arXiv:1804.01645v1 [math.CO] 5 Apr 2018

Pretty good quantum state transfer in asymmetric graphs via
potential

Or Eisenberg® Mark Kempton!  Gabor Lippner?

Abstract

We construct infinite families of graphs in which pretty good state transfer can be induced by adding
a potential to the nodes of the graph (i.e. adding a number to a diagonal entry of the adjacency matrix).
Indeed, we show that given any graph with a pair of cospectral nodes, a simple modification of the
graph, along with a suitable potential, yields pretty good state transfer (i.e. asymptotically perfect state
transfer) between the nodes. This generalizes previous work, concerning graphs with an involution, to
asymmetric graphs.

1 Introduction

Transfer of quantum information with high fidelity through networks of locally coupled spin particles is an
important problem in quantum information processing. Information can be considered as excitation in the
network initiated at an input node, which then spreads according to the action of a Hamiltonian. The quality
of the transfer depends on how strongly the excitation can then be concentrated at a given target node. The
transfer is perfect if there is a time ¢ at which the probability of the excitation being at the target node
is 1. Initiated by Bose [3], perfect state transfer has been extensively studied for various networks, both
from the physical [I3] and the mathematical [6] point of view. It turns out that perfect state transfer is
notoriously difficult to achieve. All known constructions involve very special networks and/or very special,
highly non-uniform coupling strengths. In particular, it has been shown in [I4] that for uniformly coupled
chains of length at least four there can never be perfect state transfer between endpoints, not even in the
presence of magnetic fields.

There is a somewhat less restrictive notion of a pretty good state transfer, also referred to as “almost
perfect state transfer”. This requires the transfer probability to get arbitrarily close to 1 as time passes.
While practically just as good as perfect state transfer, it is somewhat easier to achieve. The first examples of
spin chains admitting pretty good state transfer appeared in [I7]. However, as demonstrated in [7, 2 5] [16],
even pretty good state transfer is relatively rare in unmodulated spin chains with uniform couplings.

In this paper we study pretty good state transfer in the single-excitation subspace of a spin network with
X X couplings, in the presence of a magnetic field. We will use graph theoretic terminology throughout the
paper. We denote the network by G, the set of nodes (vertices) by V(G) and the set of links (edges) by
E(G). The evolution of such a system is given by its Hamiltonian

1
Hxx =5 | Z Jij(Xin“l‘Yin)‘f'. > Qi 7,
(1,5)EE(G) i€V (Q)

where X;,Y;, Z; are the standard Pauli matrices, J;; denotes the strength of the X X coupling between node
i and j, and the Q;’s give the strength of the magnetic field yielding an energy potential at each node.
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Figure 1: Asymmetric, irregular graphs with cospectral nodes. In each graph, the cospectral vertices are
labeled v and v.

It has been shown [3} [4] that the restriction of this Hamiltonian to the single-excitation subspace is
modeled by a continuous-time quantum walk on a graph with transition matrix, U(t), given by

U(t) = exp(itA)
where A is the (possibly weighted) adjacency matrix of the graph.
Definition 1.1. Let G be a graph with vertices u and v.
1. We say that G admits perfect state transfer (PST) from u to v if there is some time ¢ > 0 such that

|U ()] = 1.

2. We say G admits pretty good state transfer (PGST) from u to v if, for any € > 0, there is a time ¢ > 0
such that
|U(#)yw| >1—e

Our primary focus in this paper will be the effect of adding a potential induced by a magnetic field (the
Q; above). Previous work in [15] showed that in graphs with an involutional symmetry, one can often induce
pretty good state transfer between a pair of nodes by appropriately choosing a potential on the vertex set.
In [I0], it is shown that a potential can induce pretty good state transfer in strongly regular graphs as well.
The contribution of this paper is to show how to construct asymmetric, non-regular graphs that admit PGST
between a pair of nodes u, v if a suitably chosen potential is added to the adjacency matrix at u and v. The
novelty of our constructions is that we do not require any symmetry or regularity in the graph. In addition,
our results apply to arbitrary real symmetric matrices (not just adjacency matrices). We note that PST has
been exhibited in asymmetric simple unweighted graphs in [1J.

A necessary condition for both PST and PGST between vertices u and v of a graph is that w and v must
be cospectral (see [0, 2]), that is G \ v and G \ v have the same spectrum. One motivation for our previous
work is that symmetry in a graph always naturally leads to cospectral vertices. It also holds that pairs of
vertices in strongly regular graphs are cospectral. However, cospectral pairs can arise without any symmetry
or regularity conditions. Two relatively small examples are shown in Figure [

Our constructions come in two types, based on the following two observations concerning cospectral
vertices. First, in a graph with an equitable partition (defined in Section [£1]) with a part containing exactly
two vertices, those two vertices are cospectral (see Figure [2] for an example). Second, given two graphs
with a cospectral pair, the vertices remain cospectral in the graph obtained by “gluing” the two graphs
together along those vertices (see Lemma [4.6] below). We are able to show that given any graph with a pair
of cospectral vertices, a simple modification of the graph, together with an appropriately chosen potential
on the vertex set, yields PGST between those vertices. See Corollary [£.3] and Theorems [£.5] E12] and [£I3]
below for the precise details.

