MNEMOSENE++: Scalable multi-tile design with enhanced buffering and VGSOT-MRAM based compute-in-memory crossbar array

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Comunicació de congrés

Data publicació

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

This paper optimizes the MNEMOSENE architecture, a compute-in-memory (CiM) tile design integrating computation and storage for increased efficiency. We identify and address bottlenecks in the Row Data (RD) buffer that cause losses in performance. Our proposed approach includes mitigating these buffering bottlenecks and extending MNEMOSENE’s single-tile design to a multi-tile configuration for improved parallel processing. The proposal is validated through comprehensive analyses exploring the mapping of diverse neural networks evaluated on CiM crossbar arrays based on NVM technologies. These proposed enhancements lead up to 55% reduction in execution time compared to the original single-tile architecture for any general matrix multiplication (GEMM) operation. Our evaluation shows that while ReRAM and PCM offer notable energy advantages, their integration with scaled CMOS is limited, which leads to VGSOT-MRAM emerging as a promising alternative due to its good balance between energy efficiency and superior integration capabilities. The VGSOT-MRAM crossbar arrays provide 12×,49×, and 346× more energy efficiency than PCM, ReRAM, and STT-MRAM ones, respectively. It translates, on average for the considered workload, in 1.5×,3×, and 14.5× better energy efficiency of the entire system.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Escuín, C. [et al.]. MNEMOSENE++: Scalable multi-tile design with enhanced buffering and VGSOT-MRAM based compute-in-memory crossbar array. A: IEEE International Conference on Electronics, Circuits and Systems. "2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS): Istambul, Turkey: December 4-7, 2023: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2023. ISBN 979-8-3503-2649-9. DOI 10.1109/ICECS58634.2023.10382874.

Ajut

Forma part

Dipòsit legal

ISBN

979-8-3503-2649-9

ISSN

Altres identificadors

Referències