
A JOINT DATA COMPRESSION AND TIME-DELAY ESTIMATIONMETHOD FOR
DISTRIBUTED SYSTEMS VIA EXTREMUM ENCODING

AmirWeiss⋆, Yuval Kochman† and GregoryW.Wornell‡

⋆Faculty of Engineering †School of Computer Science and Engineering ‡Research Laboratory of Electronics
Bar-Ilan University The Hebrew University of Jerusalem Massachusetts Institute of Technology

amir.weiss@biu.co.il yuvalko@cs.huji.ac.il gww@mit.edu

ABSTRACT
Motivated by the proliferation of mobile devices, we consider a basic
form of the ubiquitous problem of time-delay estimation (TDE), but
with communication constraints between two non co-located sensors.
In this setting, when joint processing of the received signals is not possi-
ble, a compression technique that is tailored to TDE is desirable. For our
basic TDE formulation, we develop such a joint compression-estimation
strategy based on the notion of what we term “extremum encoding”,
whereby we send the index of the maximum of a finite-length time-series
from one sensor to another. Subsequent joint processing of the encoded
message with locally observed data gives rise to our proposed time-delay
“maximum-index”-based estimator. We derive an exponentially tight
upper bound on its error probability, establishing its consistency with re-
spect to the number of transmitted bits. We further validate our analysis
via simulations, and comment on potential extensions and generaliza-
tions of the basic methodology.

Index Terms— Time-delay estimation, data compression, dis-
tributed estimation, compression for estimation, max-index estimator.

1. INTRODUCTION
Time-delay estimation (TDE) is a fundamental problem that is found at
the core of numerous applications in various scientific fields and physical
domains (e.g., acoustic, optics, radio frequency). Examples, among oth-
ers, include localization, tracking, communication, sensor calibration,
medical imaging and more [1–4]. In this respect, it is perhaps one of the
most important problems in signal processing, and as such, it has been
extensively studied in past decades. For a collection of important results,
which nevertheless does not serve as an exhaustive survey, see [5–17].

Driven by recent technological developments [18], in a growing
number of settings bandwidth constraints necessitate the use of data
compression when carrying out TDE, but such considerations have re-
ceived comparatively less attention. In classical settings, it is typically as-
sumed that the central computing unit has access to both of the received
signals. This is a reasonable assumption when the sensors are co-located
or when there are no constraints on the relevant communication links.
In contrast, for some of the modern emerging applications, this is no
longer the case. Consider, for example, the problem of passive acoustic
indoor localization [19], building on power- and communication-limited
“smart” devices. We envision that in this type of applications, these de-
vices would opportunistically be used as ad-hoc sensors that could—with
limited resources—measure an acoustic signal and convey a correspond-
ing message for the purpose of TDE (e.g., as a proxy for range estimation,
or more generally, as a building block in distributed localization systems).

In such scenarios, it is not only desirable, but already necessary to re-
duce as much as possible the resources requirements on the spatially dis-
tributed devices that serve as the (low-cost) receivers. Note that, clearly,
the sensors in this case are not co-located. Moreover, the assumption of

an essentially unlimited communication link is weak in some cases and
unrealistic in others. A similar set of constraints can be presented by sen-
sor networks [20,21], which by design consist of a large number of small,
low-power, untethered devices that measure a common signal for the col-
lective purpose of some inference task (e.g., [22]).

This motivation, with the proliferation of wireless devices, has led
to several works, focused on compression techniques that are specifically
designed for TDE. A few representative examples are [23–27]. A com-
mon theme in these previous works is that the corresponding proposed
methods are eventually trying to best compress the received signal to be
sent to the central computing unit (often, a different receiver). How-
ever, this conceptual limitation is not a must. Instead, one may design
a joint compression-estimation scheme in which the compression pro-
duces some message that is best matched to the final (and specific) estima-
tion task, and is perhaps only an extremely coarsely compressed version
of the received signal itself. Our idea is based exactly on this notion, and
consequently opens the search space to a larger set of potential solutions.

