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Abstract

Tabled Constraint Logic Programming is a powerful execution mechanism for dealing
with Constraint Logic Programming without worrying about fixpoint computation. Var-
ious applications, e.g in the fields of program analysis and model checking, have been
proposed. Unfortunately, a high-level system for developing new applications is lacking,
and programmers are forced to resort to complicated ad hoc solutions.

This papers presents TCHR, a high-level framework for tabled Constraint Logic Pro-
gramming. It integrates in a light-weight manner Constraint Handling Rules (CHR), a
high-level language for constraint solvers, with tabled Logic Programming. The framework
is easily instantiated with new application-specific constraint domains. Various high-level
operations can be instantiated to control performance. In particular, we propose a novel,
generalized technique for compacting answer sets.

KEYWORDS: Constraint Logic Programming, Constraint Handling Rules, tabled execu-
tion

1 Introduction

The notion of tabled Constraint Logic Programming (CLP) originates from the

constraint databases community (Kanellakis et al. 1995). In an ordinary database,

data is stored in relations of atomic values. Constraint databases generalize atomic

values to constraint variables: a field is restricted to a range of values rather than

a single value. This allows for more compact representations than explicitly enu-

merating the atomic values. DATALOG, a formalism for reasoning about ordinary

databases and queries in particular, is generalized to DATALOGD for this purpose.

Just as DATALOG is a restricted form of Logic Programming, DATALOGD is a re-

stricted form of Constraint Logic Programming. The restrictions enforce programs

to have finite interpretations.
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Due to the finiteness properties, queries on DATALOGD programs can be re-

solved by bottom-up computation rather than the usual top-down goal-directed

computation of CLP. The former has the advantage that it terminates for DATALOGD

programs, whereas the latter may get stuck in infinite loops. However, a goal-

directed approach usually obtains the desired result much faster and uses less space.

For this reason, Toman (Toman 1997b) proposed a compromise: tabling. Tabling

is an LP technique for improving the termination properties of the goal-directed

approach through the memoization of intermediate results. By generalizing tabled

DATALOGD to Tabled CLP, we benefit from both the generalized expressivity of

CLP and the improved termination properties of tabling.

A number of different applications have been proposed for tabled DATALOGD

and Tabled CLP. Toman himself considers it an alternative approach to implement-

ing abstract interpretation (Toman 1997a): constraints abstract concrete values and

tabling takes care of fixpoints. Various applications in the context of model checking

have been developed (Mukund et al. 2000; Du et al. 2000; Pemmasani et al. 2002):

constraints impose restrictions on parameters in parametrized models while tabling

takes care of cycles in the model graphs.

The above establishes a clear need for Tabled CLP, but let us consider the avail-

ability of Tabled CLP systems. It turns out that a user-friendly and comprehen-

sive system for developing new Tabled CLP applications is missing completely. The

above-mentionedmodel checking applications (e.g. (Mukund et al. 2000; Du et al. 2000;

Pemmasani et al. 2002)) have adapted an existing tabled logic programming sys-

tem, XSB (Warren et al. 2005), with constraint programming facilities in various

ad hoc and laborious ways.

At first, XSB developers resorted to interfacing with foreign language libraries

or implementing constraint solvers in XSB itself with a close coupling of constraint

solver and application as a consequence. For instance, the initial feasibility study of a

real-time model checking system used a meta interpreter written in XSB to deal with

constraints (see (Mukund et al. 2000)). The subsequent full system implements

an interface between XSB and the POLINE polyhedra-based constraint solver li-

brary, and passes around handles to the constraint store in the XSB program (see

(Du et al. 2000)). At a later stage this real time model checking application used

distance bound matrices implemented in XSB itself (see (Pemmasani et al. 2002)).

In an attempt to facilitate the use of constraints, XSB was extended with at-

tributed variables (Cui and Warren 2000a). Attributed variables (Holzbaur 1992)

are Prolog language feature widely used for implementing constraint solvers. It al-

lows to associate data with unbound variables, manipulate it at will and also to

interrupt the unification of these variables. Unfortunately, constraint solvers are

complex programs and even with attributed variables it can be a daunting task to

implement them.

In order to substantially lower the threshold for tabled CLP, a high-level formal-

ism is needed for writing new constraint solvers and integrating them in a tabled

logic programming system. In this work we present such a formalism: Tabled Con-

straint Handling Rules, or TCHR for short.

TCHR is a high-level framework for developing new constraint solvers in a tabled
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logic programming environment. It integrates Constraint Handling Rules (CHR)

(Frühwirth 1998), an established high-level formalism for writing new constraint

solvers, and tabled logic programming. The framework offers a number of default

operations that can be specialized by instantiations to control both semantics and

performance.

A practical implementation of the framework is presented: the integration of

K.U.Leuven CHR in XSB. The integration shows how a tabled constraint logic

programming system can be obtained from a Constraint Logic Programming and

a tabled logic programming system with little impact on either. Although we have

chosen XSB as our particular tabled logic programming system, we believe that our

ideas readily apply to other table-based LP systems.

In summary, the major contributions of this work are:

• a high-level framework for developing new constraint solvers in a tabled logic

programming system,

• a practical implementation of the framework in terms of K.U.Leuven CHR

and XSB, and

• a novel, generalized approach for answer set reduction.

The CHR-XSB integration, we believe, combines both the bottom-up and top-

down fixpoint computations, the superior termination properties of XSB and the

constraint programming capabilities of CHR. This combined power enables pro-

grammers to easily write highly declarative programs that are easy to maintain

and extend.

Overview The rest of this text is structured as follows. First, in Sections 2

and 3 we provide basic technical background knowledge on tabled execution of

Constraint Logic Programs and Constraint Handling Rules, respectively.

Section 4 outlines our contribution: a framework for tabled CLP system inte-

grated in terms of SLG and Constraint Handling Rules. Subsequent sections discuss

in more detail the different options and operations of the framework: call abstraction

(Section 6), answer projection (Section 7) and answer set optimization (Section 8).

Finally, Section 9 discusses related and possible future work, and Section 10

concludes.

But first we end this introduction with a small motivating example from the do-

main of model checking:

Example 1 Data-independent systems (Wolper 1986) manipulate data variables

over unbounded domains but have a finite number of control locations. Such systems

can be modeled as extended finite automata (Sarna-Starosta and Ramakrishnan 2003):

finite automata with guards on the transitions and variable mapping relations be-

tween source and destination locations. They are useful for modelling and subse-

quently checking e.g. buffers and protocols.

A simple example of such a data-independent system, modeled in CLP(FD), is:

edge(a,b,Xa,Xb) :- Xa < 10, Xb = Xa.

edge(b,a,Xb,Xa) :- Xb > 0, Xa = Xb + 1.

edge(b,c,Xb,Xc) :- Xb > 3, Xc = Xb.
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This system has three control locations a,b,c each with one variable, respectively

Xa,Xb,Xc. Each edge/4 clause represents an edge in the system: a possible tran-

sition from one control location (the source) to another (the destination). The in-

equality constraint in each clause guards the transition, and the equality constraint

relates the source variable to the destination variable (the variable mapping).

Suppose that we are interested in whether location c is reachable from location

a, and for which values of the parameter Xa. Let us define a reachability predicate:

reach(A,A,X).

reach(A,C,X) :-

edge(A,B,X,NX),

reach(B,C,NX).

Then our reachability question is captured by the query ?- reach(a,c,X). In or-

der to answer this query, tabling is required to avoid the non-termination trap of

the a-b cycle in the graph. At the same time, constraints allow a compact sym-

bolic representation of the infinite search space for X. Without a good interaction

between both tabling and constraints, we would not be able to obtain as concise a

solution as 0 < X < 10 with so little effort. �

2 Tabled Constraint Logic Programs

In this section we cover the basics of tabled Constraint Logic Programming. First,

the syntax of Constraint Logic Programs is presented in Section 2.1. Next, Section

2.2 explains about the constraints part of CLP: the constraint domain. Finally,

Section 2.3 presents the (operational) semantics SLGD of Tabled Constraint Logic

Programs.

2.1 Syntax of Constraint Logic Programs

A Constraint Logic Program consists of a number of rules, called clauses, of the

form:

H:-C,L1, . . . ,Ln.

where n ≥ 0 and H is an atom, C is a constraint and L1, . . . , Ln are literals. A

literal is either an atom A or a negated atom ¬A.

H is called the head of the clause and C,L1, . . . , Ln is called the body. The comma

“,” is called conjunction as it corresponds with logical conjunction in the semantics

of Constraint Logic Programs.

The atoms are constructed from predicate symbols p/n and variables. Their

meaning is defined by the Constraint Logic Programming itself. The syntax and

semantics of constraints is defined by the constraint domain D (see Section 2.2).

If all the literals in the body are positive, the clause is a definite clause. A normal

clause is a clause that may also contain negative literals. A definite Constraint Logic

Program consists of definite clauses only, while a normal Constraint Logic Program
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has normal clauses. From now one we will only consider definite programs and

address them as programs for short.

2.2 Constraint Domains

A constraint solver is a (partial) executable implementation of a constraint domain.

