ F [Q, t].

First we show that both P+ and P− are at least linear in Q. To see this, observe that the u and v
coordinates of (M +D)k(eu + ev) contain a single term Qk and no higher power of Q shows up elsewhere
in (M +D)k(eu + ev), nor in (M +D)j(eu + ev) for any j < k. Hence if P+(t) = tk + ck−1t

k−1 + · · · where

cj ∈ F [Q], then we have 0 = P+(M +D)(eu + ev) = (M +D)k(eu + ev) +
∑k−1

j=0 cj(M +D)j(eu + ev). This

can only happen if the Qk coming from the first term is cancelled by something. This can only be if at least
some of the cj coefficients are in F [Q] \ F . Thus P+ needs to be at least linear in Q. The same argument
shows this for P− as well.

Note that φM+D is quadratic in Q, which implies that both P+ and P− have to be exactly linear in Q.
Going back to the cancellation of the Qk term in (M +D)k(eu + ev), we see that since the coefficients cj are
at most linear in Q, only the ck−1(M +D)k−1(eu + ev) has a chance to cancel the Qk term, and for this it
has to be that ck−1 +Q ∈ F . But −ck−1 = TrP+, so this implies TrP+ −Q ∈ F . That the same holds for
P− follows the exact same way.

We can prove a similar result for diagonal perturbations at a single vertex. This will be useful in some
of our constructions in Section 4.
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Lemma 3.4. Let M be a symmetric matrix with connected support whose elements are in a field F ≤ R.
Suppose u, v ∈ V (M) are cospectral for M , and let w ∈ V (M) be another index such that there is an integer
d ≥ 0 for which 〈ew,M

d(eu + ev)〉 6= 0. Let D = Q ·Dw where Q ∈ R is transcendental over F , and suppose
u and v are also cospectral for M +D. Let φM+D = P+ · P− · P0 as in Lemma 2.5. Then TrP+ −Q ∈ F .

Proof. The argument is almost identical to the previous one. Let d be the smallest power for which
〈ew,M

d(eu + ev)〉 6= 0. From the setup it follows that φM+D ∈ F [Q, t] is linear in Q, thus the polyno-
mial P+ ∈ F [Q, t] can be at most linear. But it also has to be at least linear, since in (M +D)k(eu + ev)
there will be a Qk−d term appearing that would only cancel if one of the cj coefficients of P+ contains Q.
This coefficient then can only be ck−1 and, as previously, it can only happen if ck−1 + Q ∈ F , and thus
TrP+ −Q ∈ F .

3.3 Achieving irreducibility

Lemma 3.5. Let M be a symmetric matrix whose entries are in a field F ≤ R. Assume u, v ∈ V (M) are
strongly cospectral indices for M . If Q is transcendental over F and D = Q · Duv, then P+(M + D) and
P−(M +D) are irreducible.

Proof. By Lemma 3.2 the indices u, v are also strongly cospectral for M + D. Then φM+D factors as
φM+D = P+ · P− · P0 by Lemma 2.5. Since such a factorization exists for all values of Q, it has to be a
factorization in F [Q, t]. By expanding the determinant we also have

φM+D = φM − 2QφMu
+Q2φMuv

. (1)

Thus we see that φM+D is quadratic in Q, and thus P+, P−, and P0 can all be at most quadratic in Q. Now
note that as Q → ∞, there will be two eigenvectors of M +D converging to 1√

2
(eu + ev) and

1√
2
(eu − ev)

corresponding to eigenvalues asymptotically equal to Q and all other eigenvalues will be o(Q). This means
that TrP+ and TrP− will both converge to Q. Since these traces as elements of F [Q] are constant, this can
only happen if TrP+ −Q ∈ F and TrP− −Q ∈ F . Thus there are non-zero polynomials S±, R± ∈ F [t] such
that P± = S± +Q · R±, and hence by comparing the degrees in Q, we get that P0 ∈ F [t].