In this work, we consider a basic, slightly simplified formulation of
the TDE problem, but with communication constraints for two non co-
located sensors, where joint processing of the two signals is not possible.
We focus on theoretical aspects thereof, and establish key preliminary—
conceptual and analytical—results that pave the way to additional, more
practical extensions, which can be further developed based on our results.
1.1. Contributions
Motivated by the above, and inspired by information theoretic ideas pre-
sented in recent works [28], [29] on distributed inference of correlation
between sequences without delay, our main contributions are as follows:

• A new method for joint compression and TDE for distributed sys-
tems with communication constraints: Our proposed method is
based upon sending only the index of the maximal observed value
in some prescribed range, and is therefore computationally simple
and can be interpreted intuitively. It is demonstrated via a simu-
lation experiment to be favorable relative to two benchmarks in
terms of the inherent trade-off between the number of bits sent
and estimation fidelity.

• Performance Analysis: We derive an explicit upper bound on the
error probability of our scheme, and show that it decays exponen-
tially as a function of the number of bits sent. Thus, in particular,
it is consistent in the communication sense. We further show that
this exponential behaviour is tight for our scheme.

2. PROBLEM FORMULATION
We start by formulating a simplified version of the TDE problem. In par-
ticular, consider the observed discrete-time signals at two distant sensors

r1[n] = x[n] + z1[n], (sensor 1)
r2[n] = x[n− d] + z2[n], (sensor 2)

(1)
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Fig. 1. Abstraction of the distributed time-delay estimation problem
considered in this work. The encoder observes x[n] and generates a mes-
sage of length k bits m ∈ {0, 1}k×1. The decoder observes y[n] and
receives m, from which it constructs d̂(m, y[n]), an estimator of d.

where

• x[n]
iid∼ N (0, 1) is the common signal that is observed by

both sensors with a relative time-delay d ∈ D, where D ≜
{−dm, . . . , dm} is the “uncertainty interval” (or the “delay
spread”) and dm ∈ N is the maximum (absolute) delay; and

• z1[n]
iid∼ N (0, σ2

1), z2[n]
iid∼ N (0, σ2

2) are statistically indepen-
dent white Gaussian noise processes with unknown deterministic
variances σ2

1 , σ
2
2 , which are also statistically independent of x[n].

For ease of notation, we begin with the following proposition that
allows us to continue the analysis with a simplification of the model.

Proposition 1 Model (1) is statistically equivalent to the model

x[n], (sensor 1, “encoder”)
y[n] = ρx[n− d] + ρ̄z[n], (sensor 2, “decoder”)

(2)

depicted in Fig. 1, where x[n] iid∼ N (0, 1) and z[n] iid∼ N (0, 1) are statis-
tically independent, ρ ∈ (0, 1] is the (Pearson) correlation coefficient be-
tween x[n] and y[n+d] that is related to the signal-to-noise ratios (SNRs)
of (1), i.e., to 1/σ2

1 and 1/σ2
2 , and ρ̄ ≜

√
1− ρ2.

The (simple) proof is omitted due to space considerations, but it is easy
to see that, up to power (/variance) normalization of the observed signals,
the processes in both pairs r1[n], r2[n] and x[n], y[n] are each marginally
white Gaussian, and are also jointly Gaussian with an identical (up to
scaling) cross-correlation. Therefore, we will henceforth work with the
observation model (2), and accordingly, we shall refer to the quantity
SNR ≜ ρ2

ρ̄
= ρ2

1−ρ2
(with which ρ2 = 1

1+SNR−1 ) as the SNR.1

In (2), one sensor (the “encoder”) observes2 x[n] and needs to pro-
duce a message m ∈ {0, 1}k×1 of length k ∈ N bits to be sent to the
other sensor (the “decoder”). The latter observes y[n], a noisy version
of (the ρ-scaled) x[n], delayed by d samples. We consider a Bayesian set-
ting in which d ∼ U(D) (i.e., uniformly distributed), and the goal of
the sensor 2, which is assumed to be located at the central computing
unit, is to estimate d based on the observed signal y[n] and the received
message m, so as to minimize the risk E

î
ℓ(d̂, d)

ó
for a loss function

ℓ : D×D → R+, where the expectation is with respect to all sources of
randomness, i.e., x[n], z[n] andd. In this work, we focus on the error loss
ℓ(a, b) = 1a̸=b that yields the error probability risk. We are interested
in the trade-off between the number of bits k and the error probability.

1Observe that SNR ρ→1−−−→ ∞ and SNR ρ→0−−−→ 0, as desired.
2With a slight abuse of notation, we write that “one observes x[n]” when we

mean that one observes the entire process {x[n]}n∈Z or a snippet of it.