A constraint domain D consists of a set Π of constraint symbols, a logical theory

T and for every constraint symbol c/n ∈ Π a tuple of value sets 〈V1, . . . , Vn〉.

A primitive constraint is constructed from a constraint symbol c/n and for every

argument position i (1 ≤ i ≤ n) either a variable or a value from the corresponding

value set Vi, similar to the way an atom is constructed in a logic program.

A constraint is of the form c1 ∧ . . . ∧ cn where n ≥ 0 and c1, . . . , cn are primitive

constraints. Two distinct constraints are true and false. The former always holds

and the latter never holds. The empty conjunction of constraints is written as true.

The logical theory T determines what constraints hold and what constraints do

not hold. Typically, we use D to also refer specifically to T . For example D |= c

means that under the logical theory T of constraint domain D the constraint c

holds.

A valuation θ for a constraint C is a variable substitution that maps the variables

in vars(C) onto values of the constraint domain D. If θ is a valuation for C, then it

is a solution for C if Cθ holds in the constraint domain D, i.e. D |= Cθ. A constraint

C is satisfiable if it has a solution; otherwise it is unsatisfiable. Two constraints C1

and C2 are equivalent, denoted D |= C1 ↔ C2, if and only if they have the same

solutions.

A constraint domain of particular interest is the Herbrand domain H. Its only

constraint symbol is term equality = /2, which ranges over Herbrand terms. Plain

Logic Programming can be seen as a specialized form of Constraint Logic Program-

ming over the Herbrand domain.

Two problems associated with a constraint C are the solution problem, i.e. deter-

mining a particular solution, and the satisfaction problem, i.e. determining whether

there exists at least one solution. An algorithm for determining the satisfiability of a

constraint is called a constraint solver. Often a solution is produced as a by-product.

A general technique used by many constraint solvers is to repeatedly rewrite a con-

straint into an equivalent constraint until a solved form is obtained. A constraint

in solved form has the property that it is clear whether it is satisfiable or not.

See (Marriott and Stuckey 1998) for a more extensive introduction to constraint

solvers.

2.3 Semantics of Constraint Logic Programs

In a survey of Constraint Logic Programming (CLP) (Jaffar and Maher 1994) var-

ious forms of semantics are listed for Constraint Logic Programs: logic semantics

based on Clark completion(Clark 1987), fixpoint semantics (Jaffar and Lassez 1987)

as well as a new framework for top-down and bottom-up operational semantics.
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The CLP fixpoint semantics are defined, in the usual way, as the fixpoint of an

extended immediate consequence operator.

Definition 1 (CLP Immediate Consequence Operator)

The one-step consequence function TD
P for a CLP program P with constraint do-

main D is defined as:

TD
P (I) = {p(d̄)| p(x̄)← c, b1, . . . , bn ∈ P,

∃v.v is a valuation on D :

D |= v(c),

v(x̄) = d̄,

∀i : 1 ≤ i ≤ n⇒ v(bi) ∈ I}

A goal-directed execution strategy, SLGD, using tabling for the above CLP fix-

point semantics has been developed by Toman in (Toman 1997b). This SLGD se-

mantics encompasses the best of both top-down and bottom-up operational seman-

tics: it is goal-directed like top-down evaluation and has the favorable termination

properties like bottom-up evaluation.

2.3.1 Basic SLGD Semantics

The SLGD semantics makes two assumptions about the constraint domain D.

Firstly, D includes a projection operation that returns a disjunction of constraints:

∃̄TC =
∨

i Ci. The notation Cj ∈ ∃̄TC is used to state that Cj is one of the dis-

juncts in this disjunction. Secondly, it is assumed that a relation ≤D is provided.

This relation should be at least as strong as implication, i.e.

∀C1, C2 : C1 ≤D C2 ⇒ D |= C1 → C2

SLGD is formulated in terms of four resolution (or rewriting) rules, listed in

Table 1. These rules either expand existing tree nodes or create new root nodes.

There are four different kinds of tree nodes: root(G;C), body(G;B1, . . . , Bk;C),

goal(G;B,C′;B2 . . . , Bk;C) and ans(G;A) where G is an atom, B1, . . . , Bk are

literals, and C,C′, A are constraints1 in D.

An SLGD tree is built from a root(G;C) node using the resolution rules. An

SLGD forest is a set of SLGD trees. The meaning of the different resolution rules

is the following:

• The Clause Resolution rule expands a root node: for every matching clause

head a body node is created containing the clause’s body literals.

• If there is at least one literal in a body node, it is expanded by the Query

Projection rule into goal nodes. This rule selects a literal to be resolved.

The given Query Projection rule implements a left-to-right selection strategy,

which is common to most LP systems, including XSB. However, any other

strategy is valid as well. The current constraint store C is projected onto

the selected literal’s variables, yielding only the constraints relevant for that

1 Also known as constraint stores.
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literal. As the projection yields a disjunction of constraints, one goal node is

created for every disjunct.

• If there is no literal in a body node, it is expanded by the Answer Projection

rule into a number of answer nodes. For this purpose the current constraint

store C is projected onto the goal’s variables, retaining only those constraints

relevant to the goal. In this way variables local to the chosen clause’s body

are eliminated.

• A goal node is expanded into new body nodes by the Answer Propagation rule.

This rule substitutes the selected literal by its answers: the selected literal’s

answer constraint stores are incorporated in the current store.

Note that the Answer Propagation and Answer Projection rules cooperate: when-

ever a new answer is produced, it is propagated to all the nodes that have already

been resolved using answers from this tree. Also the Answer Propagation rule is

responsible for creating new SLGD trees: when no tree with a root node that sub-

sumes the goal (B,C′) to be resolved can be found, a node root(B,C′) is created

to start a separate tree.

Finally, a query in the SLGD formalism is a tuple (G,C, P ) where vars(C) ⊆

vars(G) and all arguments of G are variables. The SLGD resolution rules are used

for query evaluation as follows:

1. create an SLGD forest containing a single tree {root(G,C)},

2. expand the leftmost node using the resolution rules as long as they can be

applied, and

3. return the set ans(G,C) as the answers for the query.

Definition 2

(Answer Set) The answer set ans(G,C) is the set of all A such that ans(G;A) ∈

slg(G,C), where slg(G,C) is the SLGD tree rooted at root(G,C).

2.3.2 An Example

Let us consider the following very simple CLP program P :

p(X) :- X = 1-Y, q(Y).

p(X) :- X = 0.

q(X) :- true, p(X).

The constraint domain is that of domain integers. The supported basic constraint

=/2 is equality of arithmetic expressions.

Figure 1 depicts the SLGD forest for the query (p(U); true;P ). The full arrows

represent the SLGD tree branches, whereas the dashed arrow indicates the start of

a new tree and the dotted arrows indicate the propagation of new answers. Each

arrow is labeled with its step number.

The answer set ans(p(U), true) consists of two answers: U = 0 and U = 1.
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Parent Children Conditions

Clause Resolution

root(G;C)

8

>

>

<

>

>

:

body(G;B1
1 , . . . , B

1
k1
;C ∧ θ ∧D1)

...

body(G;Bl
1, . . . , B

l
kl
;C ∧ θ ∧Dl)

for all 0 < i ≤ l such that
G′ → Di, Bi

1, . . . , B
i
ki

and θ ≡ (G = G′)
and C∧θ∧Di is satisfiable

Query Projection

body(G;B1, . . . , Bk;C)

8

>

>

<

>

>

:

goal(G;B1, C1;B2 . . . , Bk;C)

...

goal(G;B1, Cl;B2 . . . , Bk;C)

for all Ci ∈ ∃̄B1
C

Answer Propagation

goal(G;B1, C1;B2 . . . , Bk;C)

8

>

>

<

>

>

:

body(G;B2, . . . , Bk;C ∧ θ ∧A1)
...

body(G;B2, . . . , Bk;C ∧ θ ∧Al)

for all Ai ∈ ans(B′, C′)
where θ ≡ (B′ = B1)
and C1 ∧ θ ≤D C′

and C∧θ∧Ai is satisfiable

Answer Projection

body(G;�;C)

8

>

>

<

>

>

:

ans(G;A1)

...

ans(G;Al)

for all Ai ∈ ∃̄GC

Table 1. SLGD resolution rules

Parent Children Conditions

Optimized Query Projection

body(G;B1, . . . , Bk;C)

8

>

>

<

>

>

:

goal(G;B1, C1;B2 . . . , Bk;C)

...

goal(G;B1, Cl;B2 . . . , Bk;C)

D |= ∃̄B1
C → C1 ∨ . . .∨Cl

for some C1, . . . , Cl

Table 2. Optimized Query Projection for SLGD resolution

2.3.3 SLGD Optimizations

Several optimizations to the rewriting formulas have been proposed by Toman, of

which one, Query Projection, is of particular interest to us. The optimization allows

for more general goals than strictly necessary to be resolved. In this way fewer goals

have to be resolved, as distinct specific queries can be covered by the same general

goal.

Table 2 lists the modified Query Projection rule, called Optimized Query Projec-

tion.

