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Multichannel Online Dereverberation Based on
Spectral Magnitude Inverse Filtering

Xiaofei Li, Laurent Girin, Sharon Gannot and Radu Horaud

Abstract—This paper addresses the problem of multichannel
online dereverberation. The proposed method is carried out in
the short-time Fourier transform (STFT) domain, and for each
frequency band independently. In the STFT domain, the time-
domain room impulse response is approximately represented by
the convolutive transfer function (CTF). The multichannel CTFs
are adaptively identified based on the cross-relation method, and
using the recursive least square criterion. Instead of the complex-
valued CTF convolution model, we use a nonnegative convolution
model between the STFT magnitude of the source signal and the
CTF magnitude, which is just a coarse approximation of the
former model, but is shown to be more robust against the CTF
perturbations. Based on this nonnegative model, we propose an
online STFT magnitude inverse filtering method. The inverse fil-
ters of the CTF magnitude are formulated based on the multiple-
input/output inverse theorem (MINT), and adaptively estimated
based on the gradient descent criterion. Finally, the inverse filter-
ing is applied to the STFT magnitude of the microphone signals,
obtaining an estimate of the STFT magnitude of the source signal.
Experiments regarding both speech enhancement and automatic
speech recognition are conducted, which demonstrate that the
proposed method can effectively suppress reverberation, even for
the difficult case of a moving speaker.

I. INTRODUCTION

This paper addresses the problem of multichannel online
dereverberation of speech signals, emitted by either a static
or a moving speaker. The objective of dereverberation is to
improve speech quality/intelligibility for human listening or
for automatic speech recognition (ASR). In the REVERB
challenge [1], a number of dereverberation methods were
benchmarked, which showed that both speech quality (nat-
uralness, distortion, perceived reverberation, etc.) and ASR
performance can be improved by dereverberation, and that
larger the number of microphones better the improvement. As
for ASR, [2], [3], [4], [5] show that, even for an advanced
ASR back-end with multi-condition training to account for
the reverberation effect, a standalone dereverberation front-
end is still helpful. The influence of reverberation on speech
intelligibility was analyzed in [6], [7], [8], [9] for both
normal- and hearing-impaired listeners. It was shown that, in
office rooms, reverberation alone does not severely degrade
speech intelligibility for normal-hearing listeners, while it
does for hearing-impaired listeners. Under noisy conditions,
reverberation significantly degrades speech intelligibility for
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both normal- and hearing-impaired listeners. It was shown in
[10] that, for normal-hearing listeners, dereverberation indeed
improves the tolerance of listeners to noise. Compared to
normal-hearing listeners, [11] showed that speech intelligibil-
ity for hearing-impaired listeners can be prominently improved
by dereverberation . The output of a dereverberation system
may include some early reflections, since they deteriorate
neither speech quality nor speech intelligibility [12].

Multichannel dereverberation includes the following differ-
ent techniques. Spectral enhancement techniques [13], [14],
[15], which are performed in the short-time Fourier trans-
form (STFT) domain, remove late reverberation by spectral
subtraction. To iteratively estimate the room filters and the
speech source signal, other techniques minimize a cost func-
tion between the microphone signal(s) and a generative model
thereof (or equivalently maximize an objective function). The
generative model here mainly indicates the convolutive model
between the room filters and the source signal, and sometimes
the source signal is assumed to be generated by a random
process. These techniques are also usually applied in the
STFT domain, where the time-domain RIR is represented by a
subband convolutive transfer function (CTF). An expectation-
maximization (EM) algorithm is used in [16] to maximize the
likelihood of the microphone signals. The idea is extended
to joint dereverberation and source separation in [17]. In
[18], [19], [20], a nonnegative convolution approximation is
assumed, namely the STFT magnitude of the microphone
signal is approximated by the convolution between the STFT
magnitude of the source signal and the CTF magnitude.
Based on this nonnegative model, tensor factorization [18],
iterative auxiliary functions [19] and iterative multiplicative
update [20] are used to minimize the fit cost between the
STFT magnitude of the microphone signal and its nonnegative
generative model. Inverse filtering techniques aim at inverting
the room convolution process and recovering the source signal.
Depending on the way inverse filters are estimated, inverse
filtering techniques can be classified into two groups:

• Linear prediction based techniques model the convolution
with the RIR as an auto-regressive (AR) process. This AR
process can be carried out either in the time domain or in
the STFT domain. In the linear-predictive multi-input equal-
ization (LIME) algorithm [21], the speech source signal
is estimated as the multichannel linear prediction residual,
which however is excessively whitened. The whitening
effect is then compensated by estimating the average speech
characteristics. To avoid such whitening effect, a prediction
delay is used in the delayed linear prediction techniques
[22], [23]. These techniques only model late reverberation
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into the AR process and leave early reflections of the speech
signal in the prediction residual. To account for the time-
varying characteristics of speech, the statistical model-based
approach [23] iteratively estimates the time-varying speech
variance and normalizes the linear prediction with this
speech variance. This variance-normalized delayed linear
prediciton method is also called weighted prediction error
(WPE);

• Techniques based on system identification first blindly iden-
tify the room filters. Then, the corresponding inverse filters
are estimated and applied on the microphone signals to
recover the source signal. The cross-relation method [24] is a
widely-used system identification method. Inverse filter esti-
mation techniques include the multiple-input/output inverse
theorem (MINT) method [25] and some of its variants, such
as channel shortening [26] and partial MINT [27]. In [28],
[29], the cross-relation method was applied in the STFT
domain for CTF estimation. Several variants of subband
MINT were proposed based on filter banks [30], [31] or
CTF model [32], [33].

For dynamic scenarios with moving speakers or speech turns
among speakers, an online dereverberation method is required.
Based on the CTF model, an online likelihood maximization
method was proposed in [34], [35] using a Kalman filter and an
EM algorithm. An online extension of LIME was proposed in
[36] using several different adaptive estimation criteria, such
as normalized least mean squares (LMS), steepest descent,
conjugate gradient and recursive least square (RLS). RLS-
based adaptive WPE (AWPE) [3], [37], [38], [39] became a
popular online dereverberation method. For example, it is used
by the Google Home smart loudspeaker device [2]. In AWPE,
the anechoic speech variance is estimated using a spectral
subtraction method in [38], and is simply approximated by
the microphone speech variance in [37], [3], [39]. In [40],
[41], a probabilistic model and a Kalman filter were used
to implement the delayed linear prediction method, which
can be seen as a generalization of the RLS-based AWPE. A
class of adaptive cross-relation methods were proposed in [42]
for online system identification, with the adaptive estimation
criteria of normalized LMS and multichannel Newton method.
Adaptive multichannel equalization methods were proposed in
[43], [44] based on time-domain MINT and gradient descent
update. These methods reduce the computational complexity
of the original MINT, however they were only used for offline
multichannel equalization in static scenarios.