The key tool in our analysis is Theorem [2.11] below, which takes advantage of the fact that the charac-
teristic polynomial of the adjacency matrix for a graph with cospectral nodes has a factorization. We give a
simple, efficiently computable condition on the factors that implies PGST. Note, however, that the converse
of Theorem [Z.11] does not hold in general. Another critical piece in our proofs, of independent interest, is
Lemma [3.2] which shows that adding a transcendental potential to a pair of cospectral nodes actually makes
them strongly cospectral (see Section [2 for the definition).



Figure 2: A graph with an equitable partition with a part of size 2 (vertices v and v), and hence a cospectral
pair (but no involution swapping u and v).

2 Preliminaries

Let M be a symmetric matrix with entries in a field F. We use ¢ € Fl[t] to denote its characteristic
polynomial. The rows and columns of M will typically be indexed by the nodes of a finite graph. We will
use V(M) to denote the set of row/column indices of M, so we can think of M € RYVM>xVAD) 1f § « V(M),
we write Mg for the symmetric submatrix obtained from M by removing the rows and columns indexed by

S.

Definition 2.1. For any vector z, let W (M, 2) = (z, Mz, M?z,...) denote the M-invariant subspace gener-
ated by z. Let us denote by p. = p. am € F[t] the minimal polynomial of M relative to z, that is, the smallest
degree polynomial such that p,(M)z = 0. It is well-known that p. divides the usual minimal polynomial of
M and that the degree of p, equals the dimension of W (M, z).

2.1 Cospectral nodes

Definition 2.2. Let M be a symmetric matrix. Two indices u,v € V(M) are cospectral if ¢(M,) = ¢(M,).

Lemma 2.3 (Theorem 3.1 of [I1]). Let M be a symmetric matriz, and let u,v € V(M). Let M =", AE\
be the spectral decomposition of M. Here E denotes the projections onto the eigenspaces of M corresponding
to the eigenvalue A\. We denote the characteristic vectors of u and v by ey, e, respectively. The following are
equivalent:

1. w and v are cospectral.

2. (Ex)uu = (EX)yp for all X

8. M*(u,u) = M*(v,v) for all k.

4. W(M, ey + ey) is orthogonal to W (M, e, — e,).

Definition 2.4. We define P, to be the minimal polynomial of M relative to e, + e,, and P_ to be the
minimal polynomial of M relative to e, — e,.

Lemma 2.5. Given a symmetric matriz M and cospectral indices u,v € V (M), the characteristic polynomial
of M decomposes as
¢m =Py P_- Ry,

where Py and P_ have no multiple roots, and there is an orthonormal basis of eigenvectors of M such that:
1. for each root \ of Py the basis contains a unique eigenvector ¢ with eigenvalue X and o(u) = (v) # 0,
2. for each root X of P_ the basis contains a unique eigenvector ¢ with eigenvalue A and p(u) = —p(v) # 0,

3. for each root A of Py with multiplicity k the basis contains exactly k eigenvectors with eigenvalue A all
of which vanish on both u and v.



In particular the degree of Py is the same as the dimension of the space W (M, e, + e,).

Proof. Since M is diagonalizable, its minimal polynomial doesn’t have multiple roots, and hence neither
does Py nor P_. The roots of Py are exactly those eigenvalues A\ for which Ej(e, + e,) # 0, and for such
A the eigenvector ¢ = Ey (e, + e,) satisfies that ¢(u) = p(v). Similarly for P_. By cospectrality of u and
v, the eigenvectors obtained for P, and for P_ are pairwise orthogonal. Finally, extending to an orthogonal
basis for M, it is clear that each remaining eigenvector satisfies ¢(u) = ¢(v) = 0. O

Remark 2.6. Since the coefficients of Py give the unique linear dependency among e, + e,, M (e, +
€v),--., M¥(e, + €,), they belong to the same field as the entries of M. The same is true for P_, and
thus for Py.

Definition 2.7. The indices u,v € V(M) are strongly cospectral if p(u) = tp(v) for every eigenvector ¢ of
M.

Lemma 2.8. The following are equivalent:
1. w and v are strongly cospectral.

2. w and v are cospectral, and Py and P_ do not have any common roots.

3. Exe, = £ Exe, for all M.

2.2 Pretty good state transfer

The discrete Schrodinger equation, for an n x n matrix M, is given by
Oppy = iM 1y,

where 1, € C". The solution of this equation can be written in the form
Py = "My,

Definition 2.9. M has PGST from u to v if 1o = e, implies that limsup,_, ., [{+(v)| = 1, or equivalently
if lim sup,_, ., [e®™ (u,v)| = 1.

The following is a characterization of PGST (see Theorem 2 in [2]).

Lemma 2.10. Let u,v € V(M) for the symmetric matriz M. Then pretty good state transfer from u to v
occurs if and only if the following two conditions are satisfied:

1. The indices u and v are strongly cospectral.

2. Let {\;} be the roots of Py, and {u;} the roots of P_. Then for any choice of integers {;, m; such that
DX+ Y mpy; =0
i J
SUES ST
i J

we have

E m; 1S even.
i

Note that the first conditions could be weakened to just cospectral, since the second condition implies
that P, and P— do not share any roots, so this implies strongly cospectral if the nodes are cospectral.
The following theorem generalizes a result from [I5] and a lemma from [10].