A second important optimization is a modified version of the answer set definition:
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��

body(p(U);�;U = 1− Y ∧ Y = 1)

(14:APj)

��
ans(p(U);U = 1)

(11)

--

ans(p(U);U = 0)

root(q(Y ); true)

(4:CR)

��
body(q(U); p(U); true)

(5:QP )

��
goal(q(U); p(Y ), true ;�; true)

(7:APp)ssggggggggggggggggggg

(11:APp)

**T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

body(q(U);�;U = 0)

(8:APj)

��

body(q(U);�;U = 1)

(12:APj)

��
ans(q(U);U = 0)

(9)

CC

ans(q(U);U = 1)

(13)

ff

Fig. 1. Example SLGD forest

Definition 3

(Optimized Answer Set) The optimized answer set of the query (G,C, P ), denoted

ans(G,C), is the set of all A such that ans(G;A) ∈ slg(G,C) and no A′ is already

in ans(G,C) for which A ≤D A′.

This alternative definition allows for answers to be omitted if they are already

entailed by earlier more general answers. While logically the same answers are

entailed, the set of answers is smaller with the new definition.

Note that SLG, the operational semantics of tabled Logic Programming, is in

fact a specialized form of the SLGD semantics for the Herbrand domain. Several

implementations of SLG exist, including XSB. The topic of this paper, the inte-

gration of CHR with tabled execution, is in effect an implementation of SLGD for

arbitrary D defined by a CHR program.

In (Toman 1996) Toman has also extended his work to a goal-directed execution
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strategy for CLP programs with negation. This extension realizes the well-founded

semantics. An implementation of this extension is not covered by our work. It

imposes additional requirements on the constraint solver: a finite representation

of the negation of any constraint should exist. Moreover, the detection of loops

through negation requires a more complicated tabling mechanism.

3 Constraint Handling Rules

In this section we give a brief overview of Constraint Handling Rules (CHR) (Frühwirth 1998;

Frühwirth and Abdennadher 2003).

3.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of constraints:

built-in (pre-defined) constraint symbols which are solved by a given constraint

solver, and CHR (user-defined) constraint symbols which are defined by the rules

in a CHR program. There are three kinds of rules:

Simplification rule: N ame @ H <=> C | B,

Propagation rule: N ame @ H ==> C | B,

Simpagation rule: N ame @ H \ H ′ <=> C | B,

where Name is an optional, unique identifier of a rule, the headH ,H ′ is a non-empty

comma-separated conjunction of CHR constraints, the guard C is a conjunction of

built-in constraints, and the body B is a goal. A query is a conjunction of built-in

and CHR constraints. A trivial guard expression “true |” can be omitted from a

rule. The head of a simplification rule is called a removed head, as the rule replaces

its head by its body. Similarly, the head of a propagation rule is called a kept head,

as the rule adds its body in the presence of its head. Simpagation rules abbreviate

simplification rules of the form N ame @ H,H ′ <=> C | H,B, i.e. H is a kept

head and H ′ a removed head. A CHR program P consists of an ordered set of CHR

rules.

3.2 Operational Semantics of CHR

The formal operational semantics of CHR is given in terms of a state transition

system in Figure 2. The program state is an indexed 4-tuple 〈G,S,B, T 〉n. The

first part of tuple, the goal G is the multiset of constraints to be rewritten to solved

form. The CHR constraint store S is the multiset of identified CHR constraints

that can be matched with rules in the program P . An identified CHR constraint

c#i is a CHR constraint c associated with some unique integer i, the constraint

identifier. This number serves to differentiate among copies of the same constraint.

We introduce the functions chr (c#i) = c and id(c#i) = i, and extend them to

sequences, sets and multisets of identified CHR constraints in the obvious manner,

e.g. chr(S) = {c | c#i ∈ S}.

The built-in constraint store B is the conjunction of all built-in constraints that
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1. Solve 〈{c} ⊎ G,S,B, T 〉n ֌solve 〈G,S, c ∧ B, T 〉n where c is a built-in con-
straint.

2. Introduce 〈{c} ⊎G, S,B, T 〉n ֌introduce 〈G, {c#n} ⊎ S,B, T 〉(n+1) where c

is a CHR constraint.

3. Apply 〈G,H1⊎H2 ⊎S,B, T 〉n ֌apply 〈C ⊎G,H1 ⊎S, θ∧B, T ′〉n where there
exists a (renamed apart) rule in P of the form

r @ H
′

1 \ H
′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′
1), chr(H2) = θ(H ′

2) and
Db |= B → ∃̄B(θ ∧ g). In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [r]}. It
should hold that T ′ 6= T .

Fig. 2. The transition rules of the operational semantics of CHR

have been passed to the underlying solver. Since we will usually have no information

about the internal representation of B, we will model it as an abstract logical

conjunction of constraints. The propagation history T is a set of sequences, each

recording the identities of the CHR constraints that fired a rule, and the name of the

rule itself. This is necessary to prevent trivial non-termination for propagation rules:

a propagation rule is allowed to fire on a set of constraints only if the constraints

have not been used to fire the same rule before. Finally, the counter n represents

the next free integer that can be used to number a CHR constraint.

Given an initial query G, the initial program state is: 〈G, ∅, true, ∅〉1.

The rules of a program P are applied to exhaustion on this initial program

state. A rule is applicable, if its head constraints are matched by constraints in the

current CHR store one-by-one and if, under this matching, the guard of the rule is

implied by the built-in constraints in the goal. Any of the applicable rules can be

applied, and the application cannot be undone, it is committed-choice (in contrast

to Prolog). When a simplification rule is applied, the matched constraints in the

current CHR store are replaced by the body of the rule; when a propagation rule is

applied, the body of the rule is added to the goal without removing any constraints.

3.3 Implementation of CHR

This high-level description of the operational semantics of CHR leaves two main

sources of non-determinism: the order in which constraints of a query are processed

and the order in which rules are applied.2 As in Prolog, almost all CHR implemen-

tations execute queries from left to right and apply rules top-down in the textual

order of the program. This behavior has been formalized in the so-called refined

semantics that was also proven to be a concretization of the standard operational

semantics (Duck et al. 2004).

2 The nondeterminism due to the wake-up order of delayed constraints and multiple matches for
the same rule are of no relevance for the programs discussed here.
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In this refined semantics of actual implementations, a CHR constraint in a query

can be understood as a procedure that goes efficiently through the rules of the

program in the order they are written, and when it matches a head constraint of

a rule, it will look for the other, partner constraints of the head in the constraint

store and check the guard until an applicable rule is found. We consider such a

constraint to be active. If the active constraint has not been removed after trying

all rules, it will be put into the constraint store. Constraints from the store will

be reconsidered (woken) if newly added built-in constraints constrain variables of

the constraint, because then rules may become applicable if their guards are now

implied.

The refined operational semantics is implemented by all major CHR systems,

among which the K.U.Leuven CHR system (Schrijvers and Demoen 2004). This

system is currently available in three different Prolog systems (hProlog (Demoen 2004),

SWI-Prolog (Wielemaker 2004) and XSB) and it serves as the basis of our integra-

tion with tabled execution in this paper.

The K.U.Leuven CHR system (Schrijvers and Demoen 2004) is based on the gen-

eral compilation schema of CHR by Holzbaur (Holzbaur and Frühwirth 2000). For

this paper (Section 5) it is relevant to know that the CHR constraint store is imple-

mented as a global updatable term, containing identified constraints, in this context

also called suspended constraints, grouped by their functor. Each suspended con-

straint c#i is represented as a suspension term, including the following information:

• The constraint c itself.

• The constraint identifier i.

• The continuation goal, executed on reactivation. This goal contains the sus-

pension itself as an argument and it is in fact a cyclic term.

• The part of the propagation history T containing for each propagation rule

the tuple of identifiers of other constraints that this constraint has interacted

with.

Variables involved in the suspended constraints behave as indexes into the global

store: they have the suspensions attached to them as attributes. Because we aim

towards a light-weight integration of CHR with tabled Logic Programming, we

do not question these established representation properties, but consider them as

something to cope with.

We refer the interest reader to (Schrijvers 2005) for more details on CHR imple-

mentation.

3.4 CHR for Constraint Solving

The CHR language is intended as a language for implementing constraint solvers.

A CHR program P is a constraint solver for the constraint domain DP whose

constraint symbols ΠP are the CHR and built-in constraint symbols. The constraint

theory TP of the program consists of the built-in constraint theory together with the

declarative meaning of the CHR rules. The declarative meaning of a simplification



TCHR: a framework for tabled CLP 13

rule of the form Hr <=> G | B is:

∀x̄.∃ȳ.G→ (H ↔ ∃z̄.B)

where x̄ = vars(H)∪, ȳ = vars(G)\vars(H) and z̄ = vars(B)\(vars(H)∪vars(G)).

Similarly, the declarative meaning of a propagation rule of the form H ==> G | B

is:

∀x̄.∃y.G→ (H → ∃z̄B)).

Value sets are not explicitly defined by the CHR program, but they exist implicitly

in the intention of the programmer.

See (Frühwirth and Abdennadher 2003) for an extensive treatment of CHR for

writing constraint solvers.

4 The TCHR Framework

The main challenge of introducing CHR in XSB is the integration of CHR con-

straint solvers with the backward chaining fixpoint computation of SLG resolution

according to the SLGD semantics of the previous section.