3. A JOINT COMPRESSION-ESTIMATION SCHEME

Our proposed strategy, which is inspired by [28] and [29], is as follows.
Extremum Encoding: The encoder observes a sequence of length

N = 2k ,3 namely XN ≜ {x[n]}N−1
n=0 , and sends as the message m (of

length k bits) the index of the maximum sample among all XN ,

j ≜ arg max
0≤n≤N−1

x[n], (3)

where m ∈ {0, 1}k×1 is the binary representation of j.
Maximum-Index-Based Estimation: The decoder, which in par-

ticular observes YD
N ≜ {y[n]}N−1+dm

n=−dm
, upon receiving the message m

(equivalently, the index j), constructs

d̂MIE ≜ argmax
ℓ∈D

y[j+ ℓ], (4)

which we call the “maximum-index”-based estimator (MIE). Put simply,
the message from the encoder simply dictates to the decoder the center
of its search (discrete-)time interval, whose size is the delay spread, i.e.,
|D| = 2dm +1. The estimated time-delay is then chosen to be the shift
(in the opposite direction, c.f. (2)) relative to that center, for which the
observed signal at the decoder is maximized.

3.1. Interpretation of the MIE

The underlying logic of (4) is in fact quite intuitive. To reveal it, let us
first consider the maximum a posteriori estimator of d from x[n] and
y[n], which in our case (since d ∼ U(D)) coincides with the maximum
likelihood estimator (MLE), and can be easily shown to be given by

d̂MLE = argmax
ℓ∈D

1

N

N−1∑
n=0

x[n]y[n+ ℓ] ≜ argmax
ℓ∈D

ρ̂MLE(ℓ). (5)

Although by different means, the MIE (4) is doing exactly what the MLE
(5) is doing without communication constraints, which is simply trying
to identify the time-lag at which the cross-correlation between x[n] and
y[n] is maximized. To see this clearly, we recall the following result.
Theorem (Hadar and Shayevitz, [28]) Consider model (2) with d ≡
0, namely, {x[n]} and {y[n]} are zero-mean unit-variance white (i.e.,
uncorrelated) Gaussian processes with a correlation coefficient ρ. Let

ρ̂MIE ≜
y[j]

E[x[j]]
, (6)

where j is defined in (3). Then, ρ̂MIE is an unbiased estimator of ρ with

Var (ρ̂MIE) =
1

k

Å
1− ρ2

2 log(2)
+ o(1)

ã
=

1− ρ2

2 log(N)
+ o(1). (7)

Moreover, ρ̂MIE is asymptotically efficient4 given (x[j], y[j]).
A natural extension (/application) of the above is to define

ρ̂MIE(ℓ) ≜
y[j+ ℓ]

E [x[j]]
, ∀ℓ ∈ Z, (8)

which is of course an unbiased, asymptotically efficient estimator of ρ
when ℓ = d, and of 0 when ℓ ̸= d. This is simply because, for any time
shift ℓ, we end up with exactly the same formulation considered in [28],
but for a different correlation coefficient (ρ or zero, as explained above).

3This assumption is merely for notational convenience, and can of course be
relaxed, in the sense that N can be any natural number.

4An efficient estimator is an unbiased estimator that attains the Cramér-Rao
lower bound [30].



With (8), we can revisit (4), and using the fact thatE[x[j]] is constant
with respect to the optimization index ℓ, we may write

d̂MIE = argmax
ℓ∈D

y[j+ ℓ]

E [x[j]]
= argmax

ℓ∈D
ρ̂MIE(ℓ). (9)

Indeed, it is now evident that the MIE (9) (for limited communication)
and the MLE (5) (for unlimited communication) are similar in nature—
both are choosing the hypothesized time-lag at which their respective em-
pirical cross-correlations are maximized as the estimated time-delay.

3.2. Computational Complexity
Beyond its asymptotic performance (discussed in Section 4 below), an-
other appealing property of the MIE (4) is its complexity, in particular
relative to standard cross-correlation-based estimators, such as the MLE
(5). For such standard cross-correlators, computing the empirical cross-
correlation at |D| = 2dm+1 time-lags based onN samples amounts to
O(Ndm) operations. In contrast, the MIE simply requires two searches
for the maximum of two arrays of sizes N (encoder) and |D| (decoder),
hence its complexity is O(N + dm). It is therefore evident that our pro-
posed method is not only more efficient in terms of communication, but
is also attractive in terms of the computational resources it requires.

