
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Corke, Peter
(2005)
The Machine Vision Toolbox: a MATLAB toolbox for vision and vision-
based control.
IEEE Robotics and Automation Magazine, 12(4), pp. 16-25.

This file was downloaded from: https://eprints.qut.edu.au/33822/

© Copyright 2005 IEEE

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/MRA.2005.1577021

https://eprints.qut.edu.au/view/person/Corke,_Peter.html
https://eprints.qut.edu.au/33822/
https://doi.org/10.1109/MRA.2005.1577021

T
he Machine Vision Toolbox (MVT) described in
this article provides many functions that are useful in
machine vision and vision-based control. It is a
somewhat eclectic collection reflecting the author’s
interest in areas of photometry, photogrammetry,

and colorimetry. It includes more than 60 functions, spanning
operations such as image file reading and writing, acquisition,
display, filtering, blob, point and line feature extraction, math-
ematical morphology, homographies, visual Jaco-
bians, camera calibration, and color space
conversion. MVT, combined with
MATLAB and a modern worksta-
tion computer, is a useful and
convenient environment for
investigation of machine
vision algorithms. For mod-
est image sizes, the process-
ing rate can be sufficiently
real time to allow for
closed-loop control. Focus-
of-attention methods such as
dynamic windowing (not pro-
vided) can be used to increase the
processing rate. With input from a
firewire or Web camera (support provided)
and output to a robot (not provided), it would be pos-
sible to implement a visual servo system entirely in MATLAB.

An image is usually treated as a rectangular array of scalar
values representing intensity or perhaps range. The matrix is
the natural datatype for MATLAB and thus makes the manip-
ulation of images easily expressible in terms of arithmetic
statements in MATLAB language. Many image operations
such as thresholding, filtering, and statistics can be achieved
with existing MATLAB functions. MVT extends this core
functionality with M-files that implement functions and
classes and MEX files for some compute-intensive operations.
It is possible to use MEX files to interface with image acquisi-
tion hardware ranging from simple framegrabbers to robots.

Examples for firewire cameras under Linux are provided.
The routines are written in a straightforward manner,

which allows for easy understanding. MATLAB vectorization
has been used as much as possible to improve efficiency; how-
ever, some algorithms are not amenable to vectorization. If
you have the MATLAB compiler available, then this can be
used to compile bottleneck functions. Some particularly com-
pute-intensive functions are provided as MEX files and may

need to be compiled for the particular platform.
MVT considers images generally as arrays

of double precision numbers. This is
extravagant on storage, though

this is much less significant
today than it was in the past.

MVT is not a clone of
Mathwork’s Image Process-
ing Toolbox (IPT), although
there are many functions in
common. MVT predates

IPT by many years, is open
source, and contains many

functions that are useful for
image feature extraction and con-

trol. It was developed under Unix and
Linux systems, and some functions rely on

tools and utilities that exist only in those environments.
This article has a tutorial approach, illustrating the use of a

subset of toolbox functions for some typical problems. First,
file input and output, image acquisition, and display are
described. A range of linear and nonlinear image operations,
convolutions, and window operations follows, then a descrip-
tion of the extraction of blob, interest point, and line features.
Next, a virtual camera is introduced and the effect of camera
motion on image plane points is observed, bringing together
many concepts, along with tools from the companion Robot-
ics Toolbox [1] to simulate a complete image-based visual-
servo system. Finally, conclusions and future work are
discussed, describing how to obtain MVT.

BY PETER I. CORKE

The Machine Vision
Toolbox

A MATLAB Toolbox for Vision and Vision-Based Control

1070-9932/05/$20.00©2005 IEEEIEEE Robotics & Automation Magazine DECEMBER 200516

IRIS: ©1998 CORBIS CORPORATION,
COMPUTER KEYS © DIGITAL VISION

DECEMBER 2005 IEEE Robotics & Automation Magazine 17

Input and Output
MATLAB now supports reading from a large number of file
formats using imread(), but this was not always the case.
MVT has functions for reading and writing files in PGM,
PPM, and Inria file formats.

