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Abstract—Compared to unsupervised domain adaptation,
semi-supervised domain adaptation (SSDA) aims to significantly
improve the classification performance and generalization capa-
bility of the model by leveraging the presence of a small amount
of labeled data from the target domain. Several SSDA approaches
have been developed to enable semantic-aligned feature confusion
between labeled (or pseudo labeled) samples across domains;
nevertheless, owing to the scarcity of semantic label information
of the target domain, they were arduous to fully realize their
potential. In this study, we propose a novel SSDA approach
named Graph-based Adaptive Betweenness Clustering (G-ABC)
for achieving categorical domain alignment, which enables cross-
domain semantic alignment by mandating semantic transfer from
labeled data of both the source and target domains to unlabeled
target samples. In particular, a heterogeneous graph is initially
constructed to reflect the pairwise relationships between labeled
samples from both domains and unlabeled ones of the target
domain. Then, to degrade the noisy connectivity in the graph,
connectivity refinement is conducted by introducing two strate-
gies, namely Confidence Uncertainty based Node Removal and
Prediction Dissimilarity based Edge Pruning. Once the graph has
been refined, Adaptive Betweenness Clustering is introduced to
facilitate semantic transfer by using across-domain betweenness
clustering and within-domain betweenness clustering, thereby
propagating semantic label information from labeled samples
across domains to unlabeled target data. Extensive experiments
on three standard benchmark datasets, namely DomainNet,
Office-Home, and Office-31, indicated that our method outper-
forms previous state-of-the-art SSDA approaches, demonstrating
the superiority of the proposed G-ABC algorithm.

Index Terms—Semi-supervised domain adaptation, adaptive
betweenness clustering, categorical domain alignment.

DEEP neural network (DNN) has led to a series of
breakthroughs in computer vision tasks such as Image

Classification [1], [2], [3], [4], [5], Semantic Segmentation [6],
[7], [8], [9], Object Detection [10], [11], [12], [13], Medical
Analysis [14], [15], etc. However, the impressive effectiveness
of the training of deep network models remarkably depends
on a large number of sample labels, necessitating laborious
work in data annotation. An alternative solution comprises
boosting the model for the domain of interest (a.k.a., target
domain) by employing off-the-shelf labeled training samples
from a relevant domain (a.k.a., source domain). Nonetheless,
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Fig. 1: An example to illustrate Adaptive Betweenness Cluster-
ing (ABC). The proposed G-ABC algorithm conducts sample
clustering between a labeled point (e.g., “B”) and an unlabeled
point (e.g., “C”), when they have similarity distances within a
confidence threshold to the same class prototype (e.g., “A”) and
they are with similar prediction distributions from the model.
Herein, Point “A” guides the clustering process by serving as
an intermediary (betweenness) point for Points “B” and “C”.
Point “D” is outside of the clustering range.

due to the distribution/domain gap, such a solution often
cannot generalize well from the source domain to the target
domain to deal with variant circumstances of domain gaps.
Unsupervised domain adaptation (UDA), which aims to tackle
the distribution gap and decrease the influence of domain shift,
has thus gained significant attention for a long time [16],
[17], [18], [19], [20], [21], [22]. Recently, semi-supervised
domain adaptation (SSDA), a variant of the UDA task, has
received wider attention [23], [24], [25]. With a few labeled
target samples, SSDA can significantly enhance the adaptation
model’s performance w.r.t the target domain, compared to
unsupervised domain adaptation. In this way, a small amount
of annotated data in the target domain can be used to expand
the semantic space, allowing a large number of samples of
the same category from different domains to be clustered
together at the feature level, so as to achieve partial categorical
alignment.

Despite the advantages of SSDA over UDA, SSDA also
presents its own specific challenges. At first, in the SSDA
scenario, a supervised model trained on a small number of
labeled target samples and a large amount of labeled source
data can only achieve partial cross-domain feature alignment,
as it only aligns features of labeled target samples and their
correlated nearby samples with the corresponding feature clus-
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ters in the source domain [24]. In addition, the trained SSDA
model is incapable of producing highly discriminative feature
representations for the target domain since the massive labels
of the source domain dominate the supervision and causes
the learned feature representations to be biased towards the
discrimination of the source domain [23]. Preliminary SSDA
works, such as [23], [24], [25], [26], have each proposed their
individual solutions to tackle these challenges, and significant
performance improvement has been witnessed. However, as
with previous UDA studies focusing on global feature confu-
sion at the domain level [27], [28], [20], [29], existing works
are still unable to reach globally categorical domain alignment
due to the scarcity of semantic label information for each
category in the target domain. In other words, despite the pres-
ence of perfect domain-level alignment in feature confusion, it
leads to label mismatch between massive unlabeled target data
and the data of the source domain, hence compromising the
model’s performance. Recent SSDA algorithms, such as [30],
[31], have demonstrated that the semantic-aligned feature
confusion across domains appears to work properly in semi-
supervised domain adaptation, since during domain alignment,
sample features from both domains with the same class will
likely be aggregated into a same cluster. However, these
methods achieve categorical domain alignment mostly through
promoting semantic alignment between labeled samples across
domains, with far less emphasis on employing a vast amount
of unlabeled target samples.

In this paper, we present a novel SSDA approach, named
Graph-based Adaptive Betweenness Clustering (G-ABC), to
tackle the challenges of the SSDA tasks. To achieve glob-
ally categorical domain alignment, we propose to enforce
semantic transfer from labeled samples across domains to
unlabeled target samples in order to promote cross-domain
semantic alignment. Using the ground-truth sample labels
from both domains as references, the trained SSDA model
may thereby propagate semantic label information to the
unlabeled target samples. In this way, a substantial amount
of target label information is augmented through semantic
propagation, thus significantly enhancing the generalization of
the model to the target domain. Specifically, we first construct
a heterogeneous graph to capture the pairwise associations
between unlabeled target samples and labeled samples from
either the source or target domain, based on the pairwise
label similarity of those paired samples. Then, we provide
two connectivity refinement strategies, namely Confidence
Uncertainty based Node Removal and Prediction Dissimilarity
based Edge Pruning, to eliminate the noisy connectivity in the
graph. In detail, the former degrades the connectivity towards
unreliable unlabeled samples by removing unlabeled target
instances with low predicted confidence, whereas the latter
prunes the graph connections between samples with divergent
probabilistic prediction distributions.

With the refined graph structure, we design a new clustering
algorithm, namley Adaptive Bewteenness Clustering (ABC)
as shown in Fig. 1. To achieve semantic transfer, in this
algorithm, we model the task of sample clustering between
a labeled and an unlabeled sample as a binary pairwise-
classification problem. The fundamental premise behind such

an algorithm is to aggregate the feature representations of the
paired samples that share the same class in the graph while
separating those of different classes. In particular, this algo-
rithm involves two strategies to achieve semantic propagation,
namely across-domain betweenness clustering (ADBC) and
within-domain betweenness clustering (WDBC), by clustering
the unlabeled target samples towards the labeled source or
target domains. As a result, the ADBC strategy encourages
alignment between unlabeled target samples and the source
domain, whereas the WDBC scheme strengthens linkages
between labeled and unlabeled target samples. Ultimately,
semantic label information can be gradually transferred into
unlabeled target instances as model training iterates. In this
way, the rising balance of semantic label information of the
source and target domains eliminates model bias toward the
source domain and achieves globally categorical domain align-
ment, driving the model to generate more domain-invariant yet
discriminative target features.

To sum up, our main contributions can be shown as follows:
• We propose a novel SSDA framework called Graph-

based Adaptive Betweenness Clustering (G-ABC) to
tackle semi-supervised domain adaptation. To achieve
globally categorical domain alignment, the proposed G-
ABC conducts cross-domain semantic alignment with
semantic transfer from labeled samples of both domains
to unlabeled target data.

• We construct a heterogeneous graph to characterize the
associations between unlabeled target examples and la-
beled data of both domains. Two connectivity refinement
strategies, namely Confidence Uncertainty based Node
Removal and Prediction Dissimilarity based Edge Prun-
ing, are further provided to decrease the noisy connectiv-
ity in the graph.