A similar integration problem has been solved in (Cui and Warren 2000a), which

describes a framework for constraint solvers written with attributed variables for

XSB. The name Tabled Constraint Logic Programming (TCLP) is coined in that

publication, though it is not formulated in terms of SLGD resolution. Porting CHR

to XSB was already there recognized as important future work.

CHR is much more convenient for developing constraint solvers than attributed

variables, because of its high-level nature. This advantage should be carried over to

the tabled context, making tabled CHR a more convenient paradigm than TCLP

with attributed variables. Indeed, we will show how the internal details presented

in the current section can be hidden from the user.

In (Cui and Warren 2000a) the general TCLP framework specifies three opera-

tions to control the tabling of constraints: call abstraction, entailment checking of

answers and answer projection. These operations correspond with the optimization

to Query Projection, the projection in Answer Projection and the compaction of

the ans(G;C) set. It is left to the constraint solver programmer to implement these

operations for his particular solver.

In the following we formulate these operations in terms of CHR. The operations

are covered in significant detail as the actual CHR implementation and the encoding

of the global CHR constraint store are taken into account.

4.1 General Scheme of the TCHR Implementation

The objective of TCHR is to implement SLGD semantics for an arbitrary constraint

domain D which is implemented as a CHR constraint solver. For this purpose we

have both an SLGH implementation3, i.e. the SLG implementation of XSB, and an

SLDD implementation, i.e. the CHR implementation of XSB, at our disposal.

3 SLG is a special case of SLGD where D is the Herbrand constraint domain H.
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Hence, we aim for the simplest and least intrusive solution. That is:

1. We use the unmodified CHR implementation for constraint solving.
2. We use the unmodified SLG implementation for tabled execution.

3. At the intersection of point 1 and point 2 we transform back and forth between

the CHR D constraints and an encoding of these as H constraints.

The advantages to this lightweight approach are twofold. Firstly, it is straightfor-

ward to realize the full expressivity of SLGD within an existing system. Secondly,

it does not affect existing programs or their performance. On the downside we note

that TCHR performance and, in particular, constant factors involved are not opti-

mal. However, CHR on its own does not aim towards performance in the first place,

but rather towards being a highly expressive formalism for experimenting with new

constraint solvers. Similarly, we see the TCHR framework as a highly expressive

prototyping system for exploring new applications. It does offer some high-level

means to affect performance, and when the resulting performance is simply not

good enough, one may decide to reimplement the established high-level approach

in a lower-level language.

Now we look at our solution in more detail. As points 1 and 2 leave the system

untouched, we only have to consider implementing point 3, translating between

constraint encodings.

First let us consider the different kinds of nodes used in SLGD. Of the tree nodes,

only the root and answer nodes are manifestly represented by SLGH implementa-

tions like XSB, in respectively call and answer tables. Hence these two nodes require

the constraint store to be in H encoding form. The other two nodes, the goal and

body nodes, are implicit in the execution mechanism. So here we are free to use the

form that suits us best.

With these formats for the nodes in mind, we consider one by one the different

resolution rules:

Clause Resolution The rule is depicted again below with each constraint anno-

tated with its type of encoding: H for Herbrand encoding and CHR for natural

CHR encoding. The constraint store C is initially Herbrand encoded in the root

node and has to be decoded into its natural CHR form for solving C∧θ∧Di with

the CHR solver. The CHR solver either fails, if the conjunction is not satisfiable,

or returns a simplified form of the conjunction.

root(G;CH)

8

>

>

<

>

>

:

body(G;B1
1 , . . . , B

1
k1
;CCHR ∧ θ ∧D1

CHR)
...

body(G;Bl
1, . . . , B

l
kl
;CCHR ∧ θ ∧Dl

CHR)

∀i.0 < i ≤ l such that
G′ → Di

CHR , B
i
1, . . . , B

i
ki

and θ ≡ (G = G′)
and CCHR ∧ θ ∧ Di

CHR is
satisfiable

Optimized Query Projection This rule directly starts with a constraint store

in the natural CHR constraint form, and projects it onto the first literal and

subsequently generalizes it. A CHR program does not normally come with such a

combined projection & generalization operation, so one will have to be supplied

by the TCHR framework: the call abstraction. Section 6 discusses what kind of

generic projection operation the TCHR framework implements.
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body(G;B1, . . . , Bk;CCHR)

8

>

>

<

>

>

:

goal(G;B1, C
1
CHR;B2 . . . , Bk;CCHR)

...

goal(G;B1, C
l
CHR;B2 . . . , B

k;CCHR)

D |= ∃̄B1
C → C1 ∨ . . .∨Cl

for some C1, . . . , Cl

Answer Propagation The answers consumed by this rule have to be decoded

from Herbrand form for the implication check and the satisfiability check. A

CHR program does not normally come with an implication check, so one will

have to be supplied here by the TCHR framework. This is covered together with

call abstraction in Section 6.

goal(G;B1, C
1
CHR;B2 . . . , Bk;CCHR)

8

>

>

<

>

>

:

body(G;B2, . . . , Bk;CCHR ∧ θ ∧A1
CHR)

...

body(G;B2, . . . , Bk;CCHR ∧ θ ∧Al
CHR)

∀Ai
H ∈ ans(B′, C′

H)
where θ ≡ (B′ = B1)
and C1

CHR ∧ θ ≤D C′

CHR

and CCHR ∧ θ ∧ Ai
H is sat-

isfiable
Answer Projection Again a projection is performed on the CHR constraint rep-

resentation. This instance of of projection we call answer projection. Like answer

projection, it is to be supplied by the framework. In Section 7 the details of this

operation within the framework are elaborated.

body(G;�;CCHR)

8

>

>

<

>

>

:

ans(G;A1
H)

...

ans(G;Al
H)

for all Ai
CHR ∈ ∃̄GC

Having established what new operations and mappings to include in the frame-

work, we should consider how these are to be incorporated into the existing SLGH

system XSB. Recall that we did intend not to modify the system to incorporate

our encoding/decoding and projection operations in order to keep the integration

light-weight. Neither do we want to encumber the programmer with this tedious

and rather low-level task. Instead we propose an automatic source-to-source trans-

formation based on a simple declaration to introduce these operations.

The source-to-source transformation maps the SLGD program P onto the SLGH

program P ′. In the mapping every predicate p/n ∈ P is considered independently,

and mapped onto three predicates p/n, tabled p/(n+2), original p/n ∈ P ′. T maps

the SLGD program P onto the SLGH program P ′ = T(P ).

We outline the high-level transformation for a single predicate p/2:

:- table p/2.

p(X,Y) :- Body.

The three resulting predicates are:

p(X,Y) :-

encode_store(CurrentStoreEncoding),

call_abstraction([X,Y],CurrentStoreEncoding,AbstractStoreEncoding),

empty_store,

tabled_p(X,Y,AbstractStoreEncoding,AnswerStoreEncoding),

decode_store(CurrentStoreEncoding),

decode_store(AnswerStoreEncoding).
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:- table tabled_p/4.

tabled_p(X,Y,StoreEncoding,NStoreEncoding) :-

decode_store(StoreEncoding),

original_p(X,Y),

encode_store(StoreEncoding1),

empty_store,

project([X,Y],StoreEncoding1,NStoreEncoding).

original_p(X,Y) :- Body.

The new predicate p/2 is a front to the actual tabled predicate tabled p/4.

This front allows the predicate to be called with the old calling convention where

the constraint store is implicit, i.e. in the natural CHR form. Thanks to this front

the transformation is modular: we do not have to modify any existing calls to

the predicate, either in other predicates’ bodies, its own body Body or in queries.

The auxiliary predicate encode store/1 returns a Herbrand encoding of the cur-

rent (implicit) constraint store and the call abstraction/3 predicate projects

the Herbrand encoded store onto the call arguments. Then the implicit constraint

store is emptied with empty store/0 so as not to interfere with the tabled call,

which has the Herbrand encoded stores as manifest answers. Finally, the predi-

cate decode store/1 decodes the Herbrand encoding and adds the resulting CHR

constraint store to the implicit store. In p/2 this predicate is called twice: first to

restore the current constraint store and then to add to it the answer constraint

store of the tabled call.

The tabled p/4 predicate is the tabled predicate. In its body the encoded input

store is decoded again, then the original predicate code original p/2 is run, the

resulting store is encoded again and projected onto the call arguments. Again the

implicit store is emptied so as not to interfere with the caller.

Note that this is only a high-level outline of the mapping. In practice the scheme

is specialized for the concrete operations. This is discusses later as we discuss each

of the operations in detail.

The above transformation of both predicates and queries can be fully transparent.

All the user has to do is to indicate what predicates have to be tabled, i.e. add a

declaration of the form

:- table_chr p(_,chr) with Options.

p(X,Y) :- ...

meaning that the predicate p/2 should be tabled, its first argument is an ordinary

Prolog term and its second argument is a CHR constraint variable. An (optional)

list of additional options Options may be provided to control the transformation:

encoding(EncodingType)
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Section 5 studies two alternative encodings of the Herbrand constraint store. This

option allows the user to choose between them.

projection(PredName)

The projection applied in the Answer Projection rule is addressed in Section 7.