The function

>> lena = loadpgm (�lena�);
>> idisp (lena)

will produce the display shown in Figure 1. Clicking on a
pixel displays its coordinate and value in the top right corner;
the image can be zoomed (and unzoomed), and the line func-
tion displays the intensity profile along a line between two
clicked points. For multidimensional images, the pixel’s vector
value is displayed. A region-of-interest (ROI) can be simply
extracted using the iroi() function, which can be interactive
and return the region bounds as well as the region.

The functions loadpgm() and loadppm() will pop up a
file selection graphical user interface (GUI) if no file is
specified and support a local extension for timestamps
embedded as header comments. If given a wildcard file
definition, the functions will load a sequence of files:

>> seq = loadpgm(�seq*.pgm�);
>> size(seq)
ans =

512 512 100,

in which case, the image is saved as uint8 class to economize
on storage. MPEG and AVI format files are most easily dealt
with by saving individual frames as separate files in PPM or
JPEG format and loading them individually. Tools such as
ffmpeg [2] and convert [3] can easily perform this task. A
group of functions allows reading uncompressed color image
sequences in yuv4mpeg format.

Most Unix and Linux systems come with a wealth of qual-
ity image processing tools such as ImageMagick [3] and PBM-
plus [4]. We can exploit these using the pnmfilt() function,
which effectively pipes the image through the external pro-
gram. For example, we can rotate an image using an existing
tool simply by using

>> rlena = pnmfilt(lena, �pnmrotate 30�);
>> image (rlena);

with the result shown in Figure 2. This function also allows us
to access the huge range of file conversion filters that are a
standard part of the PBMplus package. One of my favorite
image viewing programs is xv [5], and we can display MAT-
LAB images using

>> xv(lena),

which will create a subprocess and display the image in a new
window.

Images can be read from a Web camera using

>> im = webcam(�http://webcam7.cat.csiro.au�);

or a firewire source (under Linux) using

>> fw = firewire(0, �mono�, 15);
% open
>> im = firewire(fw); % get next frame,

where the first call opens the firewire camera specified by its
port in monochrome mode at 15 frames/s, and the handle is
used in subsequent calls.

Image Operations
Given that an image is a matrix, we can perform very standard
MATLAB matrix operations and display the results as an
image. Examples include simple arithmetic, gamma correction

Figure 1. Toolbox interactive display tool idisp().

Figure 2. Lena rotated by external PBMplus tool.

100 200 300 400 500 600 700

100

200

300

400

500

600

IEEE Robotics & Automation Magazine DECEMBER 200518

igamma(), greylevel normalization inorm(), and histogram
normalization inormhist(). Nonlinear operations such as
thresholding or solarization can be applied

>> idisp(lena > 180)
>> idisp(bitand(lena, hex2dec(�e0�))),

and the results are shown in Figure 3.
The function ihist() provides a fast means of comput-

ing the histogram of a scalar-valued image

>> ihist(lena)

(see Figure 4) and can optionally return the histogram and bin
center values. The histogram can be used to select optimal
threshold values.

Window Operations
Some of the most powerful and commonly used image pro-
cessing operations are convolutions, and these are provided in
MATLAB by the conv2() function. Convolution kernels
can be produced using toolbox functions such as Gaussian
kgauss(), derivative of Gaussian kdgauss(), Laplacian
klaplace(), Laplacian of Gaussian klog(), and difference
of Gaussian kdog(). The functions

>> idisp(conv2(lena, kdgauss(1)));
>> idisp(conv2(lena, kdgauss(4)));
>> idisp(zcross(conv2(lena, kdgauss(4))));
>> idisp(isobel(lena));

are shown in Figure 5. The function isobel() computes the
Sobel image operator, and zcross() finds zero crossings, i.e.,
pixels with neighbors of a different sign.

Frequently, it is useful to reduce the resolution of an image
by smoothing and subsampling. The pyramid
function

>> p = ipyramid(lena);
>> p�
ans =
[512x512 double]
[256x256 double]

.