Comparing to (1) we see that

φM = P0 · S+ · S−

φMu
= P0 · (S+R− +R+S−)

φMuv
= P0 ·R+ ·R−.

Now suppose that P+ is not irreducible. For transcendental Q, this implies that P+ factors in F [t, Q], but
since it’s linear in Q, the only way for this to happen is that there is some factor T ∈ F [t] that divides both
S+ and R+. If this is the case, then T · P0 divides all three of φM , φMu

, φMuv
.

Let (t − λ)k be a factor of T · P0. Then by Lemma 6.2, there are k eigenvectors that vanish on u. By
strong cospectrality of u and v, these must vanish on v simultaneously, so there are k eigenvectors for λ that
vanish on both u and v. This means that (t−λ)k is already a factor of P0. Since this holds for all factors of
T · P0 and hence T = 1. Thus P+ is irreducible. The same argument gives that P− is also irreducible.

4 Constructions

In this section we explain how to obtain graphs with a pair of cospectral nodes u, v where adding a potential
Q at nodes u and v, and possibly at a third node w results in PGST between u and v. The significance
of these constructions is that they yield examples without symmetries, in particular without an involution
mapping u to v.

4.1 Equitable partitions

Our first construction is based on equitable partitions. These can be thought of as direct generalizations of
graphs with an involution.
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Definition 4.1. An equitable partition of a symmetric matrix M is a partition P = {P1, . . . , Pk} of its
index set V (M) such that for any Pi, Pj ∈ P and any v1, v2 ∈ Pi, one has

∑

u∈Pj

M(v1, u) =
∑

u∈Pj

M(v2, u).

Theorem 4.2. Let M be a symmetric matrix with connected support whose elements are in a field F ≤ R.
Suppose M admits an equitable partition P such that P1 = {u, v} and P2 = {w}, then for algebraically
independent numbers Q1, Q2 that are transcendental over F and for D = Q1 · Duv + Q2 · Dw the matrix
M +D admits PGST between u and v.

Corollary 4.3. If a connected graph has an equitable partition with a part consisting of u, v and another part
of consisting of w only, then by adding suitable potentials at u, v, and w one can guarantee PGST between
u and v.

Proof. We proceed step-by-step as follows: first we show that u and v are cospectral in bothM andM+Q2 ·
Dw. Then we show that u and v are strongly cospectral in M +D, and furthermore that the corresponding
P+ and P− are irreducible. Finally, we show that TrP+/ degP+ 6= TrP−/ degP− hence by Theorem 2.11
there is PGST between u and v.

Let us start by proving cospectrality of u and v. First, let ΠP denote the partition matrix corresponding to
P . That is, the columns of ΠP are indexed by 1, 2, . . . , k, and the rows are indexed by V (M), and ΠP (j, x) is
1 if x ∈ Pj and 0 otherwise. Second, let MP denote the quotient matrix, given as MP(i, j) =

∑

y∈Pj
M(x, y)

for some fixed x ∈ Pi. As P is equitable, the value MP(i, j) doesn’t depend on the particular choice of x.
Note, that MP is a k × k matrix, though not necessarily symmetric.

A simple computation shows that M ·ΠP = ΠP ·MP . Note that, since P1 = {u, v}, we can write eu + ev
as ΠP(1, 0, . . . , 0)T . Now we can compute

〈eu − ev,M
m(eu + ev)〉 = (eu − ev)

TMmΠP (1, 0, . . . , 0)
T = (eu − ev)

TΠPM
m
P (1, 0, . . . , 0)T = 0,

since (eu − ev)
TΠP = 0. This shows that W (M, eu + ev) is orthogonal to W (M, eu − ev) and hence u and v

are cospectral.
As P is also an equitable partition for M + Q2 · Dw, it follows that u and v are also cospectral for