This projection is realized as a call to a projection predicate that reduces the

constraint store to its projected form.

canonical form(PredName)

answer combination(PredName)

These two options relate to optimizations of the answer set, based on Definition

3 and a novel generalization of this principle. It is discussed in Section 8.

Figure 3 summarizes the different steps in handling a call to a tabled predicate.

call

abstract call

in table?

yes

combine answer
with call

execute
call

no
project
answer

entailed? more
answers?

yes

yes

no

nostore in
 table

Fig. 3. Tabled call flowchart

5 Herbrand Constraint Store Encodings

In this section we present two alternative Herbrand constraint store encodings. An

encoding must have the following properties:

• The encoding has to be suitable for passing it as an argument in a predicate

and for storing it in an answer table.

• It should be possible to convert from the natural CHR constraint form (see

Section 3.3) and back, for insertion into the call table and retrieval from the

answer table.

The essential aspects of the ordinary CHR constraint store implementation have

been covered in Section 3.3. Two different Herbrand constraint store encodings
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that are based on this ordinary form have been explored: the suspension encoding

and the goal encoding. The former is based on state copying and the latter on

recomputation. A discussion of their respective merits and weaknesses as well as an

evaluation follow in Sections 5.1 and 5.2 respectively.

One implicit aspect of CHR execution under the refined operational semantics is

the order in which constraints are processed. Ordering information is not maintained

explicitly. Without any additional support, it is not straightforward to maintain this

ordering information for tabled constraints. However, in the spirit of tabling, the

declarative meaning of a program rather than its operational behavior is of impor-

tance. For that reason we shall not attempt to realize the ordering of the refined

operational semantics. From the user’s point of view, the CHR constraints behave

according to the theoretical operational semantics and no assumptions should be

made about ordering.

5.1 Suspension Encoding

This encoding aims at keeping the tabled encoding as close as possible to the ordi-

nary form. The essential issue is to retain the propagation history of the constraints.

In that way no unnecessary re-firing of propagation rules occurs after the constraints

have been retrieved from the table.

However, it is not possible to just store the ordinary constraint suspensions in

the table as they are. Fortunately, attributed variables themselves can be stored

in tables (see (Cui and Warren 2000b)), but two other aspects have to be taken

into account. Firstly, these suspensions are cyclic terms that the tables cannot

handle. This can be dealt with by breaking the cycles upon encoding and resetting

them during decoding. Secondly, the constraint identifiers have to be replaced by

fresh ones during decoding, as multiple calls would otherwise create multiple copies

of the same constraints all with identical identifiers. Finally, after decoding, the

constraints have to be activated again in order to solve them together with the

already present constraints. This is done by simply calling their continuation goals.

Example 2 Let us consider the following program:

:- constraint a/0, b/0.

r1 @ a ==> b.

:- chr_table p.

p :- a.

and the query ?- p. After having fired rule r1, the suspension of an a constraint

looks like:

Sa = suspension(42,reactivate a(Sa),[r1-[42]])

where 42 is the identifier, reactivate a(Sa) is the continuation goal and [r1-[42]]

is the propagation history, which has recorded that rule r1 has fired with only the
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constraint itself. The other suspension in the store would be for a b constraint:

Sb = suspension(43,reactivate b(Sb),[])

The suspension encoding for this store of two constraints would look like:

[ Sa / ID1 / suspension(ID1,reactivate_a(Sa),[[r1-[ID1]]])

, Sb / ID2 / suspension(ID2,reactivate_b(Sb),[])]

Upon decoding we simply unify ID1 and ID2 with fresh identifiers, and S1 and S2

with their corresponding suspension terms. The resulting well-formed suspension

terms are placed in the implicit CHR constraint store and finally the continuation

goals of both suspensions are called. �

5.2 Goal Encoding

The goal encoding aims at keeping the information in the table in as simple a form

as possible: for each suspended constraint only the goal to impose this constraint

is retained in the table. It is easy to create this goal from a suspension and easy to

merge this goal back into another constraint store: it needs only to be called.

Whenever it is necessary the goal creates a suspension with a fresh unique iden-

tifier and inserts it into the constraint store.

The only information that is lost in this encoding is the propagation history. This

may lead to multiple propagations for the same combination of head constraints.

For this to be sound, a further restriction on the CHR rules is required: they should

behave according to set semantics, i.e. the presence of multiple identical constraints

should not lead to different answers modulo identical constraints.

Example 3 The goal encoding of the above example is:

[a, b]

and the decoding procedure simply calls a and b. �

5.3 Evaluation

To measure the relative performance of the two presented encodings, consider the

following two programs:
prop

:- constraints a/1.

a(0) <=> true.

a(N) ==> N > 0

| M is N - 1, a(M).

p(N) :- a(N).

simp
:- constraints a/1, b/1.

b(0) <=> true.

b(N) <=> N > 0

| a(N), M is N - 1, b(M).

p(N) :- b(N).
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Table 3. Evaluation of the two tabled store encodings.

no tabling encoding(suspension) encoding(goal)

program runtime space runtime space runtime space
prop 10 0 150 2,153,100 1,739 270,700
simp 10 0 109 1,829,100 89 270,700

For both programs the predicate p(N) puts the constraints a(1)...a(N) in the con-

straint store. The prop program uses a propagation rule to achieve this while the

simp program uses an auxiliary constraint b/1. The non-tabled version of the query

p(N) has time complexity O(N) for both the simp and the prop program.

The two possible encodings for the answer constraint store can be specified in

the tabling declaration as follows:

:- table_chr p(_) with [encoding(suspension)].

and

:- table_chr p(_) with [encoding(goal)].

Table 3 gives the results for the query p(400), both untabled and tabled using

the two encodings: runtime in milliseconds and space usage of the tables in bytes.

For both programs the answer table contains the constraint store with the 400 a/1

constraints.

Most of the space overhead is due to the difference in encoding: a suspension

contains more information than a simple call. However, the difference is only a

constant factor. The only part of a suspension in general that can have a size greater

than O(1) is the propagation history. In the prop program every a/1 constraint’s

history is limited to remembering that the propagation rule has been used once.

For the simp program the propagation history is always empty.

The runtime of the prop version with the suspension encoding is considerably

better than that of the version with the goal encoding. In fact, there is a complexity

difference. When the answer is retrieved from the table for the suspension encod-

ing, the propagation history prevents re-propagation. Hence, answer retrieval takes

O(N) time. However, for the goal encoding every constraint a(I) from the answer

will start propagating and the complexity of answer retrieval becomes O(N2).

On the other hand, for simp the propagation history plays no role. The runtime

overhead is mostly due to the additional overhead of the pre- and post-processing

of the suspension encoding as opposed to the simpler form of the goal encoding. In

comparison, without tabling the query takes only 10 milliseconds for both programs.

6 Call Abstraction

In the call abstraction operation we combine the projection and generalization

operations of the Optimized Query Projection rule in the SLGD semantics.

The idea of both steps is to reduce the number of distinct SLGD trees, and hence

the number of tables. When a predicate is called with many different call patterns, a
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table is generated for each such call pattern. Thus it is possible that the information

for one strongly constrained call is present many times in tables for different less

constrained call patterns. This duplication in the tables can be avoided by using

call abstraction to obtain a smaller set of call patterns.

The projection reduces the context of the predicate call, i.e. the constraint store,

to the constraints relevant for the call. In this way, two calls to p(X), respectively

with constraint stores {X > 5, Y > 7} and {X > 5, Z < 3} both yield the same

projected call store { X > 5 }. The subsequent generalization step goes even fur-

ther, e.g. by relaxing bounds to the reference value 0 both constraint stores {X >

5} and {X > 10} become {X > 0}. Hence, call abstraction effectively is a means to

control the number of tables. At the level of SLGH, call abstraction means not pass-

ing certain bindings to the call. For example, p(q,A) can be abstracted to p(Q,A).

This goal has then to be followed by Q = q to ensure that only the appropriate

bindings for A are retained.

For SLGD, call abstraction can be generalized from bindings to constraints: ab-

straction means removing some of the constraints on the arguments. Consider for

example the call p(Q,A) with constraint Q =< N on Q. This call can be abstracted

to p(Q’,A), followed by Q’=Q to reintroduce the constraint.

Abstraction is particularly useful for those constraint solvers for which the num-

ber of constraints on a variable can be much larger than the number of different

bindings for that variable. Consider for example a finite domain constraint solver

with constraint domain/2, where the first argument is a variable and the second

argument the set of its possible values. If the variable has a domain of size n (i.e. it

contains n different values), the variable can take as many as 2n different domain/2

constraints, one for each subset of values. Thus many different tables would be

needed to cover every possible call pattern.

Varying degrees of abstraction are possible, depending on the particular con-

straint system or application. Full constraint abstraction, i.e. the removal of all

constraints from the call, is generally the only option for CHR, for the following

reasons:

• CHR rules do not require constraints to be on variables. They can be exclu-

sively on ground terms or atoms as well. This is useful for various reasons. By

encoding constraint variables as ground terms, particular solving algorithms

can be used more conveniently or efficiently, e.g. the equation solving algo-

rithm union-find has optimal time-complexity when using ground elements

(Schrijvers and Frühwirth 2006).