.
[4x4 double]
[2x2 double]
[20.8959]
>> idisp(p {5})

returns a MATLAB cell array containing images
that are at successively lower resolutions. The fifth
element of the pyramid is shown in Figure 6. Note
that the last element is the 1 × 1 resolution version.

A generalized window operation is provided
by iwindow(). For every pixel in the input

Figure 3. Some simple nonlinear image operations: (a) thresh-
olding and (b) solarization.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a)

(b)

Figure 4. A histogram of the Lena image.

−50 0 50 100 150 200 250 300
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Graylevel

N
um

be
r

of
 P

ix
el

s

DECEMBER 2005 IEEE Robotics & Automation Magazine 19

image, it takes all neighbors for which the corresponding
element in the structuring element are nonzero. These are
packed into a vector (in raster order from top left) and passed
to the specified MATLAB function. The return value
becomes the corresponding output pixel value. To compute
the mean of an image over an annular window at each point:

>> % inner/outer radius = 5/10
>> se = kcircle([5 10]);
>> out = iwindow(lena, se, �mean�);

is used.
The structuring element is a matrix with odd dimensions

that is centered on the output pixel. Square neighborhoods
can be specified conveniently using ones(N,N), circular
neighborhoods using kcircle(R), and annular neighbor-

hoods using kcircle(R1, R2). Boundary handling can be
controlled by an optional fourth argument.

Similar functions to compute statistics within the selected
pixels are ivar(), which can compute variance, kurtosis, and
skew, and irank(), which can return the jth ranked pixel
(on intensity).

>> out_var = ivar (lena, ones(3,3), �var�);
>> out = irank(lena, ones(5,5), 1);

The first command computes the variance over a 3 × 3
window at every pixel (which is a reasonable edge operator);
the last argument can also be kurt or skew for higher-order
statistics such as kurtosis and skew. The second command
returns the maximum (rank 1) pixel value over a 5 × 5 win-
dow at every pixel.

Figure 5. Edge operators: (a) a derivative of Gaussian with σ = 1; (b) a derivative of Gaussian with σ = 4; and (c) zero
crossings of derivative of Gaussian with σ = 4.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) (b)

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500

300

350

400

450

500

(c)

Image Feature Extraction
For vision-based control, it is critical to extract features from
the image that are used as input to the visual control law. The
features used are typically points, which can be the centroids
of regions, interest operators, or lines.

Blob Features
Segmentation is the process of dividing an image into
meaningful segments, generally homogeneous with respect
to some characteristic. In a simple or contrived scene, the
segments may correspond directly to objects in the scene,
but for a complex scene, this will not necessarily be the
case. The simplest classification is into two sets, leading to
binary segmentation. Commonly, this is achieved by apply-
ing a threshold test to the pixel values. Consider the image
in Figure 7, which shows a scene containing four targets.
We can segment these targets using

IEEE Robotics & Automation Magazine DECEMBER 200520

Figure 6. Reduced resolution image at pyramid level 5.

5 10 15 20 25 30

5

10

15

20

25

30

Figure 7. Color image segmentation: (a) original color scene (the four boxes, i.e., targets, would appear in color); (b) initial seg-
mentation based on bivariant histogram; and (c) final segmentation after morphological filtering.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(b)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(c)

>> out = colorseg(target, lut);
>> idisp(out),

where lut is the result of a training process carried out using
the interactive function trainseg(). Segmentation is based
on red-green chromaticity coordinates. Clearly, the resulting
segmentation leaves something to be desired, as noise has
caused various target pixels to be misclassified as background.

We can apply mathematical morphology techniques to the
binary image in order to fill these holes. Mathematical mor-
phology is a set of techniques for filtering objects in an image
based on their size and shape. The operation performed on the
pixels selected is either the minimum, maximum, or difference
(maximum-minimum) as specified by the third argument,
which is either min, max, or diff, respectively. Boundary han-
dling flags, as mentioned previously, can also be applied.

In this case, we wish to take the maximum value in a 5 × 5
region around each pixel.