In our previous work [29], a blind dereverberation method
was proposed in batch mode for static scenarios. This method
consists of a blind CTF identification algorithm and a sparse
source recovery algorithm. The CTF identification algorithm
is based on the cross-relation method. For source recovery,
instead of the complex-valued CTF convolution model, we
used its nonnegative convolution approximation [18], [19],
[20], since the latter was shown to be less sensitive to the
CTF perturbations than the former. More precisely, the STFT
magnitude of the source signal is recovered by solving a
basis pursuit problem that minimizes the `1-norm of the STFT
magnitude of the source signal while constraining the fit cost,

between the STFT magnitude of the microphone signals and
the nonnegative convolution model, to be below a tolerance.

In the present work, we propose an online dereverber-
ation method. First, we extend the batch formulation of
CTF identification in [29] to an adaptive method based on
an RLS-like recursive update. The RLS-like method has a
better convergence rate than the normalized LMS method
used in [42], which is crucial for its application in dynamic
scenarios. This adaptive CTF identification is carried out in
the complex domain, then the magnitude of the identified CTF
is used for online inverse filtering, based on the nonnegative
convolution model: the inverse filters of the CTF magnitudes
are adaptively estimated and applied to the STFT magnitude
of the microphone signals to obtain an estimate of the STFT
magnitude of the source signal. The inverse filters estimation
is based on the MINT theorem [25]. Due to the use of the
nonnegative CTF convolution model, the proposed magnitude
MINT is different from the conventional MINT methods, such
as [26], [27], [32], mainly in aspect to that multichannel
fusion and target response. Following the spirit of normalized
LMS, we propose to adaptively update the inverse filters based
on a gradient descent method. In summary, the proposed
method consists of two novelties i) an online RLS-like CTF
identification technique, and ii) an online STFT-magnitude
inverse filtering technique. To the best of our knowledge this is
the first time such procedures are proposed for online speech
dereverberation. Experimental comparison with AWPE shows
that the proposed method performs better for the moving
speaker case, mainly due to the use of the less sensitive
magnitude convolution model.

The remainder of this paper is organized as follows. The
adaptive CTF identification is presented in Section II. The
online STFT magnitude inverse filtering method is presented
in Section III. Experiments with two datasets are presented in
Section IV. Section V concludes the work.

II. ONLINE CTF IDENTIFICATION

We consider a system with I channels and one speech
source. In the time domain, the i-th microphone signal xi(n)
is

xi(n) = s(n) ? ai(n) + ei(n), i = 1, . . . , I (1)

where n is the time index, ? denotes convolution, s(n) is the
speech source signal, and ai(n) is the RIR from the speech
source to the i-th microphone. The additive noise term ei(n)
will be discarded in the following, since we do not consider
noise in this work. In the STFT domain, based on the CTF
approximation, we have

xi,p,k ≈ sp,k ? ai,p,k, i = 1, . . . , I (2)

where xi,p,k and sp,k are the STFT coefficients of the
corresponding signals, and the CTF ai,p,k is the subband
representation of the RIR ai(n). p = 1, . . . , P denotes the
STFT frame index and k = 0, . . . , N−1 denotes the frequency
index, P is the number of signal frames in a given processed
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speech sequence, and N is the STFT frame (window) length.
The convolution is executed along the frame index p. The
length of the CTF, denoted as Q, is assumed to be identical
for all frequency bins and is approximately equal to the length
of the corresponding RIR divided by L, where L denotes the
STFT frame shift.

A. Batch CTF Identification

In [29], we proposed a batch mode CTF identification
method in the complex domain. This method is based on the
following cross-relation between channels [24]:

xi,p,k ? aj,p,k = sp,k ? ai,p,k ? aj,p,k = xj,p,k ? ai,p,k. (3)

However, this equation cannot be directly used. The reason
is that, for the oversampling case (i.e. L < N ), there is a
common region with magnitude close to zero in the frequency
response of the CTFs for all channels, caused by the non-flat
frequency response of the STFT window. This common zero
frequency region is problematic for the cross-relation method.
It can be alleviated by using critical sampling (i.e. L = N ),
which however leads to a severe frequency aliasing of the
signals. To achieve a good trade-off, it was proposed in [29]
that the signal STFT coefficients are oversampled to avoid
frequency aliasing, but the multichannel CTF coefficients are
forced to be critically sampled to avoid the common zero
problem. More precisely, the Hamming window1 is used, and
we set L = N/4 and Lf = N , where Lf denotes the
frame step of CTF. Since the channel identification algorithm
presented in this section and the inverse filtering algorithm
presented in the next section are both applied frequency-wise,
hereafter the frequency index k will be omitted for clarity of
presentation.

Based on the oversampled CTF ai,p, the critically
sampled CTF is defined in vector form as ãi =
[ai,0, ai,4, . . . , ai,4(Q̃−1)]

>, where > denotes matrix/vector
transpose and Q̃ = dQ/4e (d·e is the ceiling function). In
accordance with this critically sampled CTF, (2) should be
reformulated with critically sampled source STFT coefficients.
However, such reformulation of (2) is actually not used. In-
stead, in the following CTF identification and inverse filtering
methods, the filtering process is applied to the microphone sig-
nals, thence the STFT coefficients of microphone signals will
be critically sampled. From the oversampled STFT coefficients
of microphone signals, we define the convolution vector as
x̃i,p = [xi,p, xi,p−4, . . . , xi,p−4(Q̃−1)]

>, p = 1, . . . , P . Note
that, when p < 4(Q̃ − 1) + 1, the vector x̃i,p is constructed
by padding zeros. Then, the cross-relation can be recast as

x̃>i,pãj = x̃>j,pãi. (4)

This convolution formulation can be interpreted as that 3/4
of the original oversampled CTF coefficients are forced to be
zero. This cross-relation is defined for each microphone pair.

1Other commonly used windows, such as Hanning and Sine windows, are
also applicable.

To present the cross-relation equation in terms of the CTF of
all channels, i.e.

ã = [ã>1 , ã
>
2 , . . . , ã

>
I ]>, (5)

we define:

x̃ij,p = [0, . . . , 0︸ ︷︷ ︸
(i−1)Q̃

, x̃>j,p, 0, . . . , 0︸ ︷︷ ︸
(j−i−1)Q̃

,−x̃>i,p, 0, . . . , 0︸ ︷︷ ︸
(I−j)Q̃

]>, j > i.

(6)

Then the cross-relation (4) can be written as:

x̃>ij,pã = 0. (7)

There is a total of M = I(I − 1)/2 distinct microphone
pairs, indexed by (i, j) with j > i. For notational convenience,
let m = 1, . . . ,M denote the microphone-pair index. Then let
the subscript ij be replaced with m. For the static speaker case,
the CTF ã is time-invariant, and can be estimated by solving
the following constrained least square problem in batch mode:

min
P∑
p=1

M∑
m=1

|x̃>m,pã|2 s.t. g>ã = 1, (8)

where | · | denotes the (entry-wise) absolute value, and g is a
constant vector

g = [1, 0, . . . , 0︸ ︷︷ ︸
Q̃−1

, 1, 0, . . . , 0︸ ︷︷ ︸
Q̃−1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
Q̃−1

]>. (9)

Here we constrain the sum of the first entries of the I CTFs
to be equal to 1, i.e.