Theorem 2.11. Let M be a symmetric matriz with strongly cospectral indices u,v € V(M), and assume
that Py and P_ are irreducible polynomials. Then if

Tr(Py) Tr(P-)

deg(Py) © deg(P-)’

where Tr denotes the trace (i.e. the sum of roots) of a polynomial, then there is PGST from u to v.

Proof. Our proof uses a technique from [15].
Suppose we have integers ¢;, m; satisfying

D tdi+ ) mp; =0

i j
Zfi-i-zmj =0.
i j

To use Lemma [ZT0, we wish to show ), ¢; is even.
We will use a tool from Galois theory called the field trace of a field extension. For a Galois field extension
K of F, we define Trg,p : K — F by

Trspla) = > gla).

g€Gal(K/F)

The field trace is the trace of the linear map taking x — ax. In Lemma [G.1] of the Appendix we record a
few basic facts about the field trace that we will use.

Now, let F' be the base field (the field containing all the entries of M), let L/F be the splitting field for
Py, J/F the splitting field for P_, and K/F the smallest field extension containing both L and J. Let us
denote r = deg(P;) and s = deg(P-). Since Py and P_ are irreducible, then L and J are Galois extensions
of F. Let us examine the field trace of the individual roots of P, and P_. We have

TrrrN) = D>, g()

g€Gal(K/F)

and since L is a Galois extension, the group acts transitively on the roots of Py, so each of the A;’s shows
in this sum, and each will appear |Gal(L/F)|/r times. Thus

Trr p(Xi) = LA > A
k

r

Note further that >, A\ = Tr(P; ), so we have shown

[L: F)

Trr p(Ni) = (Tr(Py))

for any i. In a similar way, by examining P_ we obtain

[J: F]

Try/p(p;) = ——(Te(P-))

for any j.
Now apply the field trace to our linear combination of the A; and p;, and using the properties above we



have,

0= Trses (30 6 + > mins)
= Tricye (320 + Tracpr (3 myny)
=[K:L]Try/p (Z fz‘/\i) +[K :J]Tryp (Z ijj)
=K L)Y 6T p(N) + [K 2 I my Trye(p;)
DL gy sy B F 5
= [K: F (@Zfﬁ%ijmj)

This, along with our assumption at the beginning give us
Tr(Py) Tr(P-)
niak Sl 24 0+ ———L 0
T —
Z l; + Z m; = 0.
This is a system of two equations in the variable >~ A;, > p;, and so if

Tr(Py) 2 TY(P—)7

T S

then these two equations are linearly independent, and we obtain

Zx\i:ij =0.

In particular, each sum is even, so Lemma [2.10] implies that we get pretty good state transfer. O

3 Diagonal perturbation

In this section we investigate how, given a symmetric matrix M with cospectral indices u,v € V(M), adding
a diagonal matrix D to M can be used to achieve strong cospectrality of u,v and irreducibility of Py and
P_. We are going to do this by choosing D to have two non-zero values only. To establish notation, for any
set of indices S C V(M), let Dg denote the diagonal matrix with 1s in the positions belonging to S and Os
elsewhere. Let D = @ - Dy,.

Lemma 3.1. Ifu,v € V(M) are cospectral indices for M, then they are also cospectral for M + D.

Proof.
dM+D), = Om, — Q- Ony, = oM, — Q- O, = P(M+D), -

3.1 Achieving strong cospectrality

The benefit of adding such a diagonal perturbation is that we can actually turn a pair of cospectral indices
into strongly cospectral ones.

Lemma 3.2. Let M be a symmetric matriz with connected support whose entries are in a field F <R, and
assume u,v € V(M) are cospectral. Suppose Q is transcendental over F, and D = Q - Dy, then u and v
are strongly cospectral for M + D.



Proof. By simple expansion, and using that cospectrality means ¢ar, = ¢, , we can write

oy = dar + 2Qdur, + Q% b, -

By [11l Lemma 8.4] it is sufficient to show that ¢, /¢ar+p has only simple poles. Proving this by contra-
diction we can assume that ¢asp is not irreducible. However, for transcendental @, it then has to factor
over F[Q]. So we can either write

dm+p =h-(Qfr + fo) - (Qg1r + g0),

or possibly
dr+p =h- (Q*f2+ Qf1 + fo),

where all the factors but h are irreducible and f;,g;,h € Flz]. In both cases it follows that ¢z, = h- ¢

and thus

My _ P

dv+p  (Qf1+ fo) - (Qg1 + 90)
o OM,, P

dvip  (Q1f2+Qf1+ fo)
The second option immediately implies that all poles are simple. In order to have non-simple poles in
the first case, the two irreducible factors in the denominator must have a common root, but then they
must be identical. This means that ¢n; = hf§ , dm, = dm, = hfifo, ¢dm,., = hff. Thus ., =
dri, O, — O dum, ., = 0 so0, by [8, Lemma 1.1, Chapter 4.1], we get (Ey )y, = 0 for all A, so (M*)(u,v) =0
for all k. This contradicts the assumption that M has connected support, so u, v must be strongly cospectral
for M. O

3.2 Trace

We see from Theorem 2Tl that the trace of Py and P_ can be useful in proving that there is PGST
between two cospectral nodes. In this section we prove some important properties of Tr Py under diagonal
perturbation.