>> clean = imorph(out, ones(5,5), �max�);
>> idisp(clean)

The function iclose() performs N maximum operations
followed by N minimum operations and is used for filling
interior holes while leaving the outer dimensions the same.

Now that we have a clean binary image, we can label the
various connected components.

>> labels = ilabel(clean);
>> idisp(labels)

Figure 8 shows the results. Each region has been assigned a
unique integer label, which is shown as a unique gray level.
More often, we want to label the image, compute blob fea-
tures, and possibly apply some filtering or selection criteria.

>> F = iblobs(clean, �area�, [100 10000]);
>> F
F =
1x4 struct array with fields:

area xc yc a b theta m00 m01 m10
m02 m20 m11 minx maxx miny maxy touch

In this instance, F is a four-element structure array, one per
target object. The filter applied is for area A such that
100 < A < 10, 000. Each element contains the centroid,
moments, bounding box, and edge touch flag. The centroids

>> [[F.xc]� [F.yc]�]
ans =
366.8313 218.5545
264.8579 310.9883
453.5889 326.7215
348.2511 409.1840

>> hold on
>> for i=1:length(F)

>> plot(F(i).xc, F(i).yc, �g+�)
>> end

are shown by the overlaid crosses in Figure 8.

Point Features
The Harris interest point detector [6] is a classic technique to
robustly detect in a scene points that have strong orthogonal
image gradients. Such points are more likely to be tracked
across an image sequence.

To compute and overlay the detected corners on a street scene,

>> C = iharris(building);
>> idisp(building);
>> markfeatures(C, 50, �wo�);

will display the 50 strongest corners as white circles (see
Figure 9). The function markfeatures() with output
arguments will be assigned the pixel coordinates of the corner

DECEMBER 2005 IEEE Robotics & Automation Magazine 21

Figure 8. Labeled image with centroids marked.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 9. Harris corner features.

100 200 300 400 500 600 700 800 900 1,000

50

100

150

200

250

300

350

400

450

500

IEEE Robotics & Automation Magazine DECEMBER 200522

feature. The iharris() function accepts a parameter struc-
ture that allows control over the derivative kernel used, mini-
mum corner strength, and distribution of corners across the
image, which, as can be seen in Figure 9, tend to cluster
unevenly in the image.

Line Features
The Hough transform is a classical technique to identify dom-
inant lines in a scene. All lines are represented in a d-θ
parameterization

d = y cos(θ) + x sin(θ), (1)

where θ is the angle the line makes to the horizontal axis and
d is the perpendicular distance between (0,0) and the line. We
quantize the d-θ space, and for every detected edge pixel, we
vote for all possible lines that pass through that point. The
peaks in the voting accumulator correspond to dominant lines.

To compute the edges, see Figure 10 and the Hough accu-
mulator

>> building = imono(imread(�building.jpg�));
>> edges = isobel(building);
>> H = ihough(edges).

The accumulator array can be displayed

>> houghshow(H);

as an image that shows bright spots that correspond to domi-
nant edges. To find the peaks and the corresponding lines in
the original image, use

>> p = houghpeaks(H, 10);
>> idisp(building)
>> houghoverlay(p);

where p is a matrix with one row per dominant line and the
columns are d and θ , respectively. Results for the building
scene are shown in Figure 10.

Virtual Cameras
MVT implements a virtual camera, for example

>> cp = pulnix
>> C = camcalp(cp)
>> cam = gcamera(�my camera�, C, [0 512 0
512]),

where cp is a set of parameters for a particular camera
and lens [7], which includes pixel pitch, focal length, and
principal point. The function camcalp() converts the
parameter vector into a camera projection matrix and can
take an extra argument to specify the pose of the camera;
by default it is assumed to be at the origin with its opti-
cal axis pointing in the z-direction. The routine gcam-
era() creates a window that displays the image plane of
the virtual camera and has parameters that define the
projection matrix and the coordinate system of the image
plane. Multiple cameras can be instantiated to simulate a
stereo or tr inocular camera system, for instance. The
routine gcamera() is a wrapper around the non-GUI
function camera().