M +Q2 ·Dw. Let us write Q1 = A+B where A,B,Q2 are all algebraically independent of each other and of
F . This can be done by choosing A to be independent of Q1, Q2 and transcendental over F and then setting
B = Q1 − A. Then, by Lemma 3.2 and the assumption that A is transcendental over F(Q2), we find that
u and v are strongly cospectral for M +Q2 ·Dw +A ·Duv. Then, by Lemmas 3.5 and 3.2, u and v are not
only strongly cospectral for M +D = (M + Q2 · Dw + A · Duv) + B · Duv, but also the corresponding P+

and P− are irreducible.
Now, by Lemmas 3.3 and 3.4, we find that TrP+ − Q2 ∈ F(Q1) and since φM+D is linear in Q2 this

implies TrP− ∈ F(Q1). Then surely TrP+/ degP+ cannot equal TrP−/ degP− since that would imply
Q2 ∈ F(Q1), a contradiction.

Finally, by Theorem 2.11 we get that there is PGST between u and v.

Remark 4.4. Given any graph with an equitable partition with a part of size two (and thus a cospectral
pair) it is straightforward to add a single vertex and attach it to the vertices of one of the parts of the
partition to produce a graph satisfying the conditions of the corollary.

4.2 Gluing

Our second construction is based on an arbitrary graph G with a pair of cospectral nodes u, v ∈ V (G).
We will show that either simply adding a transcendental potential Q at the nodes u and v induces PGST
between them, or else one can modify G in a relatively simple way: by gluing a long path to G with u and v
being its endpoints, and then adding a transcendental potential Q at u and v we get PGST between u and
v.
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Theorem 4.5. Let G be a graph with u, v ∈ V (G) cospectral, and such that 0 is not an eigenvalue of the
adjacency matrix of G \ {u, v}. Fix an integer q ≥ 0. Construct Gq by gluing a path of length q to G by
attaching its endpoints to u and v. In other words, by adding q− 1 new nodes x1, x2, . . . , xq−1 to G together
with the edges ux1, x1x2, x2x3, . . . , xq−2xq−1, xq−1v. (For q = 0 we simply take G0 = G.)

Let Q ∈ R be a transcendental number, and put a potential Q at the nodes u and v in Gq. Then either
the potential induces PGST between u and v in G or there is an infinite set of integers S ⊂ Z such that this
potential induced PGST between u and v in Gq for all q ∈ S.

Again, the main novelty of this construction is that it does not require the graph to admit any kind of
symmetry. In fact, one can start from any graph with a pair of cospectral nodes, of which many examples
have been described in the literature. We give the proof at the end of this section.

We begin by describing a general gluing construction that preserves cospectrality. This has been inde-
pendently discovered by Godsil [9]. As we have done so far, we will prove everything in the general context
of symmetric matrices, but we are still primarily interested in the case where the matrices in question are
the adjacency matrices of graphs.

Let M1 and M2 be symmetric matrices such that V (M1) ∩ V (M2) = {u, v}. We can extend them to
matrices M̃1, M̃2 on V (M1) ∪ V (M2) by declaring them to be 0 wherever they weren’t previously defined.
Then we define their sum M1 ⊕M2 = M̃1 + M̃2, in particular V (M1 ⊕M2) = V (M1) ∪ V (M2). When Mi is
the adjacency matrix of the graph Gi (i = 1, 2), thenM =M1⊕M2 is the adjacency matrix of G = G1∪uvG2

sometimes referred to as the 2-sum of G1 and G2, that is obtained by gluing the two u nodes together and
the two v nodes together. Note that G may have multiple edges.

Lemma 4.6. If u, v ∈ V (Mi); (i = 1, 2) are cospectral pairs for bothM1 andM2, then they are also cospectral
in M1 ⊕M2.

Proof. Let M = M1 ⊕M2. We can compute φMu
by expanding the determinant along the column corre-

sponding to v:
φMu

= φM1u
φM2uv

+ φM2u
φM1uv

− tφM1uv
φM2uv

.