∑I
i=1 a

i
0 = 1. As discussed in [29], in

contrast to the eigendecomposition method proposed in [24],
this contrained least square method is robust against noise
interference. The solution to (8) is

ă =
R−1g

g>R−1g
, (10)

where R is the sample covariance matrix of the microphone
signals, i.e. R =

∑P
p=1

∑M
m=1 x̃

∗
m,px̃

>
m,p.

B. Recursive CTF Identification

In dynamic scenarios, the CTF vector ã is time-varying,
is thus rewritten as ã(p) to specify the frame-dependency.
Note that we need to distinguish the superscript (p), which
represents the time index with respect to the online update,
from the subscript p, which represents the frame index of
the signals and filters. At frame p, ã(p) can be caculated
by (10) using the microphone signals at frame p and recent
frames. However, this requires a large amount of inverse
matrix calculations, which is computationally expensive. In
this work, we adopt the RLS-like algorithm for recursive CTF
identification. At the current frame p, RLS aims to solve the
minimization problem

min
p∑

p′=1

λp−p
′
( M∑
m=1

|x̃>m,p′ ã(p)|2
)

s.t. g>ã = 1. (11)
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The forgetting factor λp−p
′

with λ ∈ (0, 1] gives exponen-
tially decaying weight to older frames. This time-weighted
minimization problem can be solved using (10) with R
replaced with a frame-dependent sample covariance matrix
R(p) =

∑p
p′=1 λ

p−p′(
∑M
m=1 x̃

∗
m,p′ x̃

>
m,p′), namely

ă(p) =
(R(p))−1g

g>(R(p))−1g
. (12)

R(p) can be recursively updated as

R(p) = λR(p−1) +

M∑
m=1

x̃∗m,px̃
>
m,p. (13)

The covariance matrix is updated in M steps, where each step
modifies the covariance matrix by adding a rank-one matrix
x̃∗m,px̃

>
m,p, m = 1, . . . ,M . To avoid explicit inverse matrix

computation, instead of R(p) itself, we recursively estimate
its inverse (R(p))−1 based on the Sherman-Morrison formula
(14). This procedure is summarized in Algorithm 1, where the
Sherman-Morrison formula is applied in each of M loops. As
an initialization, we set (R(0))−1 to 1, 000I, where I denotes
identity matrix. The computational complexity of Algorithm 1
is proportional to the squared number of microphones. It is
found by experiments that the microphone pairs are actually
highly redundant for CTF estimation. Therefore, in practice,
only the I − 1 microphone pairs that involve one specific
microphone, e.g. the first microphone, are used. This achieves
similar performance with using all microphone pairs.

Algorithm 1 Recursive estimation of (R(p))−1 at frame p

Inputs: x̃m,p, m = 1, . . . ,M ; (R(p−1))−1

Initialization: P← λ−1(R(p−1))−1

for each microphone pair m = 1 to M do

P← P− (Px̃∗m,px̃
>
m,pP)/(1 + x̃>m,pPx̃∗m,p) (14)

end for
Output: (R(p))−1 ← P

The number of frames used to estimate ã(p) should be
proportional to the length of the critically sampled CTF, i.e. Q̃,
and is thus denoted with P̃ = ρQ̃. On the one hand, a large P̃
is required to ensure estimation accuracy. On the other hand, P̃
should be set as small as possible to reduce the dependency
of the estimation on the past frames, namely to reduce the
latency of the estimation, which is especially important for the
moving speaker case. Similar to the RIR samples, the critically
sampled CTF coefficients can be assumed to be temporally
uncorrelated. However, the microphone signals STFT coeffi-
cients are highly correlated due to the temporal correlation
of time-domain speech samples and to the oversampling of
signals STFT coefficients (i.e. large overlapping of STFT
frames). Empirically, we set ρ = 2.5 × 4 = 10, where the
factor 4 is used to compensate the signal oversampling effect.
To approximately have a memory of P̃ frames, we can set
λ = P̃−1

P̃+1
.

III. ADAPTIVE STFT MAGNITUDE INVERSE FILTERING

In [29], it was found that the estimated complex-valued CTF
is not accurate enough for effective inverse filtering, due to
the influence of noise interference and the frequency aliasing
caused by critical sampling. To reduce the sensitivity of the
inverse filtering procedure to the CTF perturbations, instead
of the complex-valued CTF convolution (2), its magnitude
approximation was used, i.e.

|xi,p| ≈ |sp| ? |ai,p|, i = 1, . . . , I. (15)

This magnitude convolution model is widely used in the
context of dereverberation, e.g. [18], [19], [20]. In [32], [33],
we proposed a MINT method based on the complex-valued
CTF convolution for multisource separation and dereverbation.
In the present work, we adapt this MINT method to the
magnitude domain, and develop its adaptive version for online
dereverbation.

A. Adaptive MINT in the Magnitude Domain

The CTF estimate of each channel, denoted by ă
(p)
i , i =

1, . . . , I , can be extracted from ă(p). Let ā
(p)
i = |ă(p)

i |
denote the CTF magnitude vector, and ā

(p)
i,0 , . . . , ā

(p)

i,Q̃−1
its

elements. Define the inverse filters of ā
(p)
i in vector form

as h
(p)
i ∈ RÕ×1, i = 1, . . . , I , where Õ is the length of

the inverse filters, which is assumed to be identical for all
channels. Note that both ā

(p)
i and h

(p)
i are critically sampled.

To apply the magnitude inverse filtering using h
(p)
i , we con-

struct the STFT magnitude vector of microphone signals as
x̄i,p = [|xi,p|, |xi,p−4|, . . . , |xi,p−4(Õ−1)|]>. The output of the
multichannel inverse filtering is given by

s̄p =

I∑
i=1

h
(p)>
i x̄i,p. (16)

This output should target the STFT magnitude of the source
signal, i.e. |sp|.

To this aim, the multichannel equalization, i.e. MINT,
should target an impulse function, namely

I∑
i=1

Ā
(p)
i h

(p)
i = d, (17)

where the impulse function d is defined by d =
[1, 0, . . . , 0]

> ∈ R(Q̃+Õ−1)×1, and the convolution matrix
Ā

(p)
i is defined by

Ā
(p)
i =



ā
(p)
i,0 0 · · · 0

ā
(p)
i,1 ā

(p)
i,0

. . .
...

...
. . . . . .

...

ā
(p)

i,Q̃−1

...
. . . 0

0 ā
(p)

i,Q̃−1

. . .
...

...
. . . . . .

...
0 · · · 0 ā

(p)

i,Q̃−1


∈ R(Q̃+Õ−1)×Õ

≥0 .