Lemma 3.3. Let M be a symmetric matriz whose elements are in a field F < R. Suppose u,v € V(M) are
cospectral for M and let D = @Q - Dy, where @ € R is transcendental over F. Let ¢ppryp = Py - P— - Py as
in Lemmal2Z8 Then TrPy —Q € F and Tr P_ — Q € F.

Proof. Let us recall that Py are the minimal polynomials of M + D relative to e, + e,, and that ¢p4p =
P, - P_ - Py. Since @ is transcendental over F, we have to have P, P_, Py € F[Q,1].

First we show that both P, and P_ are at least linear in ). To see this, observe that the v and v
coordinates of (M + D)*(e, + e,) contain a single term Q¥ and no higher power of @ shows up elsewhere
in (M + D)*(ey, + ey), nor in (M + D)7 (e, + e,) for any j < k. Hence if Py (t) = t* + cx_1t*"1 + --- where
¢j € FIQ), then we have 0 = Py(M + D)(ey +e,) = (M + D)*(eq + €,) + 03 ¢;(M + D) (e, + ). This
can only happen if the Q¥ coming from the first term is cancelled by something. This can only be if at least
some of the ¢; coeflicients are in F[Q] \ F. Thus P, needs to be at least linear in (). The same argument
shows this for P_ as well.

Note that ¢pr4+p is quadratic in @, which implies that both P, and P_ have to be exactly linear in Q.
Going back to the cancellation of the Q term in (M + D)*(e, + e,), we see that since the coefficients c; are
at most linear in @, only the c,_1(M + D) ~1(e, + e,) has a chance to cancel the Q* term, and for this it
has to be that cx_1 + @ € F. But —cx—1 = Tr Py, so this implies Tr Py — @ € F. That the same holds for
P_ follows the exact same way. O

We can prove a similar result for diagonal perturbations at a single vertex. This will be useful in some
of our constructions in Section [



Lemma 3.4. Let M be a symmetric matriz with connected support whose elements are in o field F < R.
Suppose u,v € V(M) are cospectral for M, and let w € V(M) be another index such that there is an integer
d >0 for which {ew, M (e, +ey)) #0. Let D = Q- D, where @ € R is transcendental over F, and suppose
u and v are also cospectral for M + D. Let ¢pr+p = Py - P— - Py as in Lemmal23. Then Tr Py — Q € F.

Proof. The argument is almost identical to the previous one. Let d be the smallest power for which
(ew, M%(ey + €,)) # 0. From the setup it follows that ¢pryp € F[Q,t] is linear in @, thus the polyno-
mial P, € F[Q,t] can be at most linear. But it also has to be at least linear, since in (M + D)*(e, + e,)
there will be a Q*~9 term appearing that would only cancel if one of the ¢; coefficients of P} contains Q.
This coefficient then can only be ¢;_1 and, as previously, it can only happen if ¢x_1 + @ € F, and thus
TrPL—QeF. O

3.3 Achieving irreducibility

Lemma 3.5. Let M be a symmetric matriz whose entries are in a field F < R. Assume u,v € V(M) are
strongly cospectral indices for M. If Q is transcendental over F and D = @ - Dy, then Py (M + D) and
P_(M + D) are irreducible.

Proof. By Lemma the indices u,v are also strongly cospectral for M + D. Then ¢y 4p factors as
éorv+p = P - P— - Py by Lemma Since such a factorization exists for all values of @, it has to be a
factorization in F[Q, t]. By expanding the determinant we also have

dr4p = S — 2Qdum, + Q° P, - (1)

Thus we see that ¢4 p is quadratic in @, and thus Py, P_, and Py can all be at most quadratic in (). Now
note that as () — oo, there will be two eigenvectors of M + D converging to %(eu + e,) and \%(eu —ey)
corresponding to eigenvalues asymptotically equal to @ and all other eigenvalues will be o(Q). This means
that Tr P and Tr P_ will both converge to (. Since these traces as elements of F[Q] are constant, this can
only happen if Tr Py — @ € F and Tr P_ — Q € F. Thus there are non-zero polynomials Sy, Ry € F|[t] such
that P = Sy + @ - R4, and hence by comparing the degrees in Q, we get that Py € F[t].

Comparing to (Il) we see that

o =Py -S54 -5-
¢Mu = PO . (S+R— + R+S_)
or1,, = Py Ri - R

Now suppose that P, is not irreducible. For transcendental @, this implies that Py factors in F[t, Q], but
since it’s linear in @, the only way for this to happen is that there is some factor T' € F[t] that divides both
Sy and R.. If this is the case, then T'- Py divides all three of ¢nr, s, , Pas,,., -

Let (t — A\)* be a factor of T'- Py. Then by Lemma 6.2 there are k eigenvectors that vanish on u. By
strong cospectrality of v and v, these must vanish on v simultaneously, so there are k eigenvectors for A that
vanish on both u and v. This means that (t — \)* is already a factor of Py. Since this holds for all factors of
T - Py and hence T'= 1. Thus Py is irreducible. The same argument gives that P_ is also irreducible.