By cospectrality φMju
= φMjv

, and thus the right hand side doesn’t change when exchanging the roles of u
and v. Hence φMu

= φMv
as claimed.

In what follows we assume that u and v are indeed cospectral in M1 and in M2 and let M = M1 ⊕M2.
Let us introduce the notation φMj

= P j
+ ·P j

− ·P j
0 (j = 1, 2) and φM = P+ ·P− ·P0, according to Lemma 2.5.

Lemma 4.7. degP+ ≤ degP 1
+ + degP 2

+ − 1 and degP− ≤ degP 1
− + degP 2

− − 1

Proof. We know, by Definitions 2.4 and 2.1 that degP+ = dimW (M, eu+ev) and degP j
+ = dimW (M̃j, eu+

ev). We will show that W (M, eu + ev) ≤ W (M̃1, eu + ev) ⊕W (M̃G2
, eu + ev). From this, the first part of

the lemma will follow since 〈eu + ev〉 ≤W (M̃1, eu + ev) ∩W (M̃2, eu + ev).
Let us denote by Π1,Π2, and Π0 the “natural” projection operators from RG to RG1 ,RG2 , and R{u,v}

respectively. First note that, by cospectrality, euM
k(eu + ev) = evM

k(eu + ev) for any k. In other words,
eu + ev is an eigenvector of Π0M

k for any k. The same is true with M̃1 or M̃2 in place of M . Also note that
a simple computation gives M̃1M̃2 = M̃1Π0M̃2 and M̃2M̃1 = M̃2Π0M̃1.

It is then sufficient to prove that Π1M
k(eu+ev) ∈W (M̃1, eu+ev) and Π2M

k(eu+ev) ∈ W (M̃2, eu+ev).
Without loss of generality it is sufficient to prove the first one. Using M = M̃1 + M̃2 we can compute

Mk =
k

∑

j=0









M̃ j
1

∑

0<j1,j2,...

j+j1+j2+···=k

M̃ j1
2 M̃

j2
1 M̃

j3
2 M̃

j4
1 . . .









and so

Π1M
k(eu + ev) =

k
∑

j=0









Π1M̃
j
1

∑

0<j1,j2,...

j+j1+j2+···=k

Π0M̃
j1
2 Π0M̃

j2
1 Π0M̃

j3
2 Π0M̃

j4
1 . . . (eu + ev)









.
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Here, each term in the sum is just a multiple of (eu + ev) since it is an eigenvector of each Π0M̃
j
ǫ : ǫ = 1, 2.

Hence there are constants cj depending only on j and k such that

Π1M
k(eu + ev) =

k
∑

j=0

cjΠ1M̃
j
1 (eu + ev) =

k
∑

j=0

cj

(

M̃ j
1 (eu + ev)−Π0M̃

j
1 (eu + ev)

)

∈W (M̃1, eu + ev),

and this is what we wanted to show.
The argument for P− is analogous.

Remark 4.8. Any eigenvector of M1 or M2 that vanishes on u, v can be extended to V (M) by zeros to
obtain an eigenvector of M with the same eigenvalue. Thus P0 is divisible by P 1

0 · P 2
0 .

Lemma 4.9. Let kj ≥ 0 denote the multiplicity of λ in P j
0 (j = 1, 2). Suppose the multiplicity of λ in P0 is

strictly bigger than k1 + k2. Then λ is an eigenvalue of M1uv and M2uv.

Proof. By the assumption on the multiplicity there has to be an eigenvector ofM with eigenvalue λ vanishing
on both u and v that is not identically zero on eitherM1 orM2. The restriction of this vector to V (M1)\{u, v}
and to V (M2) \ {u, v} then yield eigenvectors showing that λ is indeed an eigenvalue of both of these
matrices.

Corollary 4.10. If M1uv and M2uv do not share any eigenvalues, then P0 = P 1
0 · P 2

0 .