Figure 10. Hough transform of a building: (a) building scene edge image and (b) building scene with overlaid dominant lines.

100 200 300 400 500 600 700 800 900 1,000

50

100

150

200

250

300

350

400

450

500
100 200 300 400 500 600 700 800 900 1,000

50

100

150

200

250

300

350

400

450

500

(a) (b)

MVT, combined with MATLAB and
a modern workstation computer,
is a useful and convenient
environment for investigation
of machine vision algorithms.

Consider a target defined in the XY plane as

>> targ = [-0.5 -0.5 0; -0.5 0.5 0; ... 0.5
0.5 0; 0.5 -0.5 0];

>> uv = gcamera(cam, targ, transl(0,0,5))
uv =
150.2550 21.7263
150.2550 398.2737
397.7450 398.2737
397.7450 21.7263,

then we can view it with the target translated by 5 m in the
z-direction (see Figure 11). Note that in the example given,
we can see that the pixels are not square, and the image
looks compressed in the horizontal direction. If we rotate
the target around its y-axis, we observe significant foreshort-
ening, as shown in Figure 12. The functions roty and
transl are from the companion Robotics Toolbox [1].

>> uv = gcamera(cam, targ, ...
transl(0,0,5)*roty(1))

uv =
243.1686 123.1802
243.1686 296.8198
310.5066 312.8008
310.5066 107.1992.

In the example given, we have computed the projection
matrix from a set of camera parameters, but in practice, we
often do not know these parameters; they need to be deter-
mined experimentally, a procedure known as camera calibra-
tion. MVT provides several functions to estimate this matrix

from world and image-plane coordinates: the least-squares
method of Sutherland [8] camcald(), which requires a
three-dimensional (3-D) target, and the method of Tsai [9]
camcalt(), which requires a planar target and lens distortion.
Other toolboxes available on the Web provide a more com-
prehensive treatment of camera calibration [10].

Image Motion
Let’s examine the motion of points on the image plane as we
move the camera slightly.

>> uv1 = gcamera(cam, targ, transl(0,0,5))
>> uv2 = gcamera(cam, targ, transl(0,0,5), ...

transl(0.1, 0.2, 0)*roty(0.2))

Since our target is planar, we can compute a matrix, H,
which is an homography, i.e., a homogeneous transformation
that maps uv1 to uv2.

>> H = homography(uv1, uv2)
H =

1.2030 0.0000 -180.5223
0.0761 1.1262 -68.9098
0.0004 -0.0000 1.0000

>> uv2 - homtrans(H,uv1)
ans =

DECEMBER 2005 IEEE Robotics & Automation Magazine 23

Figure 11. Virtual camera view with the target normal to the
optical axis.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

My Camera

u (Pixels)

v
(P

ix
el

s)

Figure 12. Virtual camera view, with the target rotated about
the y-axis.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

My Camera

u (Pixels)

v
(P

ix
el

s)

MVT has functions for reading
and writing files in PGM, PPM,

and Inria file formats.

1.0e-08 *
0.0485 -0.0209
0.0164 -0.2033
-0.0448 -0.2175
0.0045 -0.0448

The relationship between small camera motion and
image plane feature motion (u̇, v̇) is given by the image
Jacobian matrix

[
u̇
v̇

]
= J




Tx

Ty

Tz

ωx

ωy

ωz




, (2)

where

J =
[λ

z 0 −u
z

−uv
λ

λ2+u2

λ
−v

0 λ
z

−v
z

−λ2−v2

λ
uv
λ

u

]
. (3)

The function visjac_p() computes a 2 × 6 visual motion
Jacobian that maps relative camera motion
[Tx, Ty, Tz, �x, �y, �z] to image plane velocity for point
features. Jacobians for line and circle features are also provided.
For three or more image points, the Jacobians can be stacked
and, if full rank, we can solve for the camera velocity needed
to achieve arbitrary image point velocity—the essence of
image-based visual servoing (IBVS) [11].

IBVS
In this section, we bring together a number of functions
from MVT and from the companion Robotics Toolbox [1].