4 Constructions

In this section we explain how to obtain graphs with a pair of cospectral nodes u, v where adding a potential
@ at nodes u and v, and possibly at a third node w results in PGST between v and v. The significance
of these constructions is that they yield examples without symmetries, in particular without an involution
mapping u to v.

4.1 Equitable partitions

Our first construction is based on equitable partitions. These can be thought of as direct generalizations of
graphs with an involution.



Definition 4.1. An equitable partition of a symmetric matrix M is a partition P = {Py,..., Py} of its
index set V(M) such that for any P;, P; € P and any v1,v2 € P;, one has

Z M(vy,u) = Z M (ve, u).

u€ P; u€ P;

Theorem 4.2. Let M be a symmetric matriz with connected support whose elements are in a field F < R.
Suppose M admits an equitable partition P such that Py = {u,v} and Py = {w}, then for algebraically
independent numbers Q1, Q2 that are transcendental over F and for D = Q1 - Dy, + Q2 - Dy, the matriz
M + D admits PGST between u and v.

Corollary 4.3. If a connected graph has an equitable partition with a part consisting of u,v and another part
of consisting of w only, then by adding suitable potentials at u,v, and w one can guarantee PGST between
u and v.

Proof. We proceed step-by-step as follows: first we show that v and v are cospectral in both M and M + Q2 -
D,,. Then we show that v and v are strongly cospectral in M + D, and furthermore that the corresponding
P, and P_ are irreducible. Finally, we show that Tr P, /deg Py # Tr P_/deg P_ hence by Theorem 2.11]
there is PGST between u and v.

Let us start by proving cospectrality of u and v. First, let IIp denote the partition matriz corresponding to
P. That is, the columns of ITIp are indexed by 1,2, ..., k, and the rows are indexed by V (M), and IIp(j, x) is
1if z € P; and 0 otherwise. Second, let Mp denote the quotient matrix, given as Mp(i,j) = Zyer M(z,y)
for some fixed x € P;. As P is equitable, the value Mp(i,7) doesn’t depend on the particular choice of x.
Note, that Mp is a k X k matrix, though not necessarily symmetric.

A simple computation shows that M - IIp = IIp - Mp. Note that, since P = {u, v}, we can write e, + ¢,
as IIp(1,0,...,0)7. Now we can compute

(6w — €oy M™ (e +€4)) = (en — €y) T M™Ip(1,0,...,0)" = (e, — e,) TIp M2(1,0,...,0)7 =0,

since (e, — €,)TIp = 0. This shows that W (M, e, + e,) is orthogonal to W (M, e, — e,) and hence u and v
are cospectral.

As P is also an equitable partition for M + Qs - D,,, it follows that u and v are also cospectral for
M+ Qs D,,. Let us write Q1 = A+ B where A, B, Q)2 are all algebraically independent of each other and of
F. This can be done by choosing A to be independent of 1, Q2 and transcendental over F and then setting
B = @1 — A. Then, by Lemma and the assumption that A is transcendental over F(Q2), we find that
u and v are strongly cospectral for M + Qo - Dy, + A - Dy,. Then, by Lemmas and [3.2] v and v are not
only strongly cospectral for M + D = (M + Q2 - Dy, + A - Dyy) + B - Dyy, but also the corresponding Py
and P_ are irreducible.

Now, by Lemmas and B4 we find that Tr Py — Q2 € F(Q1) and since ¢pr4p is linear in Q2 this
implies Tr P— € F(Q1). Then surely Tr P, /deg Py cannot equal Tr P_/deg P_ since that would imply
Q2 € F(Q1), a contradiction.

Finally, by Theorem 2.11] we get that there is PGST between u and v. O

Remark 4.4. Given any graph with an equitable partition with a part of size two (and thus a cospectral
pair) it is straightforward to add a single vertex and attach it to the vertices of one of the parts of the
partition to produce a graph satisfying the conditions of the corollary.

4.2 Gluing

Our second construction is based on an arbitrary graph G with a pair of cospectral nodes u,v € V(G).
We will show that either simply adding a transcendental potential @ at the nodes v and v induces PGST
between them, or else one can modify GG in a relatively simple way: by gluing a long path to G with u and v
being its endpoints, and then adding a transcendental potential @ at v and v we get PGST between u and
.



Theorem 4.5. Let G be a graph with u,v € V(G) cospectral, and such that 0 is not an eigenvalue of the
adjacency matriz of G\ {u,v}. Fiz an integer ¢ > 0. Construct G, by gluing a path of length q to G by
attaching its endpoints to u and v. In other words, by adding ¢ — 1 new nodes x1,x2,...,Tq—1 to G together
with the edges uxi, T1T2, T2T3, . .., Tg—2Tq—1,Tq—1V. (For ¢ =0 we simply take Go = G.)

Let @ € R be a transcendental number, and put a potential Q) at the nodes u and v in G4. Then either
the potential induces PGST between u and v in G or there is an infinite set of integers S C Z such that this
potential induced PGST between u and v in Gy for all ¢ € S.