Theorem 4.11. If M1uv and M2uv do not share any eigenvalues, then degP+ = degP 1
+ + degP 2

+ − 1 and
degP− = degP 1

− + degP 2
− − 1.

Proof. By Corollary 4.10 and by Lemma 4.7 we have

|V (M)| = degP0 + degP+ + degP− ≤

≤ degP 1
0 + degP 2

0 + degP 1
+ + degP 2

+ − 1 + degP 1
− + degP 2

− − 1 = |V (M1)|+ |V (M2)| − 2 = |V (M)|

Since the left and right hand sides are equal, there must be equality in the middle, finishing the proof.

Proof of Theorem 4.5. Let A denote the adjacency matrix of G. By assumption u and v are cospectral for
A. The matrix HG = A + Q · Duv is the Hamiltonian for the graph G together with the potential. By
Lemmas 3.2 and 3.5 we know that u and v are strongly cospectral for HG and the corresponding PHG

+ and

PHG

− polynomials are irreducible, and by Lemma 3.3 we know that TrPHG

+ −Q and TrPHG

− −Q are both
rational. (To show irreducibility we need to apply the same trick as in the proof of Theorem 4.2: adding the
potential in two steps, first ensuring strong cospectrality, then irreducibility.) So by Theorem 2.11, the only
way there could be no PGST between u and v is if

degPHG

+ = degPHG

− .

Let now Pq denote the path graph on q+1 nodes, and let Aq denote its adjacency matrix. Let us call the
endpoints u and v. It is clear that u and v are cospectral in Pq, for instance because Pq admits an equitable
partition, each part consisting of a pair of symmetric nodes, or the single node in the middle.

Then if Gq = G ∪u,v Pq then M = A ⊕ Aq is the adjacency matrix of Gq. Finally let H = M +Q ·Duv

denote the Hamiltonian of Gq together with the potential. Then H = M1 ⊕M2 where M1 = A + Q · Duv

and M2 = Aq. It is well-known that the eigenvalues of Aquv = Aq−1 are 2 cos(jπ/q) (j = 1, 2, . . . , q − 1). It
is also not hard to show that degP 2

+ = ⌈(q + 1)/2⌉ and degP 2
− = ⌊(q + 1)/2⌋.

Any non-zero real number λ there is at most one prime p such that λ = 2 cos(jπ/(2p)) for some 1 ≤ j ≤
2p− 1, and since 0 is not an eigenvalue of Auv by assumption. Thus if p is a sufficiently large prime number
and q = 2p, then Aquv and Auv do not share any eigenvalues. Then, by Theorem 4.11 we find that

degPH
+ = degPM1

+ + degPM2

+ − 1 = degPHG

+ + ⌈(2p+ 1)/2⌉ − 1 = degPHG

+ + p

and
degPH

− = degPM1

− + degPM2

− − 1 = degPHG

− + ⌊(2p+ 1)/2⌋ − 1 = degPHG

− + p− 1,

so degPH
+ 6= degPH

− . At the same time TrPH
+ − Q and TrPH

− − Q are both rational, and u and v are
strongly cospectral and PH

+ and PH
− are irreducible, as before. So by Theorem 2.11 there is PGST between

u and v in Gq.
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We can in fact remove the condition of Theorem 4.5 that 0 not be an eigenvalue of Auv if we allow
potential to be placed on vertices other than u and v (the two cospectral vertices). This is the content of
the next two theorems.

Theorem 4.12. Let G be a graph with u, v ∈ V (G) cospectral. Let k be any odd integer and let Pk denote
the path on q nodes, and call its endpoints u, v. Add a suitably chosen potential to every vertex of Pk so that
G \ u, v shares no eigenvalues with Pk \ u, v. Create G′ by gluing the path with potential to the nodes u and
v. Then putting a transcendental potential Q on u and v induces PGST from u to v in G′.