(18)



5

In a more compact form, we can write

Ā(p)h(p) = d, (19)

where Ā(p) = [Ā
(p)
1 , . . . , Ā

(p)
I ] ∈ R(Q̃+Õ−1)×IÕ

≥0 and h(p) =

[h
(p)>
1 , . . . ,h

(p)>
I ]> ∈ RIÕ×1. The inverse filter estimation

amounts to solving problem (19), or equivalently minimizing
the squared error

J (p) =‖ Ā(p)h(p) − d ‖2, (20)

where ‖ · ‖ denotes `2-norm. The size of Ā(p) can be adjusted
by tuning the length of the inverse filter, i.e. Õ. If Ā(p) is
square or wide, i.e. (Q̃+Õ−1) ≤ IÕ and thus Õ ≥ Q̃−1

I−1 , (19)
has an exact solution and (20) can reach zero. Otherwise, (19)
is a least square problem, and only an approximate solution
can be achieved.

The minimization of (20) has a closed-form solution. How-
ever, this needs the computation of an inverse matrix for each
frame and frequency, which is computationally expensive. In
this work, we propose to adaptively estimate h(p) following the
principle of normalized LMS. For a summary of normalized
LMS design and analysis, please refer to Chapter 10.4 of [45].
The proposed LMS-like adaptive estimation method presented
in the following is based on a stationary filtering system, but
can be directly used for the nonstationary case due to its
natural adaptive characteristic. In a stationary system, the filter
to be estimated, i.e. the inverse filter h in the present work, is
assumed to be time-invariant. The aim of LMS is to adaptively
minimize the mean squared error E[J ], where E[·] denotes
expectation. Note that with the superscript (p) removed, h
and J denote the stationary filter and the (stationary) random
variable for the squared error, respectively. At frame p, the
instantaneous filtering process in (19) and the squared error
(20) are a random instance of the stationary system. At frame
p, the adaptive update uses the gradient of the instantaneous
error J (p) at the previous estimation point h(p−1), i.e.

∆J (p)|h(p−1) = 2Ā(p)>(Ā(p)h(p−1) − d). (21)

An estimate of h(p) based on the gradient descent update is

h(p) = h(p−1) − µ

Tr(Ā(p)>Ā(p))
∆J (p)|h(p−1) , (22)

where Tr(·) denotes the matrix trace, and µ
Tr(Ā(p)>Ā(p))

is
the step-size for gradient descent. The normalization term

1
Tr(Ā(p)>Ā(p))

is set to make the gradient descent update
converge to an optimal solution, namely to ensure the update
stability. It is proven in [45] that, to guarantee the stability,
the step-size should be set to be lower than 1

Tr(E[Ā>Ā])
, where

Ā denotes the (stationary) random variable for the CTF con-
volution matrix. Following the principle of normalized LMS,
we replace the expectation E[Ā>Ā] with the instantaneous
matrix Ā(p)>Ā(p). The matrix trace can be computed as
Tr(Ā(p)>Ā(p)) = Q̃

∑I
i=1 ā

(p)>
i ā

(p)
i . The constant step factor

µ (0 < µ ≤ 1) should be empirically set to achieve a
good tradeoff between convergence rate (and tracking ability
in a dynamic scenarios with time-varying CTFs) and update
stability.

Algorithm 2 Adaptive STFT magnitude inverse filtering at
frame p

Input: ă(p) computed by (12) and h(p−1).
1 Construct Ā(p) using (18),
2 Compute gradient ∆J (p)|h(p−1) using (21),
3 Update inverse filter h(p) using (22),
4 Estimate the speech signal STFT magnitude s̄p with
inverse filtering (16).
Output: s̄p and h(p).

The proposed magnitude inverse filtering method is sum-
marized in Algorithm 2, which is recursively executed frame
by frame. As an initialization, we set h(0) to a vector with all
entries being zero.

B. Multichannel Processing

In the time-domain and complex-valued CTF MINT meth-
ods, e.g., [27], [32], [46], the optimal inverse filtering perfor-
mance is achieved by setting the length of the inverse filter to
the smallest value that makes Ā(p) be square or slightly wide,
i.e. Õ = d Q̃−1

I−1 e. This means Õ becomes smaller with the
increase of the number of channels. However, for the present
magnitude inverse filtering method, this configuration is only
suitable for the two-channel case. For the two-channel case,
the length of the inverse filters Õ = Q̃−1 is close to the CTF
length Q̃, and in our experiments we actually set Õ = Q̃. The
STFT magnitude of the microphone signals for the current
frame includes the information of the past Q̃−1 frames of the
speech source signal due to the CTF convolution. Therefore, it
is reasonable that the magnitude inverse filtering at the current
frame uses the past Q̃ − 1 frames of the microphone signals
to remove the reflections.. When the number of channels is
larger than two, the configuration Õ = d Q̃−1

I−1 e leads to a
very small Õ, since the length of the critically sampled CTF,
i.e. Q̃, is already relatively small. As will be shown in the
experiments section, Q̃ is related to both the STFT setting
and the reverberation time, and is set to 4 in this work. For
the time-domain and complex-valued CTF MINT methods
[27], [32], [46], dereverberation is guaranteed by solving the
multichannel MINT equation, regardless of the length of the
inverse filter, since the time-domain and CTF convolutions are
exactly evaluated. By contrast, the magnitude convolution (15)
is a rough approximation. Even if the magnitude MINT (19)
can be exactly solved with a very small Õ, experiments show
that the resulting magnitude inverse filtering is not able to
efficiently suppress reverberation.

As detailed below, we propose two multichannel processing
schemes suitable for the present magnitude inverse filtering
method. They are both evaluated in Section IV.

1) Multichannel magnitude MINT with Õ = Q̃ regardless of
the number of channels: This exactly follows the formulations
presented in Section III-A. The setting Õ = Q̃ is motivated
by the principle that, as is done for the two-channel case,
the reflection magnitude of the past Q̃ − 1 frames should be
subtracted from the magnitude of the current frame.
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2) Pairwise magnitude MINT: First, the adaptive MINT
(and inverse filtering) presented in Section III-A is separately
applied for each microphone pair. Then the estimates of the
source magnitude obtained by all the M microphone pairs are
averaged as a new source magnitude estimate, which is still
denoted by s̄p for brevity. The source magnitude estimates
provided by the different microphone pairs are assumed to be
independent, thence the average of them is hopefully suffering
from lower interferences and distortions than each of them.