It is not straightforward to automatically define abstraction for ground terms

as these are not necessarily passed in as arguments but can just as well be cre-

ated inside the call. Hence there is no explicit link with the call environment,

while such a link is needed for call abstraction. As such, only “no abstraction”

or full constraint abstraction seem suitable for CHR.

• Full constraint abstraction is preferable when the previously mentioned table

blow-up is likely.

• In order to reuse existing answers, existing calls are considered in the Answer
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Propagation rule. These previous calls are compared to the new call using

the implication check ≤D. Unfortunately, such an implication check does not

come with the CHR solver. A special case of this subsumption-based tabling

is where ≤D is taken to be ↔, i.e. equivalence-based, or variant-based in

SLGH terminology, tabling. Unfortunately, even establishing the equivalence

of constraint stores is not directly supported by CHR solvers.

However, if the call constraint store is empty, i.e. true, this problem disap-

pears: true implies true independent of the constraint domain.

Moreover, it may be costly to sort out what constraints should be passed in to

the call or abstracted away. Hence often full abstraction is cheaper than partial

abstraction. For instance, consider a typical propagation-based finite domain con-

straint solver with binary constraints only. The constraint graph for a number of

such finite domain constraints has a node for every variable involved in a constraint

and an edge between variables involved in the same constraint. Any additional con-

straint imposed on a variable in a component of the graph may affect the domain

of all other variables in the same component. Hence, call abstraction on a subset

of the variables involves a costly transitive closure of reachability in the constraint

graph.

Let us now revisit the transformation scheme of Section 4.1 for a predicate p/2,

and specialize it for full call abstraction:

p(X,Y) :-

encode_store(StoreEncoding),

empty_store,

tabled_p(X,Y1,NStoreEncoding),

decode_store(StoreEncoding),

decode_store(NStoreEncoding),

Y1 = Y.

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

encode_store(StoreEncoding1),

empty_store,

project([X,Y],StoreEncoding1,NStoreEncoding).

original_p(X,Y) :- Body.

As we know that the call-abstracted constraint store is empty, we no longer need

to pass it as an argument to the tabled p predicate and decode it there. The only

effect of the call abstraction is then to replace the constraint variable Y with a

fresh variable Y1. This is necessary to prevent any constraints on Y from being

reachable through attributes on Y. The unification Y=Y1 at the end of p/2 is then

a specialization of the substitution θ ≡ (p(X,Y 1) = p(X,Y )) that appears in the

Answer Propagation rule.
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7 Answer Projection

In most constraint domains, the same logical answer can be represented in many

different ways. For example, consider the predicate p/1.

p(X) :- X > 5.

p(X) :- X > 5, Y > 0.

Both X > 5 and X > 5/ Y > 0 represent the same answer to the call p(X)

concerning X . Constraints that do not relate to the call arguments, like Y > 0, are

meaningless outside of the call. The local variable Y is existentially quantified, and

cannot be further constrained to introduce unsatisfiability at a later stage.

It is the purpose of projection to restrict constraints to a set of variables of inter-

est, and to eliminate other variables as much as possible. In our setting, the variables

of interest are the call arguments. For projection to be sound, already present but

not yet detected unsatisfiability should not be removed. A sufficient, but not nec-

essary condition is for the constraint system to be complete, i.e. unsatisfiability is

detected immediately.

Projection is important in the context of tabling, because it may give logically

equivalent answers the same syntactical form. When two answers have the same

syntactical form, the are recognized as duplicates and only one is retained in the

table. A vital application of projection is when a predicate with an infinite number

of different answers may be turned into one with just a finite number of answers

by discarding the constraints on local variables.

Example 4 Consider this program:

path(From,To,X) :-

edge(From,To,X).

path(From,To,X) :-

path(From,Between,X), path(Between,To,X).

edge(a,a,X) :-

leq(X,Y),

leq(Y,1).

leq(X,X) <=> true.

leq(X,Y) \ leq(Y,X) <=> X = Y.

leq(X,Y) \ leq(X,Y) <=> true.

leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

It defines a path/3 predicate that expresses reachability in a graph represented by

edge/3 predicates. The first two arguments of both predicates are edges (origin and

destination) and the third is a constraint variable. Along every edge in the graph

some additional constraints may be imposed on this variable. In our example, the

graph consists of a single loop from edge a to itself. This loop imposes two less-than-

or-equal-to constraints: leq(X,Y), leq(Y,1). The variable Y is a local variable and

the fourth rule for leq/2 derives that leq(X,1) also holds.
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The query ?- path(A,B,X) determines the different paths. There are an infinite

number of paths in our simple graph, one for each non-zero integer n. A path for

n takes the loop n times. For every time the loop is taken a new variable Yi is

created and two more constraints leq(X,Yi) and leq(Yi,1) are added. Through

the propagation rule also an leq(X,1) is added for each time the loop is taken. The

second simpagation rule however removes all but one copy of this last constraint.

Even though there are an infinite number of answers, the constraints involving

the local variables Yi are of no interest and only the single leq(X,1) is relevant. �

In general constraint projection onto a set of variables transforms a constraint

store into another constraint store in which only variables of the given set are in-

volved. The form of the resulting constraint store strongly depends on the particular

constraint solver and its computation may involve arbitrary analysis of the original

constraint store.

We propose what we believe is an elegant CHR-based approach to projection. It

consists of a compact and high level notation.

The user declares the use of the CHR-based approach to projection as follows:

:- table_chr p(_,chr) with [projection(PredName)].

and implements the projection as a number of CHR rules that involve the special

PredName/1 constraint. This constraint has as its argument the set of variables

to project on.

The source-to-source transformation generates the predicate tabled p based on

this declaration:

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

PredName([X,Y]),

encode_store(NStoreEncoding),

empty_store.

When no projection operation is supplied, the default action is to return the con-

straint store unmodified.

To implement the projection simpagation rules can be used to decide what con-

straints to remove. A final simplification rule at the end can be used to remove the

projection constraint from the store.

The following example shows how to project away all leq/2 constraints that

involve arguments not contained in a given set Vars:

project(Vars) \ leq(X,Y) <=>

\+ (member(X,Vars),member(Y,Vars)) | true.

project(Vars) <=> true.

Besides removal of constraints more sophisticated operations such as weakening

are possible. E.g. consider a set solver with two constraints: in/2 that requires an
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element to be in a set and nonempty/1 that requires a set to be non-empty. The

rules for projection could include the following weakening rule:

project(Vars) \ in(Elem,Set) <=>

member(Set,Vars),

\+ member(Elem,Vars) | nonempty(Set).

8 Answer Set Optimization

In this section we consider various ways for reducing the size of the answer set.

First, in Section 8.1 we consider the subsumption-based technique proposed by

Toman. This leads us to a sidetrack in Section 8.2 where we outline a technique

for dynamic programming through answer subsumption. Section 8.3 continues with

the main story: it is established that answer subsumption is suboptimal for general

constraint domains and a generalized approach is proposed instead. In Section 8.4

we relax the soundness condition of answer reduction and speculate on applications

to program analysis. Finally, in Section 8.5, we evaluate the two main approaches.

8.1 Answer Subsumption

Some of the answers computed for a tabled predicate may be redundant and so

need not be saved. The property is exploited by Definition 3, the Optimized Answer

Set definition. In terms of SLGH, consider for example that the answer p(a,X) is

already in the table of predicate p/2. Now a new answer, p(a,b) is found. This

new answer is redundant as it is covered by the more general p(a,X) that is already

in the table. Hence it is logically valid to not record this answer in the table, and

to simply discard it. This does not affect the soundness or completeness of the

procedure.

We can extend the idea of answer subsumption to CHR constraints. This path

length computation will serve as an illustration:

Example 5

dist(A,B,D) :- edge(A,B,D1), leq(D1,D).

dist(A,B,D) :- dist(A,C,D1), edge(C,B,D2), leq(D1 + D2, D).

Suppose appropriate rules for the leq/2 constraint are in the above program, where

leq means less-than-or-equal. The semantics are that dist(A,B,D) holds if there

is a path from A to B of length less than or equal to D. In other words, D is an upper

bound on the length of a path from A to B.

If the answer dist(n1,n2,D) :- leq(d1, D) is already in the table and a new

answer dist(n1,n2,D) :- leq(d2, D), where d1 =< d2, is found, then this new

answer is redundant. Hence it can be discarded. This does not affect the soundness,

since logically the same answers are covered. �

A strategy for establishing implication is provided by the following property:

∀i ∈ {0, 1} : C1−i → Ci ⇐⇒ C0 ∧C1 ↔ Ci (8.1)
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for any logical formulas C0 and C1. In particular, consider C0 and C1 to be a

previous answer constraint store and a newly computed one. The strategy then is

as follows. At the end of the tabled predicate’s execution a previous answer store

C0 is merged with a new answer store C1. After merging, the store is simplified and

propagated to C by the available rules of the CHR program P . This combines the

two answers into a new one. This mechanism can be used to check entailment of

one answer by the other: if the combined answer store S is equal to one of the two,

then that answer store entails the other.