The Simulink model, demo6, shown in Figure 13, demon-
strates IBVS [11]. This is quite a complex example that sim-
ulates not only the robot but also a camera and the IBVS
algorithm. The camera is assumed to be mounted on the
robot’s end effector, and this coordinate is passed into the
camera block so that the relative position of the target with
respect to the camera can be computed. Arguments to the
camera block include the 3-D coordinates of the target
points. The output of the camera is the two-dimensional (2-
D) image plane coordinates of the target points. The target
points are used to compute an image Jacobian matrix, which
is inverted and multiplied by the desired motion of the target
points on the image plane. The desired image plane motion
is simply the difference between the observed target points
and the desired point positions. The result is a velocity screw
that drives the robot to the desired pose with respect to a
square target.

To run this demo, use

>> ibvsdemo.

When the simulation starts a new window, the camera view
pops up. We see that initially, the square target is off to one side
and somewhat oblique. The image plane errors are mapped by
an image Jacobian into desired Cartesian rates, and these are
further mapped by a manipulator Jacobian into joint rates,
which are applied to the robot, which is again modeled as a rate
control device. A Puma 560 robot is used in this simulation.

This closed-loop system is performing a Cartesian posi-
tioning task with information from a camera rather than
with encoders and a strong geometric and robot kinematic

IEEE Robotics & Automation Magazine DECEMBER 200524

Figure 13. Robotics Toolbox example demo6, image-based visual servoing.

Image–Based Visual Servo Control

Desired Camera Velocity

Visual
Jacobian

Visjac
Condition

Puma 560

Plot

Pinv

6.998

Manip Jac Condition

J
q J

Puma 560

Jacobn

J
J Ji

1

Ijacob

Puma 560

Fkine

274

Feature Error
Norm

85.07

107.89

112.87

109.40

108.90

80.92

81.10

80.81

Feature
Error

256 456
456 456
456 256
256 256

Desired
Image
Plane

Coordinates

MATLAB
Function

Cond()

uv uv

Camera

1
s

Rate
Controlled

Robot
Axes

Matrix
Multiply

08 Apr 2002 11:31:20

 0.10

0.21

0.28

 0.32

 0.00

0.04

 0.01

Cartesian Velocity Dmd

6

q 6

6
6
q

q T T J

[6×6]

[6×6]

[6×6] 6

[4×2]

[4×2]

[4×2][4×4]

[8×6]

[8×6]

[8×6]

[4×2]

[6×8]

[4×2]

8

8

8

8

8

Feature vel

[6×6]

6

6

6

6

6

n

MATLAB
Function

MATLAB
Function

MATLAB
Function

MATLAB
Function

146.1

Matrix
Multiply

Feature Error

−
+

Image Based Visual Servo Control
Pic

model (the Jacobian is a weak kinematic model). Image-
based visual servoing schemes have been found to be
extremely robust with respect to errors in the camera model
and manipulator Jacobian, and the Simulink environment is
an ideal one in which to explore this. While not demon-
strated by the author, others have used MEX files to inter-
face a MATLAB/Simulink controller to a real physical
robot. Combined with the Firewire camera interface,
firewire(), a complete visual servo system could be
implemented in MATLAB, albeit with a sample rate slower
than could be achieved if the code were written in C.

Miscellaneous
MVT contains a number of functions that are difficult to oth-
erwise categorize and that reflect the author’s personal interest
in areas such as photometry, photogrammetry, and colorime-
try. This includes functions for the spectral characteristics of
blackbody radiators, the photopic response of the human eye,
and conversions between color spaces such as RGB, HSI, and
CIE XYZ.

The testpattern() function can generate images with a
variety of patterns including lines, grids of dots or squares,
intensity ramps, and intensity sinusoids.

Conclusions
This article has described an open-source toolbox for machine
vision that can be used for research into machine vision but is
also versatile enough to be usable for real-time work and even
control. However, its use for control is very system specific
and requires a high level of user expertise and experience, par-
ticularly when interfacing to a robot.