C. Postprocessing

The above STFT magnitude inverse filtering does not
automatically guarantee the non-negativity of s̄p, which is
infeasible solution for the STFT magnitude of the source
signal. Negative values generally appear for the microphone
signal frames with a magnitude that is considerably smaller
than the magnitude in the preceding frames. Indeed, in that
case, applying negative inverse filter coefficients to the pre-
ceding frames produces a negative magnitude estimate. Such
frames are normally following a high-energy speech region,
but themselves include very low source energy or purely
reverberations. To overcome this, one way is to add the non-
negativity constraint of the inverse filtering output to (20),
which however leads to a larger complexity for both algorithm
design and computation. Instead, we constrain the lower limit
of the STFT magnitude of source signal according to the
(averaged) STFT magnitude of microphone signals. Formally,
the final estimate of the STFT magnitude of source signal is

šp = max(s̄p, Gmin
1

I

I∑
i=1

|xi,p|), (23)

where Gmin is a constant lower limit gain factor. This type
of lower limit is widely used in single-channel speech en-
hancement methods, e.g. in [47], mainly to keep the noise
naturalness. In the experiments described below, about 20%
of TF bins are modified by this constraint.

Finally, the STFT phase of one of the microphone signals,
e.g. the first microphone is used in this work, is taken as the
phase of the estimated STFT coefficient of source signal, i.e.
we have ŝp = špe

j arg[x1
p], where arg[·] is the phase of complex

number. The time-domain source signal ŝ(n) is obtained by
applying the inverse STFT. Note that the MINT formulation
(19) implies that the proposed inverse filtering method aims
at recovering the signal corresponding to the first CTF frame,
which not only includes the direct-path impulse response, but
also the early reflections within the duration of one STFT
frame. As a result, the estimated source signal ŝ(n) includes
both the direct-path source signal and its early reflections
within N/fs seconds following the direct-path propagation,
where fs is the signal sampling rate.

D. Difference from Conventional MINT Methods

Due to the use of i) the magnitude convolution model, ii) the
critically sampled CTFs and inverse filters, and iii) the adaptive

update of the inverse filters, the present adaptive MINT method
is largely different from the complex-valued CTF MINT [32],
[33] and the time-domain MINT, such as [26], [27], [46], [48],
[49]. Besides the pairwise processing scheme, the two main
differences are the following.

1) Desired Response of MINT: In many time-domain meth-
ods, to improve the robustness of MINT to microphone noise
and filter perturbations, the target function (desired response)
is designed to have multiple non-zero taps. This can be done
either by explicitly filling the target function with multiple
non-zero taps, such as the partial MINT in [27], or by relaxing
the constraint for some taps, such as the relaxed multichannel
least-squares in [46]. This way, the desired response with mul-
tiple non-zero taps includes both the direct-path propagation
and some early reflections. In the present work, the impulse
function d is used as the desired response of MINT in the CTF
domain, namely only one non-zero tap is sufficient, since one
tap of CTF corresponds to a segment of RIR that includes
both direct-path propagation and early reflections.

It was shown in [32], [33] that, due to the effect of short time
STFT windows, the oversampled CTF of multiple channels
have common zeros, which is problematic for MINT. A target
function incorporating the information of the STFT windows
was proposed to compensate the common zeros. In the present
work, the critically sampled CTFs do not suffer from this
problem.

A modeling delay is always used in the time-domain MINT
and complex-valued CTF MINT methods, i.e., in the target
function, a number of zeros are inserted prior to the first non-
zero tap. It is shown in [32], [48] that the optimal length of
the modeling delay is related to the direct-path tap and the
length of the room filters. In the present method, the room
filters, i.e. CTFs, are blindly estimated, with the direct-path
lying in the first tap. In addition, the CTF length is very small
as mentioned above. Therefore, the modeling delay is set to
0, which achieved the best performance in our experiments.

2) Energy Regularization: An energy regularization is used
in [27], [32], [48] to limit the energy of the inverse filters
derived by MINT, since high energy inverse filters will amplify
microphone noise and filter perturbations. For example, in the
present problem, the optimal MINT solution could have a very
large energy, especially when the matrix Ā(p)>Ā(p) is ill-
conditioned. However, for the proposed method, the inverse
filters are adaptively updated based on the previous estimation.
The step size is set with guaranteed update stability. Thence,
the energy of the inverse filters will not be boosted once the
inverse filters are properly initialized.

IV. EXPERIMENTS

A. Experimental Configuration

1) Dataset: We evaluate the proposed method using two
datasets.



7

a) The REVERB challenge dataset [1]: We used the eval-
uation set of SimData-room3 and RealData datasets. SimData-
room3 was generated by convolving clean signals from the
WSJCAM0 dataset with RIRs measured in a room with rever-
beration time T60 = 0.7 s, and adding pre-recorded stationary
ambient noise with an SNR of 20 dB. The microphone-to-
speaker distances are 1 m (near) and 2 m (far). For these two
distances, the direct-to-reverberation ratios (DRRs) are 10.6
dB and 1.0 dB, respectively, and the early-to-late reverberation
ratios (C50) are 14.9 dB and 6.3 dB, respectively. RealData
was recorded in a noisy room with T60 = 0.7 s (different room
than SimData-room3) and where humans pronounce MC-WSJ-
AV utterances [50] microphone-to-speaker distances of 1 m
(near) and 2.5 m (far). We used the data captured with two
microphones (2-ch) or an eight-channel circular microphone
array (8-ch).

We tested the automatic speech recognition (ASR) perfor-
mance obtained with the enhanced signals, in addition to the
speech enhancement performance. The ASR system provided
by [51], [52], with the Kaldi recipe,2 is taken as the baseline
system. This system uses Mel-frequency cepstral coefficients
(MFCC) and iVector [53] features, time-delay neural network
(TDNN) acoustic model, and the WSJ 5k vocabulary and
trigram language model. TDNN is capable to learn the long-
term temporal dynamics of speech signals including the effects
of reverberation. TDNN is trained using the multi-condition
WSJCAM0 training dataset. The eight-channel multi-condition
data are generated by convolving the 7,861 utterances of
clean WSJCAM0 training signals with real recorded RIRs, and
adding pre-recorded stationary ambient noise with an SNR
of 20 dB. The eight-channel multi-condition data are then
speed-perturbed with speed factors of 0.9, 1 and 1.1. In total,
7, 861 × 8 × 3 = 188, 664 reverberant and speed-perturbed
multi-condition utterances are used for TDNN training, which
represents a total speech signal duration of about 373 hours.
To account for the online nature of the proposed method, the
online ASR decoding provided in the REVERB Kaldi recipe
is used.

b) The Dynamic dataset [35]: This dataset was recorded
by an eight-channel linear microphone array and a close-talk
microphone in a room with T60 = 0.75 s. The average DRR
and C50 values for this dataset are −5.5 dB and 3.0 dB,
respectively. The recording SNR is about 20 dB. Four human
speakers read an article from the New-York Times. Speakers
could be static, or moving slightly, such as when standing up,
sitting down and turning their head, or moving largely such as
moving from one point to another. Speakers could be facing or
not facing the microphone array. The total length of the dataset
is 48 minutes. We split the data into three subsets: i) A subset
with speakers being static and facing the microphone array
(Static-FA). Note that some slight movements are inevitable
even if human speakers are asked to be static; ii) Static and
not facing the array (Static-NFA), and iii) Moving from one
point to another. We used the central two channels (2-ch) or all
the eight channels (8-ch). As for ASR, some pilot experiments

2https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb

show that the REVERB recognizer performs poorly for this
dataset, since a number of words in this dataset are not in the
WSJ 5k vocabulary. Instead, we used Google Cloud Speech-
to-Text3 to conduct the ASR experiment on this dataset.