A practical procedure is the following:

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

project([X,Y]),

encode_store(StoreEncoding),

( previous_answer(p(X,Y,PrevStoreEncoding),AnswerID),

decode_store(PrevStoreEncoding),

encode_store(Conjunction),

( Conjunction == PrevStoreEncoding ->

del_answer(AnswerID),

fail

;

Conjunction \== StoreEncoding

) ->

fail

;

NStoreEncoding = StoreEncoding

),

empty_store.

After computing, projecting and Herbrand encoding a new answer store C1, we

look at previous answer stores C0. We assume that there is a built-in predicate

previous answer/3 for this purpose, that backtracks over previous answers and

also provides a handle AnswerID to the returned answer. As the previous answer

store is still in Herbrand encoding, we decode it. This has the simultaneous effect of

adding it to the new implicit CHR constraint store that is still in place, i.e. it com-

putes C0 ∧C1. This resulting conjunction is Herbrand encoded for further compar-

ison. Syntactical equality (≡) is used as a sound approximation of the equivalence

check for the first equivalence sign (↔) in the Formula 8.1. If the conjunction equals

the previous answer PrevStoreEncoding, then that previous answer is implied by

the new answer and hence obsolete. We use the built-in predicate del answer to

erase it from the answer table and we backtrack over alternative previous answers.

Otherwise, if the conjunction does not equal the new answer, then neither implies

the other and we also backtrack over alternative previous answers. However, if the

conjunction equals the new answer StoreEncoding, that means it is implied by the



TCHR: a framework for tabled CLP 27

previous answer. Hence we fail, ignoring further alternative previous answers. If on

the other hand, the resulting answer is not implied by any previous answers, then

it is a genuinely new answer and is stored in the answer table.

Example 6 Consider again the dist/3 example, and assume that the answer

stores {leq(7,D}, {leq(3,D))} and {leq(5,D))} are successively produced for

the query ?- dist(a,b,D). When the first answer, {leq(7,D} is produced, there

are no previous answers, so it makes its way into the answer table. For the second

answer, {leq(3,D))} there is already a previous answer {leq(7,D}, so both are

conjoined. The following rule leq/2 rule simplifies the conjunction to retain the

more general answer:

leq(N1,D) \ leq(N2,D) <=> N1 >= N2 | true.

Hence, the resulting solved form of the conjunction is {leq(D,7)}, or in other words

the previous answer. In other words, this previous answer is implied by the new

answer. So it is deleted from the answer table and the new answer is recorded.

Finally, following the same procedure we discover that the third answer is already

implied by the second one. So the final answer set contains just the second answer.

Note that the dist/3 program would normally generate an infinite number of

answers for a cyclic graph, logically correct but not terminating. However, if it is

tabled with answer subsumption, it does terminate for non-negative weights. Not

only does it terminate, it only produces one answer, namely dist(n1,n2,D) :-

leq(d,D) with d the length of the shortest path. Indeed, the predicate only returns

the optimal answer. �

The syntactical equality check on the Herbrand encoding is in general only an

approximation of a proper equivalence check. An option for the table chr declara-

tions allows to improve its effectiveness: canonical form(PredName) specifies the

name of the predicate that should compute the (approximate) canonical form of

the Herbrand encoded answer constraint store. This canonical form is used to check

equivalence of two constraint stores.

Example 7 Both [leq(1,X),leq(X,3)] and [leq(X,3),leq(1,X)] are permuta-

tions of the same Herbrand constraint store encoding. Obviously, based on a simple

syntactic equality check they are different. However, they can both be reduced to

the same canonical form, e.g. with the help of the Prolog built-in sort/2. �

We refer to (Schrijvers et al. 2006) for a more elaborated discussion of the prop-

erty 8.1 and an alternative, more elaborate implementation of the implication check-

ing strategy in CHR.

In contrast to our generic approach above, the traditional approach in CLP is for

the solver to provide a number of predefined ask constraints (Saraswat and Rinard 1990),

i.e. subsumption checks for primitive constraints. These primitive ask constraints

can then be combined to formmore complicated subsumption checks (Duck et al. 2004).

We have avoided this approach because it puts a greater burden on the constraint

solver implementer, who has to provide the implementation of the primitive ask con-
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straints. In future work, we could incorporate user-defined ask constraints in our

generic approach for greater programmer control over performance and accuracy of

subsumption tests.

8.2 Dynamic Programming through Answer Subsumption

The technique used in the dist/3 program is to replace the computation of the

exact distance of a path with the computation of an upper bound on the distance

via constraints. Then, by tabling the predicate and performing answer subsumption,

the defining predicate has effectively been turned into an optimizing one, computing

the length of the shortest path. It is a straightforward yet powerful optimization

technique that can be applied to other defining predicates as well, turning them

into optimizing (dynamic programming) predicates with a minimum of changes.

In comparison, the usual approach consists in explicitly computing the list of all

answers, e.g. using Prolog’s findall/3meta-programming built-in, and in process-

ing this list of answers. Guo and Gupta (Guo and Gupta 2004) have added a specific

feature to tabled execution to realize this dynamic programming functionality. In

adding support for CHR to tabling, we get this functionality for free.

8.3 General Answer Compaction

Definition 3 yields a sound approach for reducing the size of answer tables. However,

we have discovered that it is only a special case of what is really possible. Therefore,

we propose the following generalized definition of answer sets, compacted answer

set, which covers all sound approaches for reducing the answer set size.

Definition 4 (Compacted Answer Set)
A compacted answer set of the query (G,C, P ), denoted ans(G,C), is a set such

that:

• No new fully instantiated (i.e. ground) answers are introduced:

∀A, θ : (A ∈ ans(G,C)) ∧ (D ⊢ Aθ)

=⇒

∃A′, θ′ : (ans(G;A′) ∈ slg(G,C)) ∧ (A′θ′ ≡ Aθ)

(8.2)

• All fully instantiated answers are covered:

∀A′, θ′ : (ans(G;A′) ∈ slg(G,C)) ∧ (D ⊢ A′θ)

=⇒

∃A, θ : (A ∈ ans(G,C)) ∧ (Aθ ≡ A′θ′)

(8.3)

• The answer set is more compact than the individual answers:

#ans(G,C) ≤ #{A′|ans(G;A′) ∈ slg(G,C)} (8.4)

where A and A′ are constraint stores and θ and θ′ are valuations.

Note that an optimized answer set is a special instance of a compacted answer

set and certainly, for Herbrand constraints, it is an optimal strategy, because:

H |= ∀H0, H1, H : H ↔ H0 ∨H1 =⇒ ∃i ∈ {0, 1} : H ↔ Hi (8.5)
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where H0, H1, H are conjunctions of Herbrand equality constraints. In other words,

for finding a single Herbrand constraint that covers two given ones, it is sufficient

to considering those two.

Unfortunately, a similar property does not hold for all constraint domains: a

single constraint store may be equivalent to the disjunction of two others, while it

is not equivalent to either of the two. For example, leq(X ,Y ) ∨ leq(Y ,X )↔ true

and yet we have that neither leq(X ,Y )↔ true nor leq(Y ,X )↔ true.

Nevertheless, checking whether one answer subsumes the other is a rather con-

venient strategy, since it does not require any knowledge on the particularities of

the used constraint solver. That makes it a good choice for the default strategy

for CHR answer subsumption. Better strategies may be supplied for particular con-

straint solvers through the option answer combination(PredName). It specifies the

name of the predicate that returns the disjunction of two given answer stores, or

fails if it cannot find one.

Example 8 Consider a simple interval-based solver, featuring constraints of the

form X ∈ [L,U ], where X is a constraint variable and L and U are integers, and

the rules:

X ∈ [L,U] ==> L =< U.

X ∈ [L1,U1], X ∈ [L2,U2] <=> X ∈ ([L1,U1] ∩ [L2,U2]).

For this solver, the subsumption approach merges two constraints X ∈ [L1, U1]

and X ∈ [L2, U2] iff [L1, U1] ⊆ [L2, U2] or [L2, U2] ⊆ [L1, U1]. However, it fails to

work for e.g. X ∈ [1, 3] and X ∈ [2, 4]. Nevertheless there is a single constraint form

that covers both: X ∈ [1, 4]. An optimal answer combinator in this case is one that

returns the union of two overlapping intervals. This also captures the subsumption

approach. If the intervals do not overlap, there is no single constraint that covers

both without introducing new answers. �

Note that the idea of general answer compaction is not specific implementation

of constraints, and, in particular, should apply to non-CHR constraint solvers too.

8.4 Relaxed Answer Compaction Semantics

For some applications the soundness condition of answer generalization can be re-

laxed. An example in regular Prolog would be to have two answers p(a,b) and

p(a,c) and to replace the two of them with one answer p(a,X). This guarantees

(for positive programs) that no answers are lost, but it may introduce extraneous

answers. In other words, property 8.3 is preserved while property 8.2 is not. A sim-

ilar technique is possible with constrained answers. While this approach is logically

unsound, it may be acceptable for some applications if only answer coverage is

required.

An example is the use of the least upper bound (lub) operator to combine answers

in the tabled abstract interpretation setting of (Codish et al. 1998). There is often
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a trade-off between accuracy and efficiency in space and time. By exploiting this

trade-off abstract interpretation can remain feasible in many circumstances.

