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Real-time 3D Single Object Tracking
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Abstract—LiDAR-based 3D single object tracking is a challeng-
ing issue in robotics and autonomous driving. Currently, existing
approaches usually suffer from the problem that objects at long
distance often have very sparse or partially-occluded point clouds,
which makes the features extracted by the model ambiguous.
Ambiguous features will make it hard to locate the target object
and finally lead to bad tracking results. To solve this problem,
we utilize the powerful Transformer architecture and propose a
Point-Track-Transformer (PTT) module for point cloud-based 3D
single object tracking task. Specifically, PTT module generates
fine-tuned attention features by computing attention weights,
which guides the tracker focusing on the important features of
the target and improves the tracking ability in complex scenarios.
To evaluate our PTT module, we embed PTT into the dominant
method and construct a novel 3D SOT tracker named PTT-
Net. In PTT-Net, we embed PTT into the voting stage and
proposal generation stage, respectively. PTT module in the voting
stage could model the interactions among point patches, which
learns context-dependent features. Meanwhile, PTT module in
the proposal generation stage could capture the contextual
information between object and background. We evaluate our
PTT-Net on KITTI and NuScenes datasets. Experimental results
demonstrate the effectiveness of PTT module and the superiority
of PTT-Net, which surpasses the baseline by a noticeable margin,
∼10% in the Car category. Meanwhile, our method also has
a significant performance improvement in sparse scenarios. In
general, the combination of transformer and tracking pipeline
enables our PTT-Net to achieve state-of-the-art performance on
both two datasets. Additionally, PTT-Net could run in real-time
at 40FPS on NVIDIA 1080Ti GPU. Our code is open-sourced for
the research community at https://github.com/shanjiayao/PTT.

Index Terms—3D single object tracking, Lidar point-cloud,
Siamese network, Transformer, Self attention.

I. INTRODUCTION

S INGLE object tracking (SOT) using LiDAR points has a
wide range of applications in robotics and autonomous

driving [1]–[3]. For example, the autonomous pedestrian fol-
lowing robot should robustly track its master and localize
him/her accurately for efficient following control in the crowd.
Another example is autonomous landing of unmanned aerial
vehicles, where the drone needs to track the target and know
the accurate distance and pose of the target for safe landing.
However, most existing 3D SOT methods are usually using
visual or RGB-D cameras [4]–[6], which may fail in visually
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Fig. 1. Exemplified illustration to show the attention weights and voting
result. Given raw point cloud, we specify search area and extract robust key-
points first. Then, the transformer and attention mechanism focus on the key-
points which carry rich and robust information. Finally, the voting module
will generate votes according to the key-points and the predict bounding box.

degraded or illumination changing environments due to that
they mainly depend on the dense images for target tracking.

In addition to visual or RGB-D sensors, 3D LiDAR sen-
sors are also widely used in object tracking tasks [7]–[9]
because they are less sensitive to illumination changes and
could directly capture geometric and distance information
more accurately. However, LiDAR-based 3D SOT has its own
challenges. First, point data is sparse and disordered [10],
which requires the network to be permutation-invariant to
handle points well. Second, point cloud is spatially discrete,
which is naturally different from dense image. Third, 3D object
tracking needs to estimate higher space dimension information
(e.g., x, y, z, w, h, l, ry) than 2D visual tracking, which brings
more computational complexity. All these problems bring
great challenges to realize a robust and real-time LiDAR-based
tracking method.