MVT is a personal collection of functions that has grown
over more than a decade. Naturally, for something that has
grown organically, there are things that could have been done
better, but often these design decisions were due to the func-
tionality of MATLAB at that time. Long ago, numeric classes
and objects did not exist. The biggest problems, in the
author’s opinion, are inconsistent naming patterns for func-
tions, patchy support for images represented in the compact
uint8 class, and the treatment of images’ pixel values in the
range 0 to N (typically N = 256) rather than normalized as 0
to 1. Multidimensional images could represent an image
sequence or an image with vector-valued pixels. MVT has no
mechanism to distinguish these cases or to handle a sequence
of vector-valued images.

As with all open-source software, if it helps you, then use
it. If you need to change it, then do so, and maybe send the
changes back to the author. If it doesn’t meet your needs, then
move on.

Obtaining MVT
MVT, and the Robotics Toolbox, can be obtained from
http://www.cat.csiro.au/ict/staff/pic. Most functions are
implemented as M-files, and many of these should operate
with the open-source package Octave [12] when it is set
to operate in MATLAB compatibility mode. Handle-

graphics functions will not work with Octave. More com-
pute-intensive functions are coded in C as MEX files and
must be compiled before they can be used—these have
been tested under many variants of Linux and Mac OS X,
but not Windows.

Acknowledgments
Some MEX files are based on code that was part of the pack-
age VISTA (copyrighted 1993 and 1994 by the University of
British Columbia, Canada). Homography routines are based
on code by Nuno Alexandre Cid Martins, Universidade de
Coimbra, Portugal.

Keywords
Machine vision, MATLAB, visual servo, image filtering,
image segmentation, image feature extraction.

References
[1] P. Corke, “A robotics toolbox for matlab,” IEEE Robot. Automat. Mag.,

vol. 3, pp. 24–32, Sept. 1996.
[2] “ffmpeg multimedia system” [Online]. Available: http://ffmpeg.source-

forge.net/index.php
[3] “Imagemagick,” ImageMagick Studio LLC [Online]. Available:

http://www.imagemagick.org/
[4] J. Poskanzer, “Pbmplus” [Online]. Available: http://www.acme.com/

software/pbmplus/
[5] J. Bradley, “Xv interactive image manipulation program” [Online].

Available: http://www.trilon.com/xv/
[6] C.G. Harris and M.J. Stephens, “A combined corner and edge detec-

tor,” in Proc. 4th Alvey Vision Conf., Manchester, England, 1988, pp.
147–151.

[7] P.I. Corke, Visual Control of Robots: High-Performance Visual Servoing.
New York: Wiley, 1996.

[8] I.E. Sutherland, “Three-dimensional data input by tablet,” Proc. IEEE,
vol. 62, pp. 453–461, Apr. 1974.

[9] R. Tsai, “An efficient and accurate camera calibration technique for 3D
machine vision,” in Proc. IEEE Conf. Computer Vision Pattern Recognition,
1986, pp. 364–374.

[10] J.-Y. Bouguet, “Camera calibration toolbox for MATLAB” [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib_doc

[11] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651–670, Oct. 1996.

[12] J.W. Eaton, “Octave language for numerical computations” [Online].
Available: http://www.octave.org/

Peter I. Corke is the research director of the Autonomous
Systems Laboratory within the CSIRO Information and
Communications Technology (ICT) Centre, in Brisbane,
Australia. His research activities span machine vision, vision-
based robot control, field robotics (with a focus on mining
applications), and sensor networks. He holds B.Eng. and
M.Eng.Sc. degrees, both in electrical engineering, and a
Ph.D., all from the University of Melbourne, Australia. He is
an adjunct professor at the Australian National University and
the University of Queensland and is a member of the editorial
board of the International Journal of Robotics Research.

Address for Correspondence: Peter Corke, CSIRO ICT Centre,
P.O. Box 993, Kemore 4069 Brisbane, Australia. E-mail:
peter.corke@csiro.au.

DECEMBER 2005 IEEE Robotics & Automation Magazine 25