Proof. Adding a potential to every vertex of Pk simply adds a multiple of the identity to its adjacency
matrix, so the eigenvalues shift by the amount of the potential. Thus clearly a potential can be chosen so
that G \ {u, v} and Pk \ {u, v} do not share any eigenvalues. Then the proof proceeds exactly as in the proof
of Theorem 4.5 to show that there is PGST.

Theorem 4.13. Let G be a graph with u, v ∈ V (G) cospectral. Let k be any odd integer and let Pk denote the
path on q nodes, and call its endpoints u, v. Denotes its central vertex by w. Add a transcendental potential
Q′ to w and then create G′ by gluing the path with this potential to the nodes u and v. Then putting a
transcendental potential Q algebraically independent from Q′ on u and v induces PGST from u to v in G′.

Proof. By Lemma 3.4, Q′ appears in Tr(P+) but not in Tr(P−), but Q′ is algebraically independent from
any other terms that could show up in the trace, so it must be that Tr(P+) and Tr(P−) are distinct. Then
the theorem follows from Theorem 2.11.

5 Examples, discussion, and further questions

Our results succeed in giving infinite families of graphs for which we can put a potential on the vertices
to induce PGST between two vertices. Furthermore, the potential required can be assumed to be zero on
most vertices of the graph. In addition, the examples produced do not require any of the strict symmetry
or regularity conditions of the results in [15] and [10]. We will examine the some examples, including the
graphs shown in the introduction.

Example 5.1. Let G be the graph below.

u

v

Direct computation can show that vertices u and v are cospectral in G (but not strongly cospectral). Putting
a transcendental potential Q on u and v makes these vertices strongly cospectral by Lemma 3.2, and in fact
P+ and P− have different degree in this case, so this potential is enough to obtain pretty good state transfer.
Gluing paths with an even number of vertices gives an infinite family of graphs for which the potential
induces pretty good state, and each graph in this family does not have an automorphism mapping u to v.

Note that we chose paths of even length simply because we know that these change the degree of P+ and
P− by the same amount, and this graph already has deg(P+) 6= deg(P−). We could in fact glue any graph
with a pair of cospectral vertices as long as the resulting graph has P+ and P− with distinct degree or trace,
and achieve a graph for which the potential induces pretty good state transfer.

Example 5.2. Let G be the graph shown below.

u v
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Here, by direct computation, we have deg(P+) = deg(P−) and Tr(P+) = Tr(P−) = 0, so in order for our
results to give PGST, we need to use Theorem 4.12 or 4.13.

We pose the natural question: given any pair of cospectral vertices u and v, can we always induce PGST
by a potential placed only on vertices u and v? We can answer this question in the negative with the following
example.

Example 5.3. Consider the graph pictured below, with the vertices u, v as labeled.

u

v

Computation shows that deg(P+) = deg(P−) = 5 and Tr(P+) = Tr(P−) = Q, where Q is the value of the
potential on u and v. So Theorem 2.11 is uninformative. But using Lemma 2.10 directly, since the degrees
of P+ and P− are odd, we can simply take ℓi = 1 for each i and mj = −1 for each j, and we will have an
integer linear combination of the eigenvalues equal to 0 with

∑

ℓi and
∑

mj odd. Thus, no matter what
value of potential we put at u and v, there cannot be PGST between u and v.

The question remains open if we can induce PGST by putting potential on other vertices as well, since
this could in theory change the degrees of P+ and P−.

To create an infinite family of graphs in which PGST occurs, we can glue paths to this graph via Theorem
4.5.

Note that this graph has an involution swapping u and v that fixes no vertices or edges (see [15]) and
with an odd number of orbits. This is the only situation we are aware of where there is a cospectral pair,
and we can prove that no potential on u and v can induce PGST. It is an open question if this is the only
kind of such graphs.