Toman has explored in (Toman 1997a) the use of CLP for program analysis and

compared it to abstract interpretation. In his proposal constraints serve as the ab-

stractions of concrete values, and bottom-up computation or tabling is necessary to

reach a fixpoint over recursive program constructs. He notes that the CLP approach

is less flexible than actual abstract interpretation because it lacks flexible control

over the accuracy/efficiency trade-off. We believe that our proposal for relaxed an-

swer compaction could function as a lub or widening operator to remedy this issue,

making Toman’s program analysis technique more practical. This remains to be

explored in future work.

8.5 Evaluation: A Shipment Problem

We evaluate the usefulness of the two proposed answer set optimization approaches

based on a shipment problem.

Problem statement: There are N packages available for shipping using trucks.

Each package has a weight and some constraints on the time to be delivered. Each

truck has a maximum load and a destination. Determine whether there is a subset

of the packages that can fully load a truck destined for a certain place so that all

the packages in this subset are delivered on time. (from (Cui 2000))

The problem is solved by the truckload program:
The truckload Program

:- constraints leq/2.

leq(X,X) <=> true.

leq(N1,N2) <=> number(N1), number(N2) | N1 =< N2.

leq(N1,X) \ leq(N2,X) <=> number(N1), number(N2), N1 > N2 | true.

leq(X,N1) \ leq(X,N2) <=> number(N1), number(N2), N1 < N2 | true.

leq(X,Y) \ leq(X,Y) <=> true.

leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

truckload(0,0,_,_).

truckload(I,W,D,T) :- % do not include pack I

I > 0,

I1 is I - 1,

truckload(I1,W,D,T).

truckload(I,W,D,T) :- % include pack I

I > 0,

pack(I,Wi,D,T),

W1 is W - Wi,

W1 >= 0,

I1 is I - 1,

truckload(I1,W1,D,T).
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pack(30,29,chicago,T) :- leq(19,T),leq(T,29).

pack(29,82,chicago,T) :- leq(20,T),leq(T,29).

pack(28,24,chicago,T) :- leq(8,T),leq(T,12).

%...

pack(3,60,chicago,T) :- leq(4,T),leq(T,29).

pack(2,82,chicago,T) :- leq(28,T),leq(T,29).

pack(1,41,chicago,T) :- leq(27,T),leq(T,28).

Packages are represented by a constraint database: clauses of pack/4, e.g.

pack(3,60,chicago,T) :- leq(4,T),leq(T,29).

means that the third package weights 60 pounds, is destined for Chicago and has to

be delivered between the 4th and the 29th day. The truckload/4 predicate com-

putes the answer to the problem, e.g. :- truckload(30,100,chicago,T) computes

whether a subset of the packages numbered 1 to 30 exists to fill up a truck with a

maximum load of 100 pounds destined for Chicago. The time constraints are cap-

tured in the bound on the constraint variable T. There may be multiple answers to

this query, if multiple subsets exist that satisfy it.

We have run the program in four different modes:

• No Tabling: the program is run as is without tabling.

• Tabling - Plain: to avoid the recomputation of subproblems in recursive

calls the truckload/4 predicate is tabled with:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal)].

• Tabling - Sorted: the answer store is canonicalized by simple sorting such

that permutations are detected to be identical answers:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal),

canonical_form(sort)].

• Tabling - Combinator: we apply the custom answer combinator proposed

in Example 8: two answers with overlapping time intervals are merged into

one answer with the union of the time intervals. This variant is declared as:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal),

answer_combination(interval_union)].

with interval union/3 the custom answer combinator.

Table 4 contains the runtime results of running the program in the four differ-

ent modes for different maximum loads. Runtime is in milliseconds and has been

obtained on an Intel Pentium 4 2.00 GHz with 512 MB of RAM, with XSB 6.1

running on Linux 2.6.18. For the modes with tabling the space usage, in kilobytes,



32 T. Schrijvers et al.

No Tabling Tabling

Load Plain Sorted Combinator

100 <1 100 100 100
200 160 461 461 451
300 2,461 1,039 1,041 971
400 12,400 1,500 1,510 1,351
500 > 5 min. 1,541 1,541 1,451

Table 4. Runtime results for the truckload program

Tabling

Load Plain Sorted Combinator

100 286 286 279
200 979 956 904
300 1,799 1,723 1,584
400 2,308 2,202 2,054
500 2,449 2,365 2,267

Table 5. Space usage for the truckload program

of the tables and number of unique answers have been recorded as well, in Table 5

and Table 6 respectively.

It is clear from the results that tabling has an overhead for small loads, but that

it scales much better. Both the modes with the canonical form and the answer

combination have a slight space advantage over plain tabling which increases with

the total number of answers. There is hardly any runtime effect for the canonical

form, whereas the answer combination mode is faster with increasing load.

In summary, canonicalization of the answer store and answer combination can

have a favorable impact on both runtime and table space depending on the partic-

ular problem.

9 Related and Future Work

The theoretical background for this paper, SLGD resolution, was realized by Toman

in (Toman 1997b). Toman establishes soundness, completeness and termination

properties for particular classes of constraint domains. While he has implemented

a prototype implementation of SLGD resolution for evaluation, no practical and

fully-fledged implementation in a Prolog system was done.

tabling
load plain sorted combinator
100 324 324 283
200 2,082 2,069 1,686
300 4,721 4,665 3,543
400 5,801 5,751 4,449
500 4,972 4,935 4,017

Table 6. Number of tabled answers for the truckload program
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Various ad hoc approaches to using constraints in XSB were used in the past

by Ramakrishnan et al., such as a meta-interpreter (Mukund et al. 2000), interfac-

ing with a solver written in C (Du et al. 2000) and explicit constraint store man-

agement in Prolog (Pemmasani et al. 2002). However, these approaches are quite

cumbersome and lack the ease of use and generality of CHR.

The most closely related implementation work that this paper builds on is (Cui and Warren 2000a),

which presents a framework for constraint solvers written with attributed variables.

Attributed variables are a much cruder tool for writing constraint solvers though.

Implementation issues such as constraint store encoding and scheduling strategies

that are hidden by CHR become the user’s responsibility when she programs with

attributed variables. Also in the tabled setting, the user has to think through all

the integration issues of the attributed variables solver. For CHR we have pro-

vided generic solutions that work for all CHR constraint solvers and more powerful

features can be accessed through parametrized options.

Guo and Gupta propose a technique for dynamic programming with tabling

(Guo and Gupta 2004) that is somewhat similar to the one proposed here. During

entailment checking a particular argument in a new answer is compared with the

value in the previous answer. Either one is kept depending on the optimization

criterion. Their technique is specified for particular numeric arguments whereas

ours is for constraint stores and as such more general. Further investigation of our

technique is certainly necessary to establish the extent of its applicability.

Part of this work was previously published at the International Conference of

Logic Programming (Schrijvers and Warren 2004) and the Colloquium on Imple-

mentation of Constraint and Logic Programming Systems (Schrijvers et al. 2003).

In (Schrijvers et al. 2003) we briefly discuss two applications of CHR with tabling in

the field of model checking. The integration of CHR and XSB has shown to make

the implementation of model checking applications with constraints significantly

easier. The next step in the search for applications is to explore more expressive

models to be checked than are currently viable with traditional approaches.

Further applications should also serve to improve the currently limited perfor-

mance assessment of CHR with tabling. The shipment problem has given us some

indication of improved performance behavior in practice, but theoretical reasoning

indicates that slow-downs are a possibility as well.

The global CHR store has proven to be one of the main complications in tabling

CHR constraints. For particular CHR programs it is possible to replace the global

data structure with localized, distributed ones. Assessment (Sarna-Starosta and Ramakrishnan 2007)

of this approach has shown to be very promising.

Partial abstraction and subsumption are closely related. The former transforms a

call into a more general call while the latter looks for answers to more general calls,

but if none are available still executes the actual call. We still have to look at how

to implement partial abstraction and the implications of variant and subsumption

based tabling (Rao et al. 1996).

Finally, better automatic techniques for entailment testing, such as those of

(Schrijvers et al. 2006), and for projection should be investigated in the context

of SLGD.
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10 Conclusion

We have presented a high-level framework for tabled CLP, based on a light-weight

integration of CHR with a tabled LP system. Tabling-related problems that have

to be solved time and again for ad hoc constraint solver integrations are solved

once and for all for CHR constraint solvers. Solutions have been formulated for

call abstraction, tabling constraint stores, answer projection, answer combination

(e.g. for optimization), and answer set optimization. Hence integrating a particular

CHR constraint solver requires much less knowledge of implementation intricacies

and decisions can be made on a higher level.

If performance turns out to be a bottleneck, once the high-level integration is sta-

ble and well-understood, then its implementation may be specialized in a lower-level

language using the TCHR implementation as its specification. Our novel contribu-

tion, generalized answer set compaction, may certainly contribute towards that

end.

Finally, we would like to mention that an XSB release, number 2.7, with the

presented CHR system integrated with tabling is publicly available since December

30, 2004 (see http://xsb.sf.net).
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