4. PERFORMANCE ANALYSIS OF THE MIE
While the intuition of (4) provided in Section 3.1 is reassuring, it is imper-
ative to also provide the accompanying analytical performance guaran-
tees. Fortunately, due to the asymptotic concentration of x[j]—the max-
imum of a finite-length realization of a white Gaussian process—around
its mean, the intuitive interpretation of (4) presented above can also be
rigorously justified. In particular, we have the following result regarding
the error probability of the MIE, whose proof appears in Section 4.1.

Theorem 1 (Error probability upper and lower bounds) Consider
the error loss ℓ(a, b) = 1a̸=b, giving the error probability risk ϵ ≜

P
Ä
d̂MIE ̸= d

ä
. Then, for a sufficiently large k and any ρ ∈ (0, 1],5

ϵ(k, ρ) (1 + o(1)) ≤ ϵ ≤ ϵ̄(k, ρ, dm) (1 + o(1)) , (10)

where

ϵ̄(k, ρ, dm) ≜ 2dm · e−k
log(2)·ρ2

2−ρ2 , (11)

ϵ(k, ρ) ≜

 
2− ρ2

4πρ2 log(2)k
· e−k

log(2)·ρ2

2−ρ2 , (12)

and where the o(1) term goes to zero as k → ∞.
An immediate corollary of Theorem 1 is the following.
Corollary 1 (“Communication Consistency”) For the same setting of
Theorem 1, theMIE (4) is consistent in the communication sense, namely,

lim
k→∞

P
Ä
d̂MIE ̸= d

ä
= 0. (13)

Moreover, dm need not be fixed, and it is only required that dm =

o
(
exp

{
k log(2)·ρ2

2−ρ2

})
. In other words, the delay spread can grow with

the observation time, as long as it grows “sufficiently slow” with k. Addi-
tionally, we note in passing that d̂MIE is also consistent with respect to the
number of samples that need to be used,N , i.e., P

Ä
d̂MIE ̸= d

ä
N→∞−−−−→ 0.

Yet another immediate corollary of Theorem 1, which establishes the
asymptotic error probability rate of decay of the MIE, is the following.

5The case ρ = 0 is less interesting, and trivial to analyze, since both sensors
observe (purely) statistically independent white Gaussian noise.

Corollary 2 (Asymptotic error exponent) In the setting of Theorem 1,

lim
k→∞

− 1

k
log2(ϵ) =

ρ2

2− ρ2
. (14)

Proof of Corollary 2 Sandwiching − 1
k
log2(ϵ) of the left-hand side of

(14) with − 1
k
log2(ϵ̄(N, ρ, dm)) and − 1

k
log2 (ϵ(N, ρ)) from below

and above, respectively, and taking k → ∞ gives (14). ■
Observe that even for ρ = 1 (the “infinite SNR regime”), ϵ is not

zero. Indeed, one of the samples at the “edges” of the time-interval that
are observed by the decoder—but not by the encoder (due to the time-
delay uncertainty)—can be greater than the one reported by the encoder.

4.1. Proof of Theorem 1

In order to prove the theorem, we shall use the following lemmas, whose
proofs are given below.

Lemma 1 Let j ≜ argmax0≤n≤N−1 x[n], where {x[n]}N−1
n=0 are iid

standard normal. Then, for any τ ∈ R,

P(x[j] < τ) ≤ e
−2k

(
τ

1+τ2

)
1√
2π

e
− τ2

2
. (15)

Furthermore, if we choose τ∗(k) ≜
√
2 log(2)k(1− ε(k)), where

ε(k) ≜ 1√
k
= o(1), we obtain

P(x[j] < τ∗(k)) ≤ e
−2

√
k· 1√

2π

Å √
2 log(2)k(1−ε(k))

1+2 log(2)k(1−ε(k))

ã
= o
Ä
2−k
ä
.