Again, the main novelty of this construction is that it does not require the graph to admit any kind of
symmetry. In fact, one can start from any graph with a pair of cospectral nodes, of which many examples
have been described in the literature. We give the proof at the end of this section.

We begin by describing a general gluing construction that preserves cospectrality. This has been inde-
pendently discovered by Godsil [9]. As we have done so far, we will prove everything in the general context
of symmetric matrices, but we are still primarily interested in the case where the matrices in question are
the adjacency matrices of graphs.

Let My and Ms be symmetric matrices such that V(M;) N V(Mz) = {u,v}. We can extend them to
matrices My, M on V(My) UV (Ms) by declaring them to be 0 wherever they weren’t previously defined.
Then we define their sum M; @ My = M; + Mo, in particular V(M & My) = V(M) UV (Ms). When M; is
the adjacency matrix of the graph G; (i = 1,2), then M = M; ® M> is the adjacency matrix of G = G1 Uy, G2
sometimes referred to as the 2-sum of G and Ga, that is obtained by gluing the two u nodes together and
the two v nodes together. Note that G may have multiple edges.

Lemma 4.6. Ifu,v € V(M,); (i = 1,2) are cospectral pairs for both My and M, then they are also cospectral
n M1 D M2.

Proof. Let M = M; & M. We can compute ¢y, by expanding the determinant along the column corre-
sponding to v:
oM, = ¢M1u¢M2uv + ¢M2u¢M1uv - t¢M1uv¢M2uv'

By cospectrality ¢ar; = ¢a; , and thus the right hand side doesn’t change when exchanging the roles of u
and v. Hence ¢, = ¢n, as claimed. O

In what follows we assume that u and v are indeed cospectral in M; and in M3 and let M = M; & Ma.
Let us introduce the notation ¢, = P{ - P’ - Pj (j = 1,2) and ¢py = Py - P_ - Py, according to Lemma 271

Lemma 4.7. deg Py < deg P} +deg P} — 1 and deg P_ < deg P! +deg P2 —1

Proof. We know, by Definitions 24 and [ZT that deg Py = dim W (M, e,, +¢,) and deg Pi = dim W(Mj, eu+
ey). We will show that W (M, e, + e,) < W(Ml,eu +ey) @ W(MG2,eu + e,). From this, the first part of
the lemma will follow since (e, + €,) < W(Ml, ey + €y) N W(Mg, ey + €ey).

Let us denote by Iy, II,, and Iy the “natural” projection operators from RS to RE1, R%2  and R{®v}
respectively. First note that, by cospectrality, e, M*(e, + e,) = e,M¥(e, + e,) for any k. In other words,
ey + €y is an eigenvector of I, M* for any k. The same is true with Ml or ]\7[2 in place of M. Also note that
a simple computation gives MlMg = MlnoMz and Mng = MQHOM:[.

It is then sufficient to prove that IT; M* (e, +e,) € W(Ml, ey +e,) and Io M¥ (e, +e,) € W(Mg, ewtey).
Without loss of generality it is sufficient to prove the first one. Using M = M + M, we can compute

k
k _ Vi VRS VEERYEERVEE
MF =" M > M3 M MP M.
7=0 . 0<j1,d2,--
Jtitiet=k

and so

k

L M*e, +e)=> | IWM] > oMo MM T M ... ey + )
=0 1.2,

PER A N

J
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Here, each term in the sum is just a multiple of (e, + e,) since it is an eigenvector of each HoMej re=1,2.
Hence there are constants c¢; depending only on j and k such that

k k
Hle(eu-l—eU) = chﬂl eu—|—ev Zc ( (ew +ey) — HOMf(eu—Fev)) e W(Ml,eu+ev),
j=0 j=0
and this is what we wanted to show.
The argument for P_ is analogous. O

Remark 4.8. Any eigenvector of M; or M, that vanishes on w,v can be extended to V(M) by zeros to
obtain an eigenvector of M with the same eigenvalue. Thus P is divisible by P} - Pg.

Lemma 4.9. Let k; > 0 denote the multiplicity of X in Pg ( = 1,2). Suppose the multiplicity of X in Py is
strictly bigger than ki + ko. Then X is an eigenvalue of My, and Mas,,.

Proof. By the assumption on the multiplicity there has to be an eigenvector of M with eigenvalue A\ vanishing
on both u and v that is not identically zero on either M; or M;. The restriction of this vector to V (M;)\{u, v}
and to V(Ms) \ {u,v} then yield eigenvectors showing that A is indeed an eigenvalue of both of these
matrices. O

Corollary 4.10. If My, and Ma,, do not share any eigenvalues, then Py = Py - P§.

Theorem 4.11. If My, and Ms,, do not share any eigenvalues, then deg P, = deg P}L + deg Pf —1 and
deg P_ = deg P! +deg P? — 1.