2) Parameter Settings: The following parameter settings
are used for both datasets, and all the experimental conditions.
The sampling rate is 16 kHz. The STFT uses a Hamming
window with length of N = 768 (48 ms) and frame step
L = N/4 = 192 (16 ms). As a result, the 48 ms early
reflections will be preserved in the dereverberated signal. It
is shown in [54] that, to achieve a better ASR performance,
early reflections should be removed as much as possible when
late reverberation is perfectly removed. However, when the
remaining late reverberation is not low, ASR performance
benefits from preserving more early reflections up to 50 ms.
Therefore, as we are dealing with adverse acoustic conditions,
such as intense reverberation/noise or moving speakers, where
late reverberation cannot be perfectly suppressed, we have
decided to preserve the early reflections in the first 48 ms. The
CTF length Q (and Q̃) is related to the reverberation time, and
is the only prior knowledge that the proposed method requires.
It is set to Q = 16 (and Q̃ = 4), which covers the major part
of the RIRs, and also excludes a heavy tail. According to the
CTF length, the forgetting factor λ is set to 40−1

40+1 ≈ 0.95.
The constant step factor µ is set to 0.025. The constant lower
limit gain factor Gmin is set to correspond to −15 dB. These
parameters are set to achieve the best ASR performance for
the RealData subset of the REVERB challenge dataset, and
are directly used for other experimental conditions.

3) Comparison Method: We compare the proposed method
with the adaptive weighted prediction error (AWPE) method
presented in [3]. The STFT uses a Hanning window with a
length of 512 (32 ms) and frame step of 128 (8 ms). For
the 2-ch and 8-ch cases, the length of the linear prediction
filters is set to 16 and 8, respectively. The prediction delay
is set to 6 to also involve 48 ms of early reflections in the
dereverberated signal. In RLS, the length of the prediction
filter vector to be estimated is equal to the length of the filters
times the number of channels. Some pilot experiments show
that, to obtain the optimal performance, the number of frames
used to estimate the prediction filter vector should be set to
be twice the vector length. Accordingly, the forgetting factor
in RLS is set to 0.97 and 0.985 for the 2-ch and 8-ch cases,
respectively. The first channel is taken as the target channel.
Note that these parameters are also set to achieve the best ASR
performance for RealData of REVERB challenge dataset, and
are directly used for other experimental conditions.

To evaluate the effectiveness of the online realization of
AWPE and the proposed method, we also conducted exper-
iments using these methods implemented in offline (batch)
mode. i) For the REVERB challenge dataset, the offline WPE
is tested. We used the Python software package [4], which is
integrated in the REVERB kaldi recipe. We adopted the WPE
parameters as set by the authors of REVERB kaldi recipe,
which are supposed to have been optimally tuned. The STFT

3https://cloud.google.com/speech-to-text/
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TABLE I: SRMR, PESQ and STOI metrics (larger the better) for the REVERB challenge dataset.

SRMR PESQ STOI
SimData-room3 RealData SimData-room3 SimData-room3

ch near far Average near far Average near far Average near far Average

unproc. 2.35 2.29 2.32 2.29 2.20 2.24 1.89 1.55 1.72 0.89 0.71 0.80
2-ch BWPE 2.44 2.42 2.43 2.55 2.54 2.55 2.06 1.67 1.87 0.92 0.78 0.85

AWPE 2.61 2.84 2.73 2.99 2.98 2.99 2.32 1.77 2.05 0.78 0.76 0.77
SMIF (ours) 2.51 2.63 2.57 2.83 2.76 2.80 2.25 1.74 2.00 0.77 0.73 0.75

8-ch BWPE 2.49 2.59 2.54 2.79 2.83 2.81 2.38 2.10 2.24 0.94 0.87 0.91
AWPE 2.60 2.89 2.75 3.04 3.01 3.03 2.48 1.90 2.19 0.80 0.79 0.80
SMIF-MC (ours) 2.50 2.64 2.57 2.88 2.80 2.84 2.35 1.78 2.07 0.76 0.74 0.75
SMIF-PW (ours) 2.51 2.72 2.62 2.94 2.87 2.91 2.40 1.84 2.12 0.78 0.75 0.77

configuration was the same as our AWPE implementation,
namely using Hanning window with a length of 512 and a
frame step of 128. The prediction delay is set to 3. The length
of the linear prediction filters was set to 10 for both the 2-ch
and 8-ch cases. The number of iterations for speech variance
estimation was set to 5. We refer to this offline WPE as
BWPE (batch WPE). ii) For the Dynamic dataset, the batch
mode counterpart of the proposed method was tested. The CTF
identification was conducted in batch mode using (10). Since
the magnitude MINT in batch mode has not been investigated,
we used the adaptive magnitude MINT presented in Section
III for inverse filtering, where the inverse filter h(p) quickly
converged to a constant due to the use of the constant offline
estimated CTF.

4) Performance Metrics: To evaluate the speech enhance-
ment performance, three measures are used, i) a non-intrusive
metric, i.e. normalized speech-to-reverberation modulation en-
ergy ratio (SRMR) [9], which mainly measures the amount
of reverberation and noise, and also reflects the speech intel-
ligibility; and two intrusive metrics ii) perceptual evaluation
of speech quality (PESQ) [55] evaluates the quality of the
enhanced signal in terms of both reverberation reduction
and speech distortion; iii) short-time objective intelligibility
(STOI) [56] is a metric that highly correlates with speech
intelligibility. To measure PESQ and STOI, the clean source
signal is taken as the reference signal. For the Dynamic
dataset, the close-talk recording is taken as the source signal.
For RealData of the REVERB challenge dataset, the clean
signals are not available, thus neither PESQ nor STOI metrics
are reported in this case. For these three metrics, the larger the
better. The ASR performance is measured with the percentage
of word error rate (WER): the lower the better. Note that all
the tested methods do not perform noise reduction, thence the
outputs used to calculate the metrics may contain some amount
of noise.

B. Results for the REVERB Challenge Dataset

In the REVERB challenge dataset, each subset involves sev-
eral hundreds of individual signals, with each signal being one
utterance spoken by one static speaker. The relative speaker-
microphone position changes from utterance to utterance. To
simulate a realistic turn-taking scenario, for each subset, all the
individual signals are first concatenated as a long signal, which

is then processed by the online dereverberation methods, i.e.
AWPE and the proposed method. The long enhanced signal
is finally separated corresponding to the original individual
signals. For BWPE, the individual signals are separately
processed. The perfomance measures are computed using the
individual enhanced signals.