A further question concerns the algebraic complexity of the potential necessary to induce PGST. In all
of our results, we have used transcendental values of potential. This accomplishes two things: first, we can
turn any pair of cospectral vertices into a strongly cospectral pair (Lemma 3.2), and further, this guarantees
that P+ and P− are irreducible polynomials (Lemma 3.5; note that irreduciibility is necessary to apply
Theorem 2.11). However, the assumption of a transcendental potential is a drawback in terms of practical
considerations. It is of interest to determine if simpler (algebraic, ideally rational) potentials might do as
well.

6 Appendix

Here we prove some lemmas used in the paper.

Lemma 6.1. The field trace map TrK/F : K → F defined in the proof of Theorem 2.11 satisfies the following
properties:

• TrK/F is an F -linear map.

• For α ∈ F , TrK/F (α) = [K : F ]α.

• For K and extension of L, and extension of F , we have TrK/F = TrL/F ◦TrK/L.

Proof. For a field extension K of F , recall the definition of the field trace is, for α ∈ K is

TrK/F (α) =
∑

g∈Gal(K/F )

g(α).

The linearity over F is clear from the definition.
The second property follows since any automorphism in K/F fixes any element of F .
Finally, the last follows from the definition and the Galois correspondence between subfields of K fixing

F and subgroups of Gal(K/F ).
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Lemma 6.2. Let M be any real symmetric n × n matrix, and let u be an index for M . Suppose λ is an
eigenvalue of multiplicity at least k of both M and Mu. Then there are k linearly independent eigenvectors
of M corresponding to λ that vanish at u.

Proof. If λ has multiplicity strictly larger than k as an eigenvalue of M , then it is easy to see that we can
adjust a basis for the eigenspace so that at least k of the corresponding eigenvectors vanish at u.

So let us suppose that the multiplicity of λ as an eigenvalue of M is exactly k, and as an eigenvalue ofM
is at least k. Let us denote by λ1 ≤ · · · ≤ λn the eigenvalues of M , and by µ1 ≤ · · · ≤ µn−1 the eigenvalues
of Mu. Then the interlacing theorem for symmetric matrices (see for example Theorem 4.3.8 of [12]) says
we have

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn.

Then, given the assumption on the multiplicity of λ above, we have λj−1 < λ = λj = λj+1 = . . . λj+k−1 <
λj+k. There are two possibilities for the µ-s:

λ = µj = · · · = µj+k−1 or λ = µj−1 = · · · = µj+k−2

We will consider the first possibility, the second one can be dealt with in a similar fashion. Let us choose
an orthonormal basis (ϕk)

n
k=1 of eigenvectors of M in such a way that ϕj , ϕj+1, . . . , ϕj+k−2 all vanish on u.

This can be done since the multiplicity of λ is k and we are only asking for the first k − 1 corresponding
eigenvectors to vanish on u. Then, by the min-max principle, we have

λj+k−1 = min
x 6=0,x∈R

n

x⊥ϕ1,...,ϕj+k−2

xTMx

xTx

≤ min
x 6=0,x∈R

n

x⊥ϕ1,...,ϕj+k−2

x(u)=0

xTMx

xTx
= min

x 6=0,x∈R
n−1

x⊥ϕ̃1,...,ϕ̃j+k−2

xTMux

xTx

≤ max
y1,...,yj+k−2∈Rn−1

min
x 6=0,x∈R

n−1

x⊥y1,...,yj+k−2

x(u)=0

xTMux

xTx
= µj+k−1 = λj+k−1.

This implies that the first inequality has to be equality, so there is an x attaining the minimum that is
orthogonal to ϕ1, . . . , ϕj+k−2 and for which x(u) = 0. This x then has to be an eigenvector with eigenvalue
λj+k−1 = λ, so we exhibited k pairwise orthogonal eigenvectors for λ vanishing on u.

The case when λ = µj−1 = · · · = µj+k−2 is done similarly, except we use the characterization of λj as a
maximum, and we fix ϕj+1, . . . , ϕj+k−1 to vanish on u.
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