Proof. By Corollary and by Lemma [L.7] we have

|[V(M)| = deg Py + deg Py + deg P <
< deg Py +deg P§ + deg P} +deg P} — 1 +deg P! +deg P? — 1= |V(M;)| +|V (M) — 2= |V(M)]
Since the left and right hand sides are equal, there must be equality in the middle, finishing the proof. O

Proof of Theorem [{.9] Let A denote the adjacency matrix of G. By assumption v and v are cospectral for
A. The matrix Hg = A+ Q - Dy, is the Hamiltonian for the graph G together with the potential. By
Lemmas and we know that u and v are strongly cospectral for Hs and the corresponding PfG and
PH¢ polynomials are irreducible, and by Lemma we know that TrPfG — @ and Tr PH¢ — Q are both
rational. (To show irreducibility we need to apply the same trick as in the proof of Theorem[L2l adding the
potential in two steps, first ensuring strong cospectrality, then irreducibility.) So by Theorem 211} the only
way there could be no PGST between v and v is if

deg PfG = deg PHc.

Let now P, denote the path graph on g+ 1 nodes, and let A, denote its adjacency matrix. Let us call the
endpoints u and v. It is clear that u and v are cospectral in P,, for instance because P, admits an equitable
partition, each part consisting of a pair of symmetric nodes, or the single node in the middle.

Then if G; = G Uy, Py then M = A ® A, is the adjacency matrix of G,. Finally let H = M + Q - Dy,
denote the Hamiltonian of G, together with the potential. Then H = M; @& My where M1 = A+ Q - Dy,
and My = A,. It is well-known that the eigenvalues of A, = A1 are 2cos(jm/q) (j =1,2,...,q—1). Tt
is also not hard to show that deg P? = [(¢+ 1)/2] and deg P? = |(¢+1)/2].

Any non-zero real number A there is at most one prime p such that A = 2 cos(jn/(2p)) for some 1 < j <
2p — 1, and since 0 is not an eigenvalue of A, by assumption. Thus if p is a sufficiently large prime number
and g = 2p, then A4, and A, do not share any eigenvalues. Then, by Theorem EL.11] we find that

deg P{ = degP_{rw1 —l—degPﬂ/[2 —-1= dengG +12p+1)/2]1-1= dengG +p
and
deg P2 = deg PM* 4 deg P2 —1 = deg PH¢ + |(2p+1)/2] — 1 = deg PH¢ 4+ p—1,

so deg Pf # deg P, At the same time TrPf — @ and Tr P — Q are both rational, and u and v are
strongly cospectral and Pf and P are irreducible, as before. So by Theorem Z.I1] there is PGST between
u and v in Gy. O
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We can in fact remove the condition of Theorem that 0 not be an eigenvalue of A,, if we allow
potential to be placed on vertices other than u and v (the two cospectral vertices). This is the content of
the next two theorems.

Theorem 4.12. Let G be a graph with u,v € V(G) cospectral. Let k be any odd integer and let Py, denote
the path on q nodes, and call its endpoints u,v. Add a suitably chosen potential to every vertex of Py so that
G\ u,v shares no eigenvalues with Py, \ u,v. Create G' by gluing the path with potential to the nodes v and
v. Then putting a transcendental potential Q on w and v induces PGST from u to v in G'.

Proof. Adding a potential to every vertex of P simply adds a multiple of the identity to its adjacency
matrix, so the eigenvalues shift by the amount of the potential. Thus clearly a potential can be chosen so
that G\ {u,v} and Py \ {u, v} do not share any eigenvalues. Then the proof proceeds exactly as in the proof
of Theorem ] to show that there is PGST. O

Theorem 4.13. Let G be a graph with u,v € V(G) cospectral. Let k be any odd integer and let Py, denote the
path on q nodes, and call its endpoints u,v. Denotes its central vertex by w. Add a transcendental potential
Q' to w and then create G' by gluing the path with this potential to the nodes u and v. Then putting a
transcendental potential Q algebraically independent from Q' on w and v induces PGST from u to v in G'.

Proof. By Lemma B4l Q' appears in Tr(P;) but not in Tr(P-), but Q' is algebraically independent from
any other terms that could show up in the trace, so it must be that T'r(Py) and Tr(P-) are distinct. Then
the theorem follows from Theorem Z.11] O

5 Examples, discussion, and further questions

Our results succeed in giving infinite families of graphs for which we can put a potential on the vertices
to induce PGST between two vertices. Furthermore, the potential required can be assumed to be zero on
most vertices of the graph. In addition, the examples produced do not require any of the strict symmetry
or regularity conditions of the results in [I5] and [10]. We will examine the some examples, including the
graphs shown in the introduction.

Example 5.1. Let G be the graph below.

Direct computation can show that vertices u and v are cospectral in G (but not strongly cospectral). Putting
a transcendental potential @ on u and v makes these vertices strongly cospectral by Lemma [3:2] and in fact
P, and P_ have different degree in this case, so this potential is enough to obtain pretty good state transfer.
Gluing paths with an even number of vertices gives an infinite family of graphs for which the potential
induces pretty good state, and each graph in this family does not have an automorphism mapping u to v.

Note that we chose paths of even length simply because we know that these change the degree of P, and
P_ by the same amount, and this graph already has deg(Py) # deg(P-). We could in fact glue any graph
with a pair of cospectral vertices as long as the resulting graph has Py and P_ with distinct degree or trace,
and achieve a graph for which the potential induces pretty good state transfer.

Example 5.2. Let G be the graph shown below.