• Given the above-refined graph structure, we propose
Adaptive Betweenness Clustering to impose semantic
transfer across domains; in particular, we design across-
domain betweenness clustering and within-domain be-
tweenness clustering, respectively, to propagate semantic
label information from labeled source and target domains
to unlabeled target samples.

• We perform extensive experiments on three standard
benchmark datasets, including DomainNet [32], Office-
Home [33] and Office-31 [34], to verify the effectiveness
of our proposed method, and the results show that our
method outperforms all previous state-of-the-art SSDA
methods by clear margins.

This paper is organized as follows. In Sec. I, we overview
the prior research related to our work. In Sec. II, we present
and describe the proposed algorithm for semi-supervised do-
main adaptation. Furthermore, we conduct comparative exper-
iments to evaluate the performance of the proposed approach
in Sec. III, while the conclusions are illustrated in Sec. IV.

I. RELATED WORK

A. Domain Adaptation

Domain adaptation (DA) addresses the problem of general-
izing a model trained on a large number of labeled samples
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from the source domain to the target domain [35], [36],
[37], [38], [38]. With the goal of decreasing the distribution
gap across various domains, the most challenging issue of
the DA problem is assisting the model in learning domain-
invariant features. To accomplish domain adaptation, early
classic algorithms to handle the domain adaptation tasks
involve reducing the distribution discrepancies across domains
assessed by Maximum Mean Discrepancy (MMD) [27], [28],
sharing the identical cross-domain statistics (e.g., mean value
and covariance) [39], and so on. Tzeng et al. in [40], for
instance, presented a method for leveraging MMD to drive
the model to generate domain-invariant features by assessing
the discrepancies between the model outputs of both domains.
Long et al. optimized the adaptation model from a differ-
ent perspective [41], i.e., employing multi-kernel MMD to
evaluate the output differences of samples across domains at
multiple model levels. In addition, recent advances trends favor
adversarial domain alignment to expedite feature alignment
across domains so that knowledge from classifiers trained
on labeled source samples can be efficiently transferred to
the target domain [20], [29], [42], [43], [44], [45], [46].
For example, Saito et al. conducted minimax training over
unlabeled target samples to cluster these target features around
domain-invariant class prototypes, thus imposing cross-domain
feature alignment [23]. The aforementioned DA algorithms
aimed at aligning source and target features at the domain
level. However, many related advances, such as [47], [48],
[30], [49], demonstrated that decreasing the discrepancies of
conditional distributions towards categorical domain align-
ments is preferred, resulting in improved adaptation between
domains. To this end, it should be natural to incorporate
semantic label information into adaptation. For instance, se-
mantic alignment was proposed in [50], [51], [52] to achieve
this. Motivated by it, we also emphasize semantic-level domain
alignment, leveraging source and target labels as references,
and encouraging semantic transfer from labeled source and
target domains to unlabeled target samples.

B. Domain Adaptation Related to Graphs

The graphs employed in domain adaptation capture latent
topological structures among the training data across domains,
such that the learned relationships between domain samples
can then be leveraged to encourage the model to better
adapt reliable data structures from both domains. In general,
samples from the source and target domains are represented by
distinct graph structures. Thus, many previous DA algorithms
relating to graphs, such as [53], [54], [55], first attempted
to transfer knowledge learned on a labeled source graph to
an unlabeled target graph. Based on the labeled graph in
the source domain, these algorithms engaged source labels
as the supervision signals, and the model therefore received
training on both the source graph and the target graph re-
spectively. For example, Pilanci et al. employed frequency
analysis to align two data graphs through which information
can be transferred or shared [56], [57]. On the other hand,
Ding et al. in [58] proposed constructing a cross-domain
graph based on samples from both domains to capture the

intrinsic structure in the shared space among the training data
in order to concurrently enforce domain transfer and label
propagation. In this way, domain-invariant feature learning
and target discriminative feature learning are unified into the
same framework, thus benefiting each other for more effective
knowledge transfer. Based on such an observation, we also
propose to hire the cross-domain graph to achieve categorical
domain alignment. Nevertheless, earlier related works usually
model graph Laplacian regularization to push graph nodes
closer, but this unsupervised technique disregards the usage of
sample labels to assist semantics alignment [59], [60], [61].
In our work, we design a novel clustering algorithm called
Adaptive Betweenness Clustering to take full advantage of
both source and target labels, thereby contributing to enhanced
performance for the model to classify target samples.

C. Semi-supervised Domain Adaptation
Due to the availability of a few target labels, semi-

supervised domain adaptation has the potential to significantly
improve the classification performance of the model on the
target domain in comparison to unsupervised domain adapta-
tion [24], [62], [63], [64], [65]. Recent progress in SSDA, such
as [23], [24], [66], [67], [26], [25] have primarily focused on
adversarial training to align cross-domain feature distributions.
Here we mainly describe some related SSDA approaches that
do not involve adversarial learning. For example, Samarth et
al. in [68] demonstrated that without the need for conven-
tional adversarial domain alignment, self-supervision based
pre-training and consistency regularization might be relied
upon to produce a stronger classifier in the target domain,
while Luo et al. in [31] developed “Relaxed cGAN” to transfer
image styles from source samples to unlabeled target samples
in order to help achieve domain-level distribution alignment.
Besides, Yoon et al. in [65] also focus on style transferring
for achieving better adaptation, generating assistant features by
transferring intermediate styles between labeled and unlabeled
samples.

In addition to bridging the gap and exchanging knowledge
between the source and target domains, Yang et al. in [64]
proposed decomposing the SSDA task into a semi-supervised
learning (SSL) problem and an unsupervised domain adapta-
tion problem. Specifically, the former is used to improve dis-
crimination in the target domain, whereas the latter facilitates
domain alignment. Such an algorithm trains two distinct classi-
fiers utilizing Mixup and Co-training, respectively, in order to
learn complementary features to each other, resulting in better
domain adaptation. Similarly, [49] also performed adaptation
by learning two classifier networks, trained for contradictory
purposes. The first classifier groups target features to enhance
intra-class density and increase categorical cluster gaps for
robust learning, while the second, as a regularizer, disperses
source features for a smoother decision boundary.

In this paper, we extend the motivation from [31], [30] and
propose G-ABC, which achieves categorical domain alignment
by providing increased access to unlabeled target samples
during adaptation.

While there appears to be a superficial similarity between
[69] and our proposed method in encouraging consistent
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Fig. 2: An overview of the proposed framework and the training loss for Adaptive Betweenness Clustering. Left: (a) Supervision
of labeled data from both source and target domains is applied to guarantee partially categorical domain alignment. (b) Within-
domain betweenness clustering (WDBC) is used to determine the relationship between labeled and unlabeled target data. (c)
Across-domain betweenness clustering (ADBC) is used to effectively align unlabeled target samples with the source domain. D)
Auxiliary techniques for model optimization, including self-training, consistency training, etc. These four components together
enable globally categorical domain alignment, progressively enhancing the model’s performance, with (b) and (c) establishing
reliable sample connectivity among training samples, represented by a heterogeneous graph. Right: Given a pairwise label
sij between samples, the training loss of Adaptive Betweenness Clustering aims to bring samples from the same class closer
together in the feature space when sij = 1, or to separate samples from different classes when sij = 0. This allows for
semantic transfer from labeled source or target domains to unlabeled target samples. Note that the orange and light-orange
samples belong to the same category, namely “plane”, while the blue sample is from a different category, i.e. “flower”.

predictions between features, we would like to clarify their
differences as follows.

1) [69] merely encourages prediction consistency or sim-
ilarity between a feature and its few neighbors, all of
which are from the unlabeled target data. In contrast,
our method, G-ABC, employs the proposed clustering
technique called Adaptive Betweenness Clustering to
group unlabeled samples toward labeled source or tar-
get instances. This is achieved by enforcing consistent
probabilistic prediction distributions between two similar
samples while forcing inconsistency otherwise. More
specifically, using the ground-truth sample labels from
both domains as references, G-ABC is more effective
in propagating the semantic label information from the
labeled source and target domains to the unlabeled target
examples. Conversely, [69] cannot achieve this, as it only
makes the unlabeled target features more compact in an
unsupervised manner.