(16)

Lemma 2 Let v, z ∼ N (0, 1) be independent, and u ≜ min(v, V ),
for some V ∈ R. Then, for any a ∈ R,

P(a < ρu+ ρ̄z) ≥ P(a < v)−Q(V ). (17)

Proof of Lemma 1: For τ > 0, we have

P(x[j] < τ) = P
Å

max
1≤n≤N

x[n] < τ

ã
(18)

= P(x[1] < τ, . . . , x[N ] < τ) (19)

= P(x[1] < τ)N (20)

= (1−Q(τ))N (21)

≤
Å
1−
Å

τ

1 + τ2

ã
1√
2π

e−
τ2

2

ãN
(22)

≤ e
−N

(
τ

1+τ2

)
1√
2π

e
− τ2

2
, (23)

where we have used:

• Q(x) ≥ x
(1+x2)

1√
2π

e−
x2

2 for x > 0 in (22) [31, Eq. (10)]; and

• 1− x ≤ e−x ⇒ (1− x)N ≤ e−xN in (23).

Choosing τ = τ∗(k) gives, after simplifying, (16). ■



Proof of Lemma 2: We have,

P(a < ρu+ ρ̄z) (24)
= E [P(a < ρu+ ρ̄z | z)] (25)

= E
î
P
Ä
a−ρ̄z

ρ
< u | z

äó
(26)

= E




1

1−Q (V )

V∫
a−ρ̄z

ρ

1√
2π

e−
x2

2 dx


 (27)

≥ E




∞∫
a−ρ̄z

ρ

1√
2π

e−
x2

2 dx−
∞∫

V

1√
2π

e−
x2

2 dx


 (28)

= E
î
P
Ä
a−ρ̄z

ρ
< v | z

äó
−Q(V ) (29)

= P(a < v)−Q(V ), (30)

where (28) is from [1 − Q(V )]−1 > 1, and (30) follows from the fact
that ρ2 + ρ̄2 = 1 and that v and z are independent. ■

Proof of Theorem 1: We start by deriving the upper bound. For brevity
in the following derivation, Let v ∼ N (0, 1). Using this notation, we
have,

P
(
d̂ ̸= d

∣∣∣ d, x[j]
)

(31)

= P

Ö ⋃
ℓ∈D
ℓ ̸=d

ρ̂(d) < ρ̂(ℓ)

∣∣∣∣∣∣∣∣
d, x[j]

è
(32)

≤ 2dmP( ρ̂(d) < ρ̂(ℓ)| d, x[j]) (33)

≤ 2dmP

(
ρx[j] <

√
2− ρ2v

∣∣∣∣∣d, x[j]
)

(34)

= 2dmQ

Ç
ρx[j]√
2− ρ2

å
, (35)

where:

• In (33), we have used the union bound; and

• In (34), replacing y[j + ℓ] by v can only increase the probabil-
ity. To see this more clearly, we first recall that ρ̂(ℓ) is merely a
scaled version of y[j + ℓ]. Then, we observe that y[j + ℓ] =
ρx[j − d + ℓ] + ρ̄z[j + ℓ] is a convex combination of a (possi-
bly) one-sided (upper bounded) truncated standard Gaussian RV
(x[j−d+ℓ]) and a standard Gaussian RV (z[j+ℓ]), which are inde-
pendent. Since v can be thought of as a convex combination with
the same coefficients of two independent standard Gaussian RVs,
it is interpreted as replacing the truncated Gaussian x[j− d+ ℓ]
with a standard Gaussian, which can only increase the probability
that y[j+ d] < y[j+ ℓ].

Now, using the law of total expectation, the conditional upper

bound (35) and Lemma 1, we obtain,

P
Ä
d̂ ̸= d

ä
= E

[
P
(
d̂ ̸= d

∣∣∣ d, x[j]
)]

(36)

≤ E
ñ
2dmQ

Ç
ρx[j]√
2− ρ2

åô
(37)

≤ 2dmQ

Ç
ρτ∗(k)√
2− ρ2

å
+ 2dmP(x[j] < τ∗(k)) (38)

= 2dmQ

Ç
ρ

 
2 log(N)

2− ρ2

å
(1 + o(1)) (39)

≤ 2dm · e−k
log(2)·ρ2

2−ρ2 (1 + o(1)), (40)

where we recall in particular (16), namely P(x[j] < τ∗(k)) = o
(
2−k

)
,

and we have used Q(x) ≤ e−
x2

2 for x > 0 in (40).
For the lower bound, we have,

P
(
d̂ ̸= d

∣∣∣ d, x[j]
)