RS B

u v
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Here, by direct computation, we have deg(P}) = deg(P-) and Tr(P;) = Tr(P-) = 0, so in order for our
results to give PGST, we need to use Theorem [£12] or

We pose the natural question: given any pair of cospectral vertices u and v, can we always induce PGST
by a potential placed only on vertices u and v? We can answer this question in the negative with the following
example.

Example 5.3. Consider the graph pictured below, with the vertices u, v as labeled.

u

v

Computation shows that deg(Py) = deg(P-) =5 and Tr(Py) = Tr(P-) = @, where @ is the value of the
potential on u and v. So Theorem 2.I1]is uninformative. But using Lemma directly, since the degrees
of Py and P_ are odd, we can simply take ¢; = 1 for each ¢ and m; = —1 for each j, and we will have an
integer linear combination of the eigenvalues equal to 0 with > ¢; and > m; odd. Thus, no matter what
value of potential we put at u and v, there cannot be PGST between u and v.

The question remains open if we can induce PGST by putting potential on other vertices as well, since
this could in theory change the degrees of P, and P_.

To create an infinite family of graphs in which PGST occurs, we can glue paths to this graph via Theorem
4.9

Note that this graph has an involution swapping v and v that fixes no vertices or edges (see [I5]) and
with an odd number of orbits. This is the only situation we are aware of where there is a cospectral pair,
and we can prove that no potential on u and v can induce PGST. It is an open question if this is the only
kind of such graphs.

A further question concerns the algebraic complexity of the potential necessary to induce PGST. In all
of our results, we have used transcendental values of potential. This accomplishes two things: first, we can
turn any pair of cospectral vertices into a strongly cospectral pair (Lemma [3.2), and further, this guarantees
that P, and P_ are irreducible polynomials (Lemma [35} note that irreduciibility is necessary to apply
Theorem 2.TT]). However, the assumption of a transcendental potential is a drawback in terms of practical
considerations. It is of interest to determine if simpler (algebraic, ideally rational) potentials might do as
well.

6 Appendix

Here we prove some lemmas used in the paper.

Lemma 6.1. The field trace map Trg/p : K — F' defined in the proof of Theorem[2.11] satisfies the following
properties:

o Try/p is an F-linear map.
o ForacF, Trg/p(a) =[K : Fla.
e For K and extension of L, and extension of F', we have Tryp = Trp/poTrg,p .
Proof. For a field extension K of F', recall the definition of the field trace is, for a € K is
Trspla)= > gla)
g€Gal(K/F)

The linearity over F is clear from the definition.

The second property follows since any automorphism in K/F fixes any element of F.

Finally, the last follows from the definition and the Galois correspondence between subfields of K fixing
F and subgroups of Gal(K/F). O
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Lemma 6.2. Let M be any real symmetric n X n matriz, and let u be an index for M. Suppose X\ is an
eigenvalue of multiplicity at least k of both M and M,. Then there are k linearly independent eigenvectors
of M corresponding to A that vanish at u.

Proof. If A has multiplicity strictly larger than k as an eigenvalue of M, then it is easy to see that we can
adjust a basis for the eigenspace so that at least k of the corresponding eigenvectors vanish at u.

So let us suppose that the multiplicity of A as an eigenvalue of M is exactly k, and as an eigenvalue of M
is at least k. Let us denote by \; < --- < A\, the eigenvalues of M, and by p; < --- < up,—1 the eigenvalues
of M,. Then the interlacing theorem for symmetric matrices (see for example Theorem 4.3.8 of [12]) says
we have

A< <A< S A1 S S A

Then, given the assumption on the multiplicity of A above, we have Aj_1 < A= X; = Ajp1 = ... Ajpp—1 <
Ajtk. There are two possibilities for the p-s:

)\:'u/j:...:uj+k71 or A:,U/jflz"':,uj%*ka

We will consider the first possibility, the second one can be dealt with in a similar fashion. Let us choose
an orthonormal basis (¢x)}_; of eigenvectors of M in such a way that ¢;, ¢j41,...,¢j+k—2 all vanish on w.
This can be done since the multiplicity of A\ is k& and we are only asking for the first £ — 1 corresponding
eigenvectors to vanish on u. Then, by the min-max principle, we have

. T Max
Ajpk—1 = min =
z#0,2€R™ Tt x
L1, pitr—2
. T Mz . o' M,z
< min T = min T
z#0,2ER™ Tt 2#£0,2€R™ ! -
Tlpr,..Pjtk—2 1P, Pjrr—2
z(u)=0
. T M,z
< max min —— = k=1 = Ajpk—1-

YiseonsYjrk—2€RP ™ gt zeRM T xTx
Lyt Yjtk—2

This implies that the first inequality has to be equality, so there is an x attaining the minimum that is
orthogonal to ¢1,. .., ¢ j+k—2 and for which z(u) = 0. This  then has to be an eigenvector with eigenvalue
Aj+k—1 = A, so we exhibited k pairwise orthogonal eigenvectors for A vanishing on u.

The case when A = p;_1 = -+ - = p1j4,—2 is done similarly, except we use the characterization of A; as a
maximum, and we fix ¢;11,...,¢ +x—1 to vanish on u. O
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