2) The pairwise label similarity we propose can be viewed
as a more credible measure of pairwise relationships
than the pairwise feature similarity used in [69]. This
is especially true when the label information of labeled
examples across domains can be trusted. Building upon
this premise, we have taken two connectivity refinement
strategies to build a reliable graph structure of pairwise
relationships, which effectively mitigates the potential
harm of noisy connectivity on model performance im-
provement. In contrast, the pairwise feature similarity
introduced in [69] involves unsupervised sample match-
ing, which makes it more challenging to accurately pair
samples of the same class.

II. THE PROPOSED METHOD

In SSDA, we are given labeled samples from the source
and target domains, denoted by Ds = {(xs

i , y
s
i )}

Ns

i=1 and Dl =

{(xl
i, y

l
i)}

Nl

i=1, as well as unlabeled samples from the target
domain, denoted as Du = {(xu

i , )}
Nu

i=1, where Ns, Nl and
Nu are the sizes of Ds, Dl and Du, respectively. Our goal is
to train an SSDA model using Ds, Dl and Du, followed by
evaluating the trained model on the target domain.

Like existing SSDA works, such as [23], [66], [24], we first
parameterize the SSDA model by θ, made up of two compo-
nents, namely a feature extractor F and a classifier G. The
classifier G is an unbiased linear network with a normalization
layer that maps the extracted features from the feature extractor
F into a spherical feature space. Here, the weight vectors of
the classifier are denoted as W = [w1, w2, · · · , wK ], and these
vectors can be regarded as the prototypes that represent K
classes [23], [70]. Accordingly, samples with the same class
label from the source or target domains are mapped nearby to
the same class prototype in the feature space. As demonstrated
in [23], [24], this has a considerable impact on minimizing the
cross-domain feature variance of samples with the same class
label. In a short, the normalized feature with temperature T
of an input image x, f = 1

T
F(x)

∥F(x)∥ , is fed into the classifier G
to obtain the probabilistic prediction as follows:

p(x) = σ(G(f)) = σ(WTf), (1)

where σ (·) is a softmax function. p(x) reflects the similarity
scores, achieved by calculating the cosine distances, between
the point x and the prototypes of distinct classes. For conve-
nience, we often abbreviate p(x) as p, i.e., p = p(x).
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(a) Initial connectivity (b) Confidence Uncertainty based Node Removal

(d) Refined connectivity(c) Prediction Dissimilarity based Edge Pruning

𝒂𝒊𝒋 = 𝟏 & ෥𝒈𝒊𝒋 = 𝟎
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Graph edge to be removed

Unlabeled target node

Labeled source node
Labeled target node

Class 1 / Class 2
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Fig. 3: A diagram depicting graph construction and connectivity refinement. (a) demonstrates the initially constructed sample
connectivity of the graph, while (d) presents the refined graph after the connectivity refinement process is performed. The
connectivity refinement process is further illustrated by (b) and (c), which effectively eliminate noisy connectivity through the
CUNR and PDEP strategies, respectively, resulting in a more reliable graph structure to represent the relationships between
samples. The technical details of these four subdiagrams are as follows: (a) Using pairwise label similarities between samples,
the initial connectivity between training examples in a heterogeneous graph is constructed; (b) Confidence Uncertainty based
Node Removal (CUNR) reduces the connectivity towards unreliable unlabeled samples by removing nodes with low predicted
confidence; (c) Prediction Dissimilarity based Edge Pruning (PDEP) further removes the connections between graph samples
whose probabilistic prediction distributions are dissimilar; (d) A refined graph is obtained to properly capture the pairwise
associations between samples.

Overview. In this paper, we propose Graph-based Adaptive
Betweenness Clustering (G-ABC) to tackle semi-supervised
domain adaptation. In detail, we first construct a heterogeneous
graph to depict the pairwise associations between labeled
samples from both domains and unlabeled examples from the
target domain. Then, to degrade the noisy sample connectivity,
we refine the original heterogeneous graph using two strate-
gies: Confidence Uncertainty based Node Removal (CUNR)
and Prediction Dissimilarity based Edge Pruning (PDEP).
Afterwards, to associate complementary characteristics of the
source and target labels with unlabeled target samples, we
present Adaptive Betweenness Clustering to conduct semantic
propagation, facilitating semantic alignment between domains.
Finally, we leverage off-the-shelf and well-established tech-
niques, such as pseudo-label selection, self-training [71], [72]
and consistency training [73], [74], [75], to further optimize
the model in order to achieve globally categorical domain
alignment. An overview of the proposed method has been
summarized in Fig. 2.

A. Graph Construction

The goal of graph construction is to discover the sam-
ple connectivity of the training data with a heterogeneous
graph G = ⟨V,E,A⟩. In particular, V = {vi}Ns+Nl+Nu

i=1

represents the collection of graph nodes consisting of labeled
source instances from Ds, labeled target samples from Dl,
and unlabeled target samples from Du, whereas E collects

pairwise associations between a graph node of the unlabeled
samples and the other node of the labeled examples. Then, the
relationships between graph nodes given by the non-negative
affinity matrix A can be calculated as follows,

A =


a1,1 · · · a1,Nl

a1,Nl+1 · · · a1,Nl+Ns

a2,1 · · · a2,Nl
a2,Nl+1 · · · a2,Nl+Ns

...
. . .

...
...

. . .
...

aNu,1 · · · aNu,Nl
aNu,Nl+1 · · · aNu,Nl+Ns

 ,

where rows of this matrix denote the unlabeled samples of
the target domain, while the first Nl columns and the last Ns

columns of A refer to the labeled samples from the target
and source domains, respectively. In addition, aij (i.e., the ij-
th entry of A) is the weight of the edge connecting between
graph nodes vi and vj , which encodes the mutual relationship
of the sample pair.

Generally, the weight of a connectivity in a graph can
be determined using cosine similarity between sample fea-
tures [76], [77]. We propose in this paper that the pairwise as-
sociations can be established by comparing the given ground-
truth labels of labeled samples to the model’s predicted class
labels of unlabeled samples; we refer to this as pairwise label
similarity. Compared to pairwise feature similarity, pairwise
label similarity can be viewed as a more credible measure of
pairwise relationships, providing that the label information of
labeled examples across domains is trustworthy. In addition,
for the predicted label of the unlabeled target sample, we take
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measures to mitigate the noisy connectivity of the established
graph (See Sec. II-B). Afterwards, we can obtain the pairwise
label similarity aij of an edge between graph nodes consisting
of an unlabeled sample xi (a.k.a, vi), and a labeled sample xj

(a.k.a, vj) affiliated with its ground-truth class label yj , as
follows,

aij = 1{ŷi = yj}, (2)

where ŷi = argmaxk(p(xi)[k]) is the predicted class label
of the unlabeled target sample xi, while 1{·} is a binary
indicator function. Notice that we illustrate the initial sample
connectivity of the built graph in Fig. 3(a).

B. Connectivity Refinement for Graph Unreliability

Once we obtain the initial heterogeneous graph, we intro-
duce connectivity refinement to alleviate the unreliability of
the graph. Due to high uncertainties caused by low predicted
confidence, the graph nodes corresponding to unlabeled target
samples are susceptible to receiving erroneous pseudo-labels,
thereby resulting in noisy connectivity of the graph. In addi-
tion, as demonstrated in [78], [79], [80], labels and features
should vary smoothly over the edges of the graph so as to well
conduct semantic propagation. To this end, features between
nodes vi and vj of an edge should have a high degree of
similarity when aij = 1, i.e., they should be neighbors in
the spherical feature space. In this situation, the probabilistic
prediction distributions of these two node samples predicted by
the classifier ought to be similar. Consequently, there would
be additional edges with noise in the graph, for which the
probabilistic prediction distributions of both node samples
from the model have a very low similarity. To eliminate
the connectivity with noise and unreliability in the graph
G, we present two connectivity refinement strategies, namely
Confidence Uncertainty based Node Removal and Prediction
Dissimilarity based Edge Pruning, resulting in a refined graph
that represents the pairwise relationship of the data structure
with high reliability. An illustration is shown in Fig. 3(b), (c),
and (d).
Confidence Uncertainty based Node Removal (CUNR).
This strategy degrades the connectivity towards unreliable
unlabeled samples through the removal of unlabeled target
instances with low-confidence predictions. We employ a suffi-
ciently high confidence threshold τ ∈ [0, 1] to choose reliable
candidate nodes from unlabeled target samples:

gi = 1{maxk(p(xi)[k]) > τ}, (3)

where gi is a binary indicator to preserve the node vi ∈ V
corresponding to unlabeled samples on the target domain when
gi = 1 and to remove the node vi when gi = 0.
Prediction Dissimilarity based Edge Pruning (PDEP). As
stated above, when aij = 1, the dissimilar prediction distribu-
tions between nodes of an edge in the graph might also lead
to noisy connectivity in the graph, making a negative effect
on semantic propagation. To remedy this, we first calculate
the similarity score between the predicted label distributions
of two nodes over an edge using dot product operation, and
then threshold the similarity scores with a scalar κ so as to

obtain more credible graph connectivity. Therefore, we can
formularize it as follows,

g̃ij = ¬aij ∨ 1{pT
i pj > κ}, (4)

where pi = p(xi) and pj = p(xj). Besides, the binary indi-
cator g̃ij serves to prune the graph edge connecting between
nodes vi (i.e., unlabeled target node xi) and vj (i.e., the sample
xj from labeled source or target data) when g̃ij = 0; otherwise,
the edge is preserved when g̃ij = 1. In this manner, PDEP can
effectively control the removal and preservation of the graph
edge only when aij = 1. However, when aij = 0, PDEP
becomes invalid, ensuring that the edge connecting nodes vi
and vj in the graph will be consistently preserved.

Upon executing CUNR and PDEP, we can integrate Eq.
(4) into Eq. (3) and then revise Eq. (3) for the rebuilt graph
connectivity as follows,

gji = gi · g̃ij . (5)

Here, the subscript i of gji denotes the unlabeled target node
xi, and the superscript j indicates the other node xj (from
labeled source or target data) on the same edge as xi.

Once we have the indicator gji , we will be able to achieve
more reliable connectivity between nodes in the graph G,
hence improving the performance of semantic propagation.

C. Adaptive Betweenness Clustering

In this section, we conduct semantic transfer for categorical
domain alignment using the updated graph that represents the
reliable structure of the training data. Here, we propose a
newly devised clustering algorithm for semantic propagation,
called Adaptive Betweenness Clustering (ABC). On the basis
of the rebuilt graph, such an algorithm propagates and ag-
gregates labels along graph edges. This allows the semantic
label information of a labeled sample to be transferred to
an unlabeled sample with clustering between samples. Using
this approach in the spherical feature space provided by the
prototypical classifier, the sample’s predicted probability dis-
tributions indicate the cosine similarities between the feature
and the prototypes for each category. Hence, this algorithm
enforces a pair of samples with the same ground-truth (labeled)
or predicted (unlabeled) class labels to have highly similar
probability distributions. When the probability distribution of
the latter is brought closer to that of the former, semantic
propagation from labeled to unlabeled instances is achieved.

In specific, we first generate a sample pair from a labeled
sample xi and an unlabeled sample xj by setting sij = 1
as a pairwise label if xi and xj belong to the same class,
otherwise sij = 0 for different classes. Then, we adopt a
binary cross-entropy loss to draw samples from the same class
closer together in the feature space while separating samples
from other classes. Utilizing a pairwise label as a target,
adaptive betweenness clustering thus can be computed with
the following loss:

π(xi, xj , sij) = −[sij log(pT
i pj) + (1− sij) log(1− pT

i pj)],
(6)

where pi = p(xi) and pj = p(xj). As demonstrated in [81],
[25], perturbations integrated into unlabeled target data can
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Fig. 4: Empirical analysis on the proportion of unlabeled target
samples that meet the conditions proposed in the CUNR and
PDEP strategies during the model training process. (a) and (b)
are specified in the conditions introduced by Eqs. (2) and (3).
For (b), it is important to note that due to the large number
of classes in the dataset, only a small fraction of the sample
pairs randomly generated in each epoch consist of an unlabeled
target sample and a labeled source or target sample with
the same label. Therefore, the proportion of unlabeled target
domain samples satisfying “aij = 1” will be much smaller
compared to the proportion of that satisfying “aij = 0”. The
experiment is performed with “R→ P” on Office-Home using
ResNet-34, under the 3-shot setup.

significantly improve the performance of the model; hence,
we here augment unlabeled examples from the target domain
for better propagation.

Due to domain shift in SSDA, the semantic information
of labeled source samples, though is large in volume, is
less correlated with unlabeled target examples, whereas the
target label information of labeled samples has a greater
correlation with unlabeled samples on the target domain, but
is relatively scarce. Hence, to enable cross-domain semantic
alignment, we propose across-domain betweenness clustering
(ADBC) and within-domain betweenness clustering (WDBC)
to propagate semantic label information from labeled instances
on the source and target domains to unlabeled target data.
With the distinct but complimentary characteristics of semantic
information from source and target labels, semantic transfer
can be conducted with the following losses with regard to
unlabeled target samples:

Labc = Lwdbc + Ladbc, (7)

Lwdbc =
1

Nu

∑
i∈I

1

Nl

∑
j∈P

gji · π(xi, xj , aij), (8)

Ladbc =
1

Nu

∑
i∈I

1

Ns

∑
j′∈Q

gj
′

i · π(xi, xj′ , aij′), (9)

where I , P and Q denote the collections of unlabeled
samples from the target domain, and labeled ones from the
target and source domains, respectively, whose sample indexes
are denoted by i ∈ {1, 2, · · · , Nu}, j ∈ {1, 2, · · · , Nl} and
j′ ∈ {Nl + 1, Nl + 2, · · · , Nl +Ns}.

Here, to gain a better understanding of how Eqs. (2)-(6)
work well in Eq. (8) (Eq. (9) follows the same rule as Eq.
(8)), we provide the following detailed clarifications.

• According to Eq. (3), when gi > 0 (i.e. gi = 1), the model
prediction remains confident. At this time, if aij = 1 (i.e.
sij = 1 in Eq. (6)) and pT

i pj > κ (in Eq. (4)), then
gji > 0 (i.e. gji = 1 in Eq. (5)), and “sij log(pT

i pj)” (i.e.,
the first positive term of Eq. (6)) contributes to the loss
in Eq. (8). In this case, xi and xj should be close to each
other in the feature space.

• Still under the condition that gi > 0 (i.e. gi = 1) in
Eq. (3), when aij = 0, g̃ij = 1 in Eq. (4)) always
holds true, so gji > 0 (i.e. gji = 1). In this case,
“(1 − sij) log(1 − pT

i pj)”, namely the second negative
term in Eq. (6), contributes to the loss of Eq. (8), where
xi and xj should be separated from each other.

• Finally, when gi < 0 (i.e. gi = 0), or when aij = 0 and
pT
i pj < κ, then gij < 0 (i.e. gji = 0), and thus in Eq.

(6), neither “sij log(pT
i pj)” nor “(1−sij) log(1−pT

i pj)”
contributes to the loss for Eq. (8).

To provide a more intuitive demonstration, we conducted
empirical analysis on the proportion of unlabeled target sam-
ples that meet the conditions specified in Eqs. (2) and (3)
proposed in the CUNR and PDEP strategies during the model
training process. The results are visualized in Fig. 4. Fig. 4(a)
shows that as the model trains, the number of unlabeled
samples satisfying the condition “gij = 1” gradually increases,
indicating an increasing level of predicted confidence in the
unlabeled target samples. Moreover, in Fig. 4(b), it can be
observed that as the training progresses, the ratio of unlabeled
target domain samples satisfying the condition “aij = 1
and pT

i pj > κ” approaches the ratio of that satisfying the
condition “aij = 1”. This demonstrates that the similarity
between the prediction distributions of the unlabeled target
samples and the labeled samples from the source or target
domains increases gradually during the training process. On
the contrary, the number of unlabeled target samples satisfying
the condition “aij = 0 and pT

i pj > κ” decreases as the
training progresses and may eventually approach zero. These
findings support our assumption that when two samples,
one from the unlabeled target samples and the other from
the labeled samples of the source or target domain, do not
belong to the same class, their prediction distributions will be
dissimilar.