1) Speech Enhancement Results: We refer to the proposed
method as SMIF (Spectral Magnitude Inverse Filtering). For
the multichannel case, the two schemes proposed in Section
III-B, i.e. multichannel processing and pairwise processing,
are refered to SMIF-MC and SMIF-PW, respectively. Table I
presents the speech enhancement results. As for the pro-
posed method, compared to the 2-ch case, the 8-ch SMIF-
MC method improves the SRMR and PESQ metrics on
RealData, and achieves identical SRMR and STOI metrics
on the SimData-room3 data. The 8-ch SMIF-PW method
systematically outperforms the 2-ch case and the 8-ch SMIF-
MC method. This indicates that, for the SMIF-MC method, the
magnitude inverse filtering accuracy can be improved by using
more microphones, however the improvement is not always
significant in terms of speech enhancement metrics. In the 8-
ch SMIF-PW method, the average of pairwise source estimates
successfully suppress the interferences and distortions of the
one-pair source estimates. Informal listening tests show that
the residual late reverberation can be sometimes noticeably
perceived for the 2-ch case, while it is not clearly audible for
the 8-ch case.

For all conditions and for all metrics, AWPE outperforms
the proposed method, especially the gaps between SRMR met-
rics are noticeable, see Table I. The proposed method is based
on the STFT-magnitude convolution and inverse filtering,
which is a coarse approximation of the real filtering process.
By contrast, AWPE is based on a more accurate complex-
valued inverse filtering. As a result, the dereverberated signals
obtained with the proposed method are likely to have more late
reverberation, extra noise and speech distortions, especially for
the 2-ch case. Relative to the unprocessed signal, AWPE and
the proposed method slightly improve the STOI metrics for
the far case, but reduce the STOI metrics for the near case.
This is possibly because the parameters are set based on the
RealData data, and in particular the length of the (inverse)
filters may be too large for the near simulation data.

Compared to AWPE, BWPE achieves worse SRMR and 2-
ch PESQ metrics, and better 8-ch PESQ and STOI metrics.
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TABLE II: WER (%) for the REVERB challenge dataset.

SimData-room3 RealData
ch near far Average near far Average

unproc. 5.08 8.08 6.58 20.95 21.27 21.11
2-ch BWPE 4.55 6.95 5.75 15.65 15.77 15.71

AWPE 5.37 7.28 6.33 15.36 16.21 15.79
SMIF (ours) 5.01 7.16 6.09 15.30 16.04 15.67

8-ch BWPE 4.04 4.96 4.50 12.20 13.17 12.69
AWPE 4.65 6.07 5.36 12.26 13.54 12.90
SMIF-MC (ours) 4.53 6.34 5.44 13.09 14.11 13.60
SMIF-PW (ours) 4.53 5.98 5.26 13.00 14.48 13.74

Generally speaking, BWPE would outperform AWPE if the
same parameters were set for both methods, since the speech
variance estimate of BWPE is more accurate than the one
for AWPE, where the former is iteratively estimated while
the latter is approximated by the microphone speech variance.
The performance difference between BWPE and AWPE is
mainly due to their different prediction delays, i.e. 3 and 6
respectively. A larger prediction delay preserves more early
reverberation, which promotes the SRMR metrics, but leads
to a larger difference with the clean direct-path signal.

2) ASR Results: Table II presents the WER. It is seen
that the present baseline WERs are already very advanced
compared with the REVERB challenge WERs reported in [1].
The baseline WERs are noticably reduced by all the tested
methods. For instance, as for RealData, the proposed method
achieves 25.8%, 35.6% and 34.9% relative WER improvement
with 2-ch, 8-ch SMIF-MC and SMIF-PW schemes, respec-
tively. In contrast to the speech enhancement metrics presented
in Table I, the ASR performance of the proposed 8-ch SMIF-
MC method is noticeably better than the one of the 2-ch case,
and is comparable to the one of the 8-ch SMIF-PW method.
This means the speech quality improvement caused by the 8-ch
SMIF-MC method over the 2-ch case can be well recognized
by the ASR system.

Approximately, the proposed method achieves comparable
ASR performance with AWPE. Compared with AWPE, the
remaining late reverberation and extra noise caused by the
proposed method degrades the speech enhancement metrics
as shown in Table I, but can be tackled by the well-trained
TDNN acoustic model.

AWPE does not perform as well as BWPE for SimData-
room3, but is comparable to BWPE for RealData. As men-
tioned above, AWPE preserves more early reflections, which
is beneficial for the more challenging RealData, since the late
reverberation cannot be well suppressed. Concerning the Real-
Data, it is possible to further improve the BWPE parameters.
However, the parameter tuning for BWPE is out of the scope
of this work.

3) Dereverberation Performance under Noisy Conditions:
To evaluate the sensitivity of the proposed method to noise,
experiments for the SimData-room3 far data are conducted
with various SNRs. Fig. 1 shows the results. As expected,
the performance of the proposed method decreases with the
decrease of SNR, and it has a similar decrease rate with the
performance of AWPE. In terms of SRMR, the performance of

Fig. 1: Dereverberation performance as a function of SNR, for the
SimData-room3 far data.

the two methods have a similar decrease rate with the one of
the unprocessed signals, and the performance improvement of
the two methods over the unprocessed signals is still significant
when SNR is low, e.g. 0 dB. For PESQ and STOI, the
performance metrics of the two methods gradually approach
the metrics of the unprocessed signals with the decrease of
SNR. This means these two metrics are dominated by the
intense noise for the low SNR cases. The WER improvement
of the two methods over the unprocessed signals are even
larger for the low SNR cases than for the high SNR cases. This
indicates that reverberation degrades the ASR performance
more significantly when it is combined with noise than itself
alone, and the two methods are able to efficiently suppress
reverberation under intense noise condition.

C. Results for Dynamic Dataset

Fig. 2 presents the dereverberation results for the three
subsets in the Dynamic dataset. For the unprocessed data, all
the performance measures are bad due to the intense reverber-
ation. The Static-NFA set has the lowest SRMR and PESQ
metrics. When speakers do not face the microphones, the
direct-path speech signal received by microphones becomes
smaller relative to the reverberation and ambient noise, in other
words the microphone signals are more reverberated and noisy.
The Moving case has the lowest STOI metrics. The WER
clearly increases from the Static-FA set to the Static-NFA and
Moving sets.