(41)

= P

Ö ⋃
ℓ∈D
ℓ ̸=d

ρ̂(d) < ρ̂(ℓ)

∣∣∣∣∣∣∣∣
d, x[j]

è
(42)

≥ P( ρ̂(d) < ρ̂(ℓ)| d, x[j]) (43)
= P(y[j+ d] < y[j+ ℓ]| d, x[j]) (44)
= E [P(y[j+ d] < y[j+ ℓ]| d, x[j], z[j+ d])| d, x[j]] (45)
≥ E [P(y[j+ d] < v| d, x[j], z[j+ d])−Q(x[j])| d, x[j]] (46)
= P(y[j+ d] < v| d, x[j])−Q(x[j]) (47)

= P
(
ρx[j] <

√
2− ρ2v

∣∣∣ d, x[j]
)
−Q(x[j]) (48)

= Q

Ç
ρx[j]√
2− ρ2

å
−Q(x[j]) (49)

where in (43) we have taken only one event of the union of events, and
in (46) we have used Lemma 2. Using the law of total expectation, the
lower bound (49) and Lemma 1, we obtain,

P
Ä
d̂ ̸= d

ä
(50)

= E
[
P
(
d̂ ̸= d

∣∣∣ d, x[j]
)]

(51)

≥ E
ñ
Q

Ç
ρx[j]√
2− ρ2

å
−Q(x[j])

ô
(52)

≥ P
(
τ∗(k) < x[j] <

»
2 log(N)

)
(53)

· E
ñ
Q

Ç
ρx[j]√
2− ρ2

å
−Q(x[j])

∣∣∣∣∣ τ∗(k) < x[j] <
»

2 log(N)

ô
(54)

= Q

Ç
ρ

 
2 log(N)

2− ρ2

å
(1 + o(1)) (55)

≥
√

2−ρ2

4πρ2 log(N)
· e−k

log(2)ρ2

2−ρ2 (1 + o(1)), (56)

since we haveP(τ∗(k) < x[j]) = 1−o(1) andP
Ä
x[j] <

√
2 log(N)

ä
=

1 − o(1), and in (56) we have used a lower bound on the Q-function
[32, Eq. (13)]. ■
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Fig. 2. Error probability vs. the message size (i.e., dimension ofm) in bits

for SNR = 20dB. The black dashed line is ĉ · 2−k ρ2

(2−ρ2) , where ĉ is the
best least-squares-fitted constant for the empirical curve of the MIE.

5. SIMULATION RESULTS
We now present results of a simulation experiment that corroborates our
analysis and demonstrates that our method outperforms a rate-distortion
(RD) signal compression benchmark and the (possibly naive but) ubiq-
uitous 1-bit per sample scalar quantization approach (e.g., [33–35]).

We generate the signal according to model (2) with dm = 150 fixed,
and compute (i) the MIE (4); (ii) the cross-correlator (5) when x[n] is
replaced by x̂RD[n],6 a RD-optimally compressed version thereof, where
the distortion measure is the squared error (x[n]− x̂RD[n])

2; and (iii) the
cross-correlator (5) when x[n] is replaced by x̂1-bit[n] ≜ sign(x[n]). Fig-
ure 2, which shows P(ϵ) vs. k for SNR = 20dB, reflects a good empirical
fit to our result (14), and further demonstrates how our method outper-
forms any compression scheme that opts to compress a subsequence of
x[n] in the MSE sense while ignoring the existence of y[n], and in partic-
ular 1-bit per sample scalar quantization.

6. CONCLUDING REMARKS
For the prototype formulation addressed in this work, we present a new
joint compression-TDE scheme for distributed systems with communi-
cation constraints. Further, we derive its asymptotic error probability
(rate of decay) performance. Our scheme has an intuitive interpretation,
is simple to implement, and outperforms relevant benchmarks.

While current research efforts are focused on a more refined perfor-
mance analysis (for this and other regimes of operation) and extensions
of the signal model, the proposed approach warrants rethinking the com-
munication efficiency in the context of this specific, but ubiquitous task.
Viewing this preliminary work as a seed, we expect that the main concept
underlying our approach will be further developed in various directions,
and lead to new distributed estimation methods across different domains.
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