D. Further Optimization of G-ABC based SSDA

After achieving cross-domain semantic alignment, we apply
auxiliary techniques, such as pseudo-label selection, self-
training, and consistency training, to further enhance the model
training.
Pseudo-label Selection. Due to the scarcity of target labels,
overfitting is likely to occur when the Lwdbc loss is applied. To
mitigate this issue, we apply a pseudo-label selection strategy
to unlabeled target samples and preserve pseudo-labels with
high confidence to increase the number of target labels, hence
enhancing the semantic label diversity on the target domain.
In this work, pseudo-label selection employs the prediction
capability of a model to generate artificial hard labels for
a subset of unlabeled target samples; hence, a collection
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of pseudo-labeled target samples, denoted by Dpu, can be
obtained as follows,

Dpu ←{(x, ŷ)|ŷ = argmaxk (p(x)[k]),

max(p(x)) > τ ′,∀x ∈ Du},
(10)

where τ ′ denotes another higher confidence threshold than τ
in Eq. (3). Noted that Dpu is only used in the Lwdbc loss,
namely Eq. (8).
Self-training. According to [68], [72], we adopt self-training
to boost the model’s robustness against the selected samples
in Dpu. Specifically, we employ the progressive self-training
technique described in [72], termed label consistency, in which
the model is constrained to generate the same output when
the selected images are augmented with slight perturbations.
In practice, label consistency can be implemented through the
following loss:

Llab = − 1

Npu

∑
(xi,yi)∈Dpu

py(yi) log(p(Aug(xi))), (11)

where Npu = |Dpu| indicates the sample size of Dpu, py(·)
represents the function to create a one-hot probability vector
for a pseudo-label, and Aug(·) denotes the function to perturb
the input images.
Consistency Training. The pseudo-label selection mechanism
fails to assign pseudo-labels to all unlabeled target samples.
In accordance with [73], we can adequately leverage un-
labeled target samples through consistency training, hence
increasing the smoothness of the model. According to [73],
we can achieve this by preserving the consistency of the
model’s output distributions between unlabeled target samples
and their perturbed counterparts using Kullback–Leibler (KL)
divergence as follows,

Lcon =
1

Nu

∑
xi∈Du

p̃(xi) log(
p̃(xi)

p(Aug(xi))
), (12)

p̃(xi) = Sharpen(p(xi)) =
(p(xi))

1
T ′∑K

k=1 (p(xi)k)
1
T ′

, (13)

where k indicates the k-th element of the target distribution
vector p(xu

i ) and T ′ is the temperature factor. It should
be noticed that different from [73], we here use a “soft"
distribution with a sharpening function Sharpen(·) proposed
in [82], [83] to sharpen the observed probability distribution
p̃(xi), thereby driving the model to generate lower-entropy
predictions.
Training Objectives.The loss function for optimizing the
model can be expressed as a combination of the cross-entropy
loss Lce over all labeled samples accessible across domains
and additional losses as previously described, i.e.,

LOverall = Lce + Llab + αLcon + βLabc, (14)

where α and β are scalar hyper-parameters for loss weights.
The model is updated using stochastic gradient descent (SGD)
for backpropagation.

III. EXPERIMENTS

A. Datasets

The proposed G-ABC approach is evaluated on three widely
used benchmark datasets, including DomainNet [32], Office-
Home [33] and Office-31 [34]. To conduct a fair comparison,
we follow all configurations of adaptation scenarios on dif-
ferent datasets as considered in [23], [26], [24], [25], while
each category has one-shot or three-shot samples with labels
available in the target domain during training.
DomainNet, consisting of 345 classes and six domains, is
a large-scale benchmark dataset designed to evaluate multi-
source domain adaption approaches. Following [23], we use a
subset of the dataset proposed in [32] as one of our evaluation
benchmarks. Similar to MME [23], we only chose 4 domains:
Real (R), Clipart (C), Painting (P), and Sketch (S) (each
comprises 126 categories of images), as other domains and
categories may contain samples with excessive noise. In ac-
cordance with [23], [26], [24], [25], we construct experiments
on seven adaptation scenarios employing these four domains.
Office-Home is a notable SSDA benchmark dataset contain-
ing numerous challenging adaptation scenarios. There are 65
classes in this collection, and the available domains are Real
(R), Clipart (C), Art (A), and Product (P). To achieve a fair
comparison, we apply 12 adaptation scenarios to this dataset
compared to previous SSDA methods, including [23], [26],
[24], [25], [64].
Office-31 consists of 31 object categories organized into three
domains: Amazon (A), DSLR (D), and Webcam (W). These
categories contain objects frequently seen in offices, such
as keyboards, file cabinets, and laptops. Following previous
SSDA efforts [23], [26], [24], we select Amazon as the source
domain since only Amazon is a large domain with sufficient
samples for each class, whereas Webcam and DSLR do not.
Therefore, we only consider two adaptation scenarios on this
relatively smaller SSDA dataset benchmark, i.e., “W → A”
and “D → A”.

B. Implementation

To be fair, we adhere to the conventional SSDA task con-
figurations from earlier research [23], [26], [24]. Specifically,
we first select AlexNet [89] and ResNet-34 [90] with pre-
trained weights on ImageNet [89] as the backbone networks
for all our experiments. However, the last layer of each
backbone is replaced with a prototypical classifier based on
cosine similarity, followed by an unbiased linear neural net-
work that takes normalized features from the feature extractor
as inputs. Here, we optimize the entire model using mini-
batch stochastic gradient descent (SGD) with momentum. In
addition, throughout each iteration, we first train the model
under supervision on all labeled samples from both domains
to generate representative prototypes of each class, followed by
the proposed ADBC and WDBC stages to further enhance the
model. Moreover, we use RandAugment [91] and Cutout [92]
to generate perturbations for unlabeled target data used in Eq.
(8), (9), (11), and (12).

For fair comparisons, the majority of the remaining ex-
perimental settings in our proposed method are identical to
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TABLE I: Results (%) on DomainNet under the settings of 1-shot and 3-shot with both AlexNet (ANet) and ResNet-34(RN-34)
backbones. The top best methods are in bold. (Mean accuracy and standard variance over 3 trials)

Net Method
R→C R→P P→C C→S S→P R→S P→R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

ANet

S+T [23] 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN [23] 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.5 57.3 40.4 42.4
MME [23] 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
Meta-MME [62] - 56.4 - 50.2 - 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.8
BiAT [66] 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4
APE [24] 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
PAC [68] 55.4 61.7 54.6 56.9 47.0 59.8 46.9 52.9 38.6 43.9 38.7 48.2 56.7 59.7 48.3 54.7
Relaxd-cGAN [31] - 56.8 - 51.8 - 52.0 - 44.1 - 44.2 - 42.8 - 61.1 - 50.5
ECACL-T [30] 56.8 62.9 54.8 58.9 56.3 60.5 46.6 51.0 54.6 51.2 45.4 48.9 62.8 67.4 53.4 57.7
ECACL-P [30] 55.8 62.6 54.0 59.0 56.1 60.5 46.1 50.6 54.6 50.3 45.0 48.4 62.3 67.4 52.8 57.6
S3D [84] 53.5 56.5 51.8 52.2 49.1 53.9 40.1 44.4 44.9 48.7 39.9 39.2 61.7 65.4 48.7 51.5
CLDA [85] 56.3 59.9 56.0 57.2 50.8 54.6 42.5 47.3 46.8 51.4 38.0 42.7 64.4 67.0 50.7 54.3
CDAC [25] 56.9 61.4 55.9 57.5 51.6 58.9 44.8 50.7 48.1 51.7 44.1 46.7 63.8 66.8 52.1 56.2
G-ABC (Ours) 60.17±0.78 63.89±0.41 57.44±0.66 59.73±0.33 55.98±0.93 64.03±0.34 48.75±0.50 53.42±0.57 54.11±0.61 56.36±0.54 47.09±0.91 48.17±0.35 67.84±0.79 70.78±0.36 55.92 59.68