For all conditions and performance metrics, the proposed
8-ch SMIF-MC and SMIF-PW methods perform similarly,
thence we will not distinguish them in the following. For
both AWPE and the proposed method, the SRMR performance
slightly degrades from the Static-FA set to the Static-NFA
set, and further noticeably degrade for the Moving set. AWPE
achieves larger PESQ metrics than the proposed method for
the static cases, but has a large performance degradation for the
Moving set. By contrast, the proposed method achieves even
larger PESQ metrics for the Moving set. In terms of STOI,
the two methods perform similarly for the static cases, and the
proposed method outperforms AWPE for the Moving set. As
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Fig. 2: Dereverberation performance, i.e. SRMR, PESQ, STOI
metrics and WER (from top to bottom), for the Dynamic dataset. The
WER of close-talk signals for the three subsets are 22.1%, 24.2% and
14.4%, respectively.

for ASR, the proposed method outperforms AWPE, especially
for the Moving set. Overall, the performance measures show
the comparable dereverberation capability of AWPE and the
proposed method for the static speaker cases, and show the
superiority of the proposed method for the moving speaker
case. The Dynamic dataset is more challenging than the RE-
VERB dataset in terms of adaptive (inverse) filter estimation
mainly due to its lower DRR and C50. In addition, the moving
speaker case suffers a larger filter estimation error compared
to the static speaker case, due to the imperfect tracking ability.
Compared to the complex-valued inverse filtering in AWPE,

the proposed STFT magnitude inverse filtering is less sensitive
to additive noise, filter perturbations and other unexpected
distortions [1].

The batch mode counterpart of the proposed method, re-
ferred to as SMIF-Batch in Fig. 2, uses eight microphones and
the pairwise scheme of magnitude inverse filtering. The speech
enhancement and ASR performance measures of the batch
method are not consistent. Compared to the online method,
on the one hand, the batch method achieves worse speech
enhancement metrics, even for the static speaker cases. On the
other hand, it performs slightly better for ASR, even for the
moving speaker case. The reason for this inconsistency is not
very clear. The present work uses the critically sampled CTF
convolution and the magnitude CTF convolution, which are
rough approximations. As a result, for the static speaker case,
the CTF and inverse filter that optimize the approximations
are actually time-varying, and thus the online method could
sometimes outperform the batch method.

Fig. 3 shows the STOI metrics computed with a 1-s sliding
window for one audio recording. This result is consistent
with Fig. 2 depicting that the two methods have comparable
STOI metrics when the speaker is static before 11 s, and
the proposed method achieves higher STOI metrics when the
speaker is moving after 11 s. When the speaker starts speaking
after a silent period, the two methods adapt from background
noise to speech, and quickly converge. It is observed from
Fig. 3 that the two methods have a similar convergence speed,
i.e. less than 1 s. Fig. 4 depicts the spectrograms of the middle
part (around the point where the speaker starts moving) of
the recording in Fig. 3. It can be seen that reverberation is
largely removed by both methods. However, the difference
between the two methods and the difference between the
static and moving cases cannot be clearly observed from the
spectrograms. Informal listening tests show that, the proposed
method is not perceived to have more residual reverberation
for the moving speaker case compared to the static speaker
case. Audio examples for all experiments presented in this
paper are available in our website.4

D. Computational Complexity Analysis

Both the proposed method and AWPE are frame-wise online
methods. We analyze their computational complexity for one
frame. The proposed method consists of CTF identification
and magnitude inverse filtering. The computation of CTF
identification is mainly composed of Algorithm 1, which
executes (14) I − 1 times. The computation of (14) includes
three matrix-vector multiplications. The matrix/vector size is
IQ̃. We remind that I = 2 or 8 and Q̃ = 4 are the number
of channels and the length of the critically sampled CTF,
respectively. CTF identification is performed for each of the
N/2 + 1 positive-valued frequency bins. Overall, the com-
putational complexity of CTF identification is approximately
O(NI3Q̃2). The computation of inverse filtering is mainly
composed of the gradient calculation (21), which includes two

4https://team.inria.fr/perception/research/ctf-dereverberation
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Fig. 3: The short-time STOI metrics computed with a 1-s sliding
window and 0.5 s sliding step. One speaker was standing at one
point within 0-11 s, and started walking to another point from 11 s.

matrix-vector multiplications. However, each of these multi-
plications actually represents I one-dimensional convolutions.
In practice, we implement the convolution using an FFT (fast
Fourier transform) with Nfft = 2Q̃+Õ−2 points, where Õ = 4
is the length of the inverse filter. Overall, the computational
complexity of multichannel inverse filtering is approximately
O(NINfftlog(Nfft)). For the pairwise processing scheme, the
two-channel inverse filtering is executed I(I − 1)/2 times,
thence the computational complexity is O(NI2Nfftlog(Nfft)).

TABLE III: Real-time factor for AWPE and each step of the
proposed method.

Method 2-ch 8-ch

AWPE 0.54 2.45
SMIF CTF identification 0.11 2.73
(ours) Inverse filtering (SMIF-MC) 0.09 0.52

Inverse filtering (SMIF-PW) 0.09 1.35
Overall (SMIF-MC) 0.20 3.25
Overall (SMIF-PW) 0.20 4.08

Similar to the proposed CTF identification method, the
computation of RLS-based AWPE is also composed of matrix-
vector multiplications. The matrix/vector size is IQwpe, where
Qwpe denotes the length of the prediction filter, i.e. 16 and 8
for the 2-ch and 8-ch cases, respectively. The computational
complexity of AWPE is O(NwpeI

2Q2
wpe), where Nwpe denotes

the STFT frame length for AWPE, i.e. 512 in this experiment.

The computation time is measured with the real-time factor
(RF), which is the processing time of a method divided by the
length of the processed signal. Both AWPE and the proposed
method are implemented in MATLAB. RF for WPE and each
step of the proposed method are shown in Table III. For the
2-ch case, all processes have an RF smaller than 1, and thus
can be run in real-time. The proposed method is less time-
consuming than AWPE, since the critically sampled CTF and
inverse filter of the proposed method are shorter than the
predicition filter of AWPE, i.e. 4 versus 16. For the 8-ch
case, AWPE is faster than the proposed method. As analyzed
above, the computational complexity of the proposed CTF
identification is cubic of the number of channels, while the
one of AWPE is square of the number of channels.

V. CONCLUSIONS

In this paper, a blind multichannel online dereverberation
method has been proposed. The batch algorithm for multi-
channel CTF identification proposed in our previous work
[33] was extended to an online method based on the RLS
criterion. Then, a gradient descent-based adaptive magnitude
MINT was proposed to estimate the inverse filters of the
identified CTF magnitude. Finally, an estimate of the STFT
magnitude of the source signal can be obtained by applying the
inverse filtering onto the STFT magnitude of the microphone
signals. Experiments were conducted in terms of both speech
quality and intelligibility. Compared to the AWPE method,
the proposed method achieves comparable ASR performance
on the REVERB challenge dataset. Experiments with the
Dynamic dataset show that the proposed method performs
better than AWPE for the moving speaker case due to the
robustness of the STFT magnitude-based scheme. Even though
the proposed method does not account for noise reduction at
all, the dereverberation experiments were performed on data
including additive noise. The experimental results indicate that
the dereverberation capability of the proposed method is not
significantly deteriorated by the additive noise. However, the
noise in the dereverberated signal still has some influence on
both human listening and ASR metrics. A noise reduction
method that fits well the proposed dereverberation method will
be investigated in the future.
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