RN-34

S+T [23] 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN [23] 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
MME [23] 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
UODA [26] 72.7 75.4 70.3 71.5 69.8 73.2 60.5 64.1 66.4 69.4 62.7 64.2 77.3 80.8 68.5 71.2
Meta-MME [62] - 73.5 - 70.3 - 72.8 - 62.8 - 68.0 - 63.8 - 79.2 - 70.1
BiAT [66] 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7
APE [24] 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
ELP [86] 72.8 74.9 70.8 72.1 72.0 74.4 59.6 63.3 66.7 69.7 63.3 64.9 77.8 81.0 69.0 71.6
PAC [68] 74.9 78.6 73.0 74.3 72.6 76.0 65.8 69.6 67.9 69.4 68.7 70.2 76.7 79.3 71.4 73.9
DECOTA[64] 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
ECACL-T [30] 73.5 76.4 72.8 74.3 72.8 75.9 65.1 65.3 70.3 72.2 64.8 68.6 78.3 79.7 71.1 73.2
ECACL-P [30] 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4
S3D [84] 73.3 75.9 68.9 72.1 73.4 75.1 60.8 64.4 68.2 70.0 65.1 66.7 79.5 80.3 69.9 72.1
UODAv2 [87] 77.0 79.4 75.4 76.7 75.5 78.3 66.5 70.2 72.1 74.2 70.9 72.1 79.7 82.3 73.9 76.2
MCL [88] 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5
CLDA [85] 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3
CDAC [25] 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
G-ABC (Ours) 80.74±0.41 82.07±0.21 76.84±0.63 76.72±0.32 79.26±0.19 81.57±0.41 71.95±0.47 73.68±0.38 75.04±0.54 76.27±0.20 73.21±0.32 74.28±0.09 83.42±0.61 83.87±0.28 77.47 78.23

TABLE II: Results (%) on Office-Home under the setting of 3-shot with both AlexNet (ANet) and ResNet-34 (RN-34)
backbones. The top best methods are in bold. (Mean accuracy and standard variance over 3 trials)

Net Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

ANet

S+T [23] 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57 54.3 37.5 57.9 50.0
DANN [23] 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
MME [23] 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
Meta-MME [62] 50.3 - - - 48.3 40.3 - 44.5 - - 44.5 - -
BiAT [66] - - - - - - - - - - - - 56.4
APE [24] 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
PAC [68] 58.9 72.4 47.5 61.9 53.2 39.6 63.8 49.9 60.0 54.5 36.3 64.8 55.2
CLDA [85] 51.5 74.1 54.3 67 47.9 47 65.8 47.4 66.6 64.1 46.8 67.5 58.3
CDAC [25] 54.9 75.8 51.8 64.3 51.3 43.6 65.1 47.5 63.1 63.0 44.9 65.6 56.8
G-ABC (Ours) 55.12±0.71 76.21±0.59 53.20±0.45 64.59±0.43 50.45±0.70 41.76±0.51 67.41±0.67 47.51±0.87 62.07±0.93 63.52±0.97 42.72±0.81 68.23±0.46 57.73

RN-34

S+T [23] 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
DANN [23] 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
MME [23] 64.6 85.5 71.3 80.1 64.6 65.5 79 63.6 79.7 76.6 67.2 79.3 73.1
Meta-MME [62] 65.2 - - - 64.5 66.7 - 63.3 - - 67.5 - -
APE [24] 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
Relaxed-cGAN [31] 68.4 85.5 73.8 81.2 68.1 67.9 80.1 64.3 80.1 77.5 66.3 78.3 74.2
DECOTA [64] 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64 80.5 79 68.0 83.2 75.7
CLDA [85] 66.0 87.6 76.7 82.2 63.9 72.4 81.4 63.4 81.3 80.3 70.5 80.9 75.5
CDAC [25] 67.8 85.6 72.2 81.9 67 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
G-ABC (Ours) 70.02±0.18 88.09±0.27 75.96±0.48 82.81±0.11 69.27±0.53 70.54±0.42 83.78±0.31 67.24±0.14 80.37±0.10 80.18±0.44 69.22±0.25 83.89±0.62 77.19

previous SSDA efforts like [23], [26], [24]. Similar to [23],
[24], we implement all experiments on the PyTorch1 platform.
Besides, during each iteration, we randomly select four mini-
batches from Ds, Dl, Dpu, and Du, with batch sizes of 32, 32,
32, and 64 for AlexNet or 24, 24, 24, and 48 for ResNet-34. In
addition, we employ the same learning rate schedule as [93],
with the learning rate ξt at the t-th iteration set as follows:

ξt =
ξ0

(1 + 0.0001× t)0.75
, (15)

where ξ0 represents the initial learning rate. To balance numer-
ous loss terms, we set α and β in Eq. (14) to 0.03 and 25.0.
Then, based on [72], [25], we set the confidence threshold to
τ = 0.95 and τ ′ = 0.975. In addition, we set the similarity
threshold κ to 0.20. The value of temperatures involved in
the construction of the model architecture and the sharpening
function in Eq. (13) are set to 0.05 and 0.85, respectively. Due
to the distinctness of each dataset and adaptation scenario, we
set the total number of training epochs T to varying values.
Note that T = 100 is a common value setting for a variety of
application scenarios.

1https://pytorch.org/

To choose the hyper-parameters, such as α, β, τ and κ,
similar to MME [23], we selected three labeled examples
as the validation set for the target domain and utilized these
validation examples to choose the value choice of these hyper-
parameters when the validation accuracy was at its highest.
Also, during this process, we froze the other hyper-parameters
while conducting experiments with a specific one.
Class-wise Similarity Score. To assess the effectiveness of
Adaptive Betweenness Clustering, we define a Class-wise
Similarity Score (CSS) to measure the average prediction
similarity between two classes, where one class c originates
from the unlabeled target domain and the other class c′ comes
from labeled source and target domains. In this way, we use
s(c, c′) to define the CSS between the class c and c′, and more
specifically, s(c, c′) can be formulated as follows,

s(c, c′) =
1

N c
u

∑
i∈Ic

1

N c′
l +N c′

s

∑
j∈P c′∪Qc′

pT
i pj , (16)

where Ic, P c′ and Qc′ denote the collections of unlabeled
target samples of class c, labeled target samples of the class
c′, and labeled source samples of class c′, respectively, each
containing instances with sizes of N c

u, N c′

l and N c′

s . In



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, 202X 10

TABLE III: Results (%) on Office-31 under the settings of 1-shot and 3-shot with the AlexNet backbone. The top best methods
are in bold. (Mean accuracy and standard variance over 3 trials)

Method
W→A D→A Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T [23] 50.4 61.2 50.0 62.4 50.2 61.8
DANN [23] 57.0 64.4 54.5 65.2 55.8 64.8
MME [23] 57.2 67.3 55.8 67.8 56.5 67.6
BiAT [66] 57.9 68.2 54.6 68.5 56.3 68.4
APE [24] - 67.6 - 69.0 - 68.3
PAC [68] 53.6 65.1 54.7 66.3 54.2 65.7
CLDA [85] 64.6 70.5 62.7 72.5 63.6 71.5
CDAC [25] 63.4 70.1 62.8 70.0 63.1 70.0
G-ABC (Ours) 67.9±1.26 70.97±0.48 65.73±1.03 73.06±0.35 66.81 72.02

TABLE IV: Results (%) of ablation study on DomainNet under the setting of 3-shot with the ResNet-34 backbone. † denotes
that the adaptation model is trained by Ladbc or Lwdbc loss without incorporating perturbations into the samples. ‡ denotes
that the pseudo-labeled target samples are not used in the Lwdbc loss. Moreover, ♣ represents the removal of the first positive
term, namely “sij log(pT

i pj)”, from Eq. (6) during training. Similarly, ♠ denotes the exclusion of the second negative term,
namely “(1− sij) log(1− pT

i pj)”, from Eq. (6) when model training goes on.

M-(#) Lce Ladbc Lwdbc Llab Lcon R→C C→S S→P R→S Mean

1 ✓ - - - - 60.0 55.0 59.5 50.1 56.2
2 ✓ ✓ - - - 78.0 67.6 71.0 69.5 71.5
3 ✓ - ✓ - - 78.1 68.8 70.8 70.8 72.1
4 ✓ ✓ ✓ - - 80.3 70.0 73.2 72.5 74.0
5 ✓ - - ✓ - 77.2 70.2 74.0 69.9 72.8
6 ✓ - - - ✓ 72.6 66.1 69.1 65.5 68.4
7 ✓ - - ✓ ✓ 78.3 71.5 74.3 71.0 73.8
8 ✓ ✓ - ✓ - 80.5 72.4 75.3 72.7 75.2
9 ✓ - ✓ ✓ - 81.0 73.1 76.0 73.1 75.8

10 ✓ ✓ ✓ ✓ - 81.6 73.2 75.9 73.8 76.1
11 ✓ ✓ ✓ ✓ ✓ 82.2 73.4 76.3 74.3 76.5
12 ✓ † † ✓ ✓ 81.5 72.1 75.3 72.5 75.4
13 ✓ † † - - 78.6 68.5 72.9 70.4 72.6
14 ✓ ✓ ‡ ✓ ✓ 82.0 72.9 75.7 73.2 75.9
15 ✓ ♣ ♣ ✓ ✓ 81.3 72.8 75.0 73.1 75.6
16 ✓ ♠ ♠ ✓ ✓ 79.8 72.0 75.5 72.4 74.9

general, the larger the average prediction similarity between
classes c and c′ is, the greater the CSS s(c, c′) is. At this point,
a higher CSS score indicates that there is a greater similarity
in predictions between unlabeled samples from class c in the
target domain and the labeled source or target data from class
c′. This implicitly suggests that these samples are close to each
other in the feature space.

C. Comparison with state-of-the-arts

We compare the classification performance of our proposed
G-ABC algorithm to that of previous state-of-the-art SSDA
algorithms, including S+T [23], DANN [23], MME [23],
UODA [26], Meta-MME [62], BiAT [66], APE [24],
ELP [86], PAC [68], Relaxed-cGAN [31], DECOTA [64],
ECACL-T [30], ECACL-P [30], S3D [84], UODAv2 [87],
MCL [88], CLDA [85] and CDAC [25]. Note that S+T refers
to an approach that trains the adaptation model solely with
supervision on labeled samples from both domains, whilst
DANN refers to the method presented in [20], but additionally
applies a standard cross-entropy loss on a few labeled samples
in the target domain.
On DomainNet. In order to highlight the advantages of
the proposed algorithm, we compare our G-ABC strategy to
numerous existing alternatives on the DomainNet benchmark.
Table I presents the results of this dataset benchmark utilizing

1-shot and 3-shot settings with AlexNet and ResNet-34 as
the corresponding backbone networks. As demonstrated, our
proposed G-ABC method achieves more average performance
gains than all existing approaches in the majority of Do-
mainNet adaptation cases. Specifically, G-ABC improves the
prior best-performing SSDA algorithm, i.e., ECACL-T and
DECOTA, by mean accuracy margins of 2.3% and 3.1%
while employing AlexNet and ResNet-34 as the backbones,
respectively, for all adaptation scenarios under the 1-shot set-
ting. In addition, the proposed method outperforms competing
approaches in most of the adaptation scenarios defined on
DomainNet with a 3-shot setting by outperforming the best
available results (accuracy of 57.7% and 76.5% in ECACL-T
and MCL) by 1.88% and 2.08% on average, when AlexNet
and ResNet-34 serve as the backbone networks, respectively.
These results demonstrate the effectiveness of our algorithm
in dealing with SSDA tasks on DomainNet.

On Office-Home. To validate the feasibility of the proposed
G-ABC algorithm in SSDA, we also compare the results of our
method to those of earlier methods on Office-Home. Similar to
prior baselines [23], [26], [24], [64], [25], we conduct exper-
iments on this dataset under the 3-shot setting, AlexNet and
ResNet-34 as the backbones, and all 12 adaptation scenarios
for Office-Home. Table II illustrates the classification accuracy
of each adaptation scenario and the average performance of
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Fig. 5: The evaluation of Adaptive Betweenness Clustering involves analyzing the confusion matrices for each epoch on every
dataset. Each element in these matrices is associated with a Class-wise Similarity Score, denoted as s(c, c′). This score, defined
by Eq. (16) in Sec. III-B, quantifies the similarity between two classes, c and c′. In this context, class c refers to the class
whose samples are the unlabeled target data, while class c′ includes classes from both the labeled source and target domains.
A higher s(c, c′) score in each element suggests a greater similarity in predictions between the unlabeled samples from class
c in the target domain and the labeled source or target data from class c′. The experiments are performed with (a): “R → P”
on Office-Home using ResNet-34, and (b): “D→A” on Office-31 using AlexNet, respectively, both under the 3-shot setup.

the proposed G-ABC algorithm on Office-Home, respectively.
As demonstrated, the proposed method achieves the best
average classification performance when utilizing the ResNet-
34 backbone, and the accuracy surpasses the best baseline
DECOTA by significant margins of 1.49%.
On Office-31. Aiming at further confirming the efficacy
of the proposed G-ABC method, we conduct experiments
comparing to the existing state-of-the-art approaches using
the smallest benchmark dataset, namely Office-31. In order
to retain consistency with prior approaches and to assure a
fair comparison, we only use AlexNet as the backbone of this
work. Table III shows that our method obtains the highest
classification performance in both “W → A” and “D → A”
cases, with an average accuracy of 66.81% (+3.21%) under the
1-shot setting and 72.02% (+0.52%) under the 3-shot setting.
In other words, our strategy outperforms the existing best-
performing baseline, CLDA, by significant average accuracy
margins in all adaptation scenarios, indicating the improved
effectiveness of the proposed method on this dataset.
Discussion. It appears that superior performance gains have
been observed on the DomainNet dataset compared to Office-
Home. This is because Office-Home is a relatively simpler
SSDA benchmark dataset. As shown in Table II, it is evident
that prior state-of-the-art (SOTA) methods have reached their
performance limits on this dataset. Similar to these approaches,
this saturation in performance makes it challenging for our
method to achieve significant improvements compared to
existing SOTA methods. In contrast, DomainNet has a larger
domain shift, which poses challenges for domain adaptation
methods and offers more room for improvement. As illustrated

in Table I, our method demonstrates more notable gains
on DomainNet, as it is designed to effectively handle such
complex domain shifts.

D. Ablation Study
We conduct extensive experiments to individually confirm

the efficacy of each component of our proposed G-ABC
approach. Specifically, Table IV shows the main ablation study
results, where all experiments are performed in four adaptation
scenarios on DomainNet using ResNet-34 as the backbone
under the 3-shot setup. Furthermore, Fig. 5 illustrates the
evaluation of Adaptive Betweenness Clustering in both ADBC
and WDBC, while Fig 6 demonstrates the impact of removing
CUNR and PDEP on graph construction and their influence
on the model performance.
Effectiveness of ADBC and WDBC. To determine the
effectiveness of Ladbc and Lwdbc proposed in our method,
we first train the model using only labeled samples from both
domains, serving as the baseline being depicted in row M-
(1) of Table IV. According to Table IV, training the model
with both ADBC and WDBC delivers greater classification
performance gains than training the model with simply one of
both. It can be observed that row M-(4) in Table IV increases
the baseline by an average of 17.9%, while the accuracy rates
in row M-(2) and row M-(3) can only exceed the baseline by
15.4% and 16.0%, respectively, thereby confirming the validity
of the ADBC and WDBC stages. In addition, when row M-
(5) of Table IV is considered as another baseline, a similar
situation can be observed when contrasting among row M-(8),
row M-(9) and row M-(10).
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Fig. 6: The impact of removing CUNR and PDEP on per-
formance during graph construction. The experiments are
performed on adaptation scenarios of “R→S” on DomainNet,
“R→P” on Office-Home, and “D→A” on Office-31, respec-
tively. All of them are conducted under a 3-shot setup, with
the first two using ResNet-34 as network backbones, while the
latter uses AlexNet.

Effectiveness of Adaptive Betweenness Clustering. In order
to further understand the role of the proposed clustering
method, Adaptive Betweenness Clustering (ABC), in ADBC
and WDBC, we employed the Class-wise Similarity Score
(CSS), which is illustrated in detail in Sec. III-B. The CSS
is used to measure the similarity in predictions between
unlabeled target samples and labeled source or target domains.
As depicted in the heatmaps of Fig. 5, the CSS scores
between the same classes progressively increase, while those
between different classes decrease throughout the model train-
ing process. This observation indicates that unlabeled target
samples have a tendency to cluster together with labeled source
and target data from the same class in the feature space,
while samples from different classes become more distant
from each other. This demonstrates the efficacy of Adaptive
Betweenness Clustering in facilitating semantic propagation,
thereby raising the performance of ADBC and WDBC. To
further validate the effectiveness of the Adaptive Betweenness
Clustering loss, we also performed validation experiments on
the two terms of the loss presented in Eq. (6), namely the first
positive term “sij log(pT

i pj)” and the second negative term
“(1 − sij) log(1 − pT

i pj)”. According to Table IV, it can be
observed that row M-(15), M-(16), and M-(7) correspond to
the removal of individual terms or both terms from Eq. (6). By
comparing these results with the classification performance of
the full model indicated by row M-(11), it can be seen that
removing either one or both terms leads to a decrease in model
performance, with a more pronounced effect when both terms
are removed. This finding indirectly verifies the effectiveness
of the adaptive betweenness clustering loss.
Effectiveness of CUNR and PDEP. To confirm the impact
of CUNR and PDEP during graph construction, we present
the results of removing each of them individually, as well as
both, on three SSDA benchmarks. As shown in Fig. 6, the
comparison between the full model “G-ABC” and its variants
“G-ABC w/o CUNR” or “G-ABC w/o PDEP” demonstrates
that removing either CUNR or PDEP leads to a significant
decline in the model’s overall performance. Moreover, when
both are eliminated, referred to as “G-ABC w/o CUNR &

w/o PDEP”, the model’s performance reaches its lowest point.
This demonstrates that CUNR or PDEP effectively elimi-
nates noisy connectivity while constructing a reliable graph
structure, thereby enhancing the model’s performance. In par-
ticular, CUNR provides a greater performance improvement
than PDEP. This is because unlabeled target samples with
lower confidence, which would be removed by CUNR during
training, not only negatively impact samples of the same class
but also affect samples from different classes, resulting in more
substantial harm to the model’s performance.
Effectiveness of Self-training. Examining the necessity of
Llab, we should use experiments in row M-(4) of Table IV in
which the model is trained with Lce, Ladbc and Lwdbc as the
baseline. As shown in Table IV, the average performance of
row M-(10) with additional Llab loss is 2.1% more than the
baseline, indicating the necessity of this component for our
proposed G-ABC approach.
Effectiveness of Consistency Training. Table IV indicates
the effectiveness of consistency training as well. Comparing
row M-(10) (or row M-(6)) with row M-(11) (or row M-(7)),
it is evident that consistency training for all unlabeled target
data is beneficial.
Effectiveness of Pseudo-label Selection. In order to explore
the impact of pseudo-label selection, we omit the pseudo-
labeled target samples applying to Eq. (8). Table IV demon-
strates that in the comparison between rows M-(11) and M-
(14), the average accuracy of row M-(14) is 0.6% less than
that of row M-(11), revealing that pseudo-label selection is
also effective for enhancing the performance of the model.
Effectiveness of Sample Perturbation. We propose to in-
troduce perturbations into unlabeled target samples on both
ADBC and WDBC. According to Table IV, by comparing
row M-(4) and row M-(11) with row M-(13) and row M-(12),
respectively, we observe that the performance of the mean
accuracy decreases by 1.4% and 1.1%, respectively, indicating
that it is necessary to include perturbations in our model
training.

E. Further Analysis
We also investigate the hyper-parameter sensitivity to the

loss weights α and β, the similarity threshold κ, as well as the
hyper-parameter reasonability with respect to the confidence
threshold τ ′. In addition, we visualize the feature distributions
across domains using t-SNE [94].
Hyper-parameter Sensitivity to α and β. In Fig. 7(a) and
(b), we highlight the influence of α and β. It can be observed
that when α = 0.03 and β = 25.0, the trained model achieves
the highest performance in image classification. However, the
accuracy decreases significantly when they are adjusted further
from the optimal value. By introducing gji in Eqs. (8) and (9)
to remove graph nodes with noise sample connectivity, a larger
proportion of unlabeled target samples do not actually partic-
ipate in model updates but do contribute to the calculation of
Labc, resulting in a smaller scale of Labc. Therefore, setting β
to a higher value, i.e., 25.0, is advantageous for balancing the
influence of Labc and other loss items during model updates.
Hyper-parameter Sensitivity to τ and κ in CUNR and
PDEP. We also conduct experiments to assess the sensitivity
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Fig. 7: Sensitivity with respect to hyper-parameters α, β, τ and κ. The experiments are performed on DomainNet under the
setting of the 3-shot using the ResNet-34 backbone, where (a) and (b) are with “R→C”, and (c) and (d) are with “R→S”.
“CDAC” [25] is the best-performing baseline method in both adaptation scenarios. As illustrated, our method is not highly
sensitive to changes in the hyper-parameters α, β, τ and κ. This is because, over a wide range, our G-ABC approach outperforms
the baseline method “CDAC” significantly for all four hyper-parameters.
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Fig. 8: The evolution of the numbers (#) and the accuracy (%)
of the pseudo-labels over epochs while varying the confidence
threshold τ ′. The experiments are performed with (a): “R→S”
on DomainNet using ResNet-34, and (b): “D→A” on Office-
31 using AlexNet, both under the 3-shot setup.

of our method to the hyperparameters τ and κ. Fig. 7(c)
and (d) illustrate that the classification performance of the
model achieves best when τ and κ are set to 0.95 and 0.20,
respectively; however, changing either of these parameters,
especially on τ to less than 0.90 and κ to greater than
0.50, results in a decline in accuracy. This is due to the fact
that lighter CUNR causes a greater number of non-confident
unlabeled target samples to be preserved in the graph, whereas
higher PDEP causes an excessive number of node removals
inside the graph, resulting in unreliable knowledge transfer
between target samples.
Hyper-parameter Rationality to τ ′. We conduct additional
experiments to prove the validity of setting τ ′ to 0.975 as
opposed to 0.95 by plotting variations in the quantity and
accuracy of pseudo-labels for target samples whose expected
probability are greater than τ ′. As depicted in Fig. 8, when
τ ′ is set to 0.95, Dpu can collect significantly more pseudo-
labeled target samples from Du. However, the large amount of
noise contained in the pseudo-labels will also bring challenges
to the model. This proves setting τ ′ to 0.975 is better than 0.95.
Feature Visualization. Using t-SNE for feature visualization,
we present the feature distributions obtained by the proposed
method for both domains in Fig. 9. It can be observed that in
the feature space, the learned features from different domains
that belong to the same class are mapped nearby and clustered

(a) “R → S” on DomainNet (b) “R → P” on Office-Home

Fig. 9: Feature visualization using t-SNE. We randomly choose
five classes with (a): “R → S” on DomainNet, and (b):
“R → P” on Office-Home, respectively, with the ResNet-34
backbone and the 3-shot setup. Herein, data points in grey
represent source samples, while brightly colored examples are
from the target domain. The red, lightblue, purple, green, and
yellow represent the categories of “Axe”, “Bird”, “Fence”,
“Shoe”, and “Truck” on DomainNet, while these colors corre-
spond to the categories of “Batteries”, “Calendar”, “Flowers”,
“Glasses”, and “Monitor” within the Office-Home dataset.

together, whereas those from distinct categories are signifi-
cantly separated. This implies that the model trained using the
proposed G-ABC approach is capable of producing domain-
invariant and discriminative target features, thus contributing
to the improved performance of the SSDA task.

IV. CONCLUSIONS

This paper presents a novel SSDA method named Graph-
based Adaptive Betweenness Clustering for achieving cate-
gorical domain alignment. It facilitates cross-domain semantic
alignment by enforcing semantic transfer from labeled source
and target data to unlabeled target samples. In this approach, a
heterogeneous graph is first constructed to represent pairwise
relationships between labeled examples from both domains
and unlabeled target samples. Then, two strategies including
Confidence Uncertainty based Node Removal and Prediction
Dissimilarity based Edge Pruning are proposed to refine the
connectivity in the graph to alleviate the influence of noisy
edges. Provided with the refined graph, we present adaptive
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betweenness clustering to accomplish semantic transfer across
domains with semantic propagation from labeled source or
target examples to unlabeled samples on the target domain.
Extensive experimental results as well as comprehensive anal-
ysis performed well on three benchmark datasets demonstrate
the superiority of our proposed method, achieving new state-
of-the-art results.
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