Different from the existing LiDAR-based Multi-object
Tracking (MOT) methods [11]–[15], LiDAR-based 3D SOT
methods need to model the similarity function between target
template and search area to localize the target object. Although
they both need to compute the similarity, MOT methods
compute the object-level similarity to association the detection
results and tracklets, while SOT methods compute the intra-
object-level similarity to localize the target object. Therefore,
compared to 3D MOT, 3D SOT has its own challenges. SC3D
[16] is the pioneer LiDAR-based 3D Siamese tracker which is
based on the shape completion network. However, the method
only uses an encoder consisting of 3 layers of 1D-convolutions
to process the input point cloud, which makes it difficult to
extract the robust point cloud feature representation. Besides,
SC3D could not run in real-time and be trained end-to-end.
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Qi et al. [17] also proposed a point-to-box (P2B) network to
estimate the target bounding box from the raw point cloud.
However, their approach usually fails to track in sparse point
cloud scenarios. Meanwhile, P2B gives no preference to non-
accidental coincidences [18] which have more contribution to
locating the target center. Recently, Fang et al. [19] combined
Siamese network and LiDAR-based RPN network [20] to
tackle 3D object tracking. Nevertheless, they directly use the
classification scores to sort regression results, ignoring the
inconsistency between the localization and classification. It
is worth noting that points located in different geometric
positions often have different importance in representing tar-
gets. However, these aforementioned methods do not weigh
point cloud features based on this characteristic. Besides,
the point cloud features extracted from the template and the
search area contain less potential object information and more
background noise due to the sparsity and occlusion of point
clouds. Therefore, how to pay attention to the spatial clues is
the key to improve the performance of the 3D object tracker.

Recently, Transformer has shown amazing performance in
feature encoding due to its powerful self-attention module
[21]–[23]. Transformer usually consists of three main modules,
including input (word) embedding, position encoding and
attention module. Compared with the convolution network,
content-adaptive property and unique position module of trans-
former make it more suitable for processing 3D point clouds.
In addition, the 3D SOT task only focuses on local areas,
which makes the transformer suitable for this task, although
the transformer is sensitive to time and space cost.

In this paper, we propose a Point-Track-Transformer (PTT)
module for 3D single object tracking to learn features more
effectively by leveraging the superiority of the transformer
models on set-structured point clouds. The core idea is to
focus on the important features of the target object by utilizing
the self-attention and position encoding mechanism to weigh
the point cloud features. PTT module contains three blocks
for feature embedding, position encoding, and self-attention
feature computation, respectively. Feature embedding aims to
place features closer in the embedding space if they have
similar semantic information. Position encoding is used to
encode the coordinates of point cloud into high dimension
distinguishable features. Self-attention generates refined atten-
tion features by computing attention weights. Furthermore, to
evaluate the effectiveness of our PTT module, we embed the
PTT module into the dominant P2B [17] to construct a novel
3D SOT tracker termed PTT-Net. In PTT-Net, we add PTT into
the voting stage and proposal generation stage, respectively.
PTT embedded in the voting stage could model interactions
among point patches located in different geometric positions,
which learns context-dependent features and helps the network
focus on more representative features of objects. Meanwhile,
PTT embedded in the proposal generation stage could capture
the contextual information between object and background,
and help the network to effectively suppress background noise.
These modifications can efficiently improve the performance
of 3D object tracker. The experimental results of our PTT-Net
on KITTI tracking dataset [24] demonstrate the superiority of
our method (∼10%’s improvement compared to the baseline).

We further evaluate our PTT-Net on NuScenes dataset [25], the
results show that our method could achieve new state-of-the-
art performance. Additionally, PTT-Net could run in real-time
at 40FPS on a single NVIDIA 1080Ti GPU.

Overall, our main contributions are as follows:
• PTT module: we propose a Point-Track-Transformer

(PTT) module for 3D single object tracking using only raw
point clouds, which could weigh point cloud features to focus
on deeper-level object clues during tracking.
• PTT-Net: we construct a 3D single object tracking net-

work embedded with PTT modules which can be trained end-
to-end. To the best of our knowledge, this is the first work
to apply transformer to 3D object tracking task using point
clouds.
• Open-source: extensive experiments on KITTI and

NuScenes datasets show that our method outperforms the state-
of-the-art methods with remarkable margins at the speed of 40
FPS. Besides, we open source of our method to the research
community.

Apart from that, as an extended work of our conference
paper [26], we add more detailed descriptions on the network
architecture and dataset. Besides, we also carry out more
qualitative experiments and visualizations of our PTT-Net to
analyze the effectiveness of transformer in 3D single object
tracking task. For the extended experiments on the more
challenging NuScenes dataset, our method still achieves state-
of-the-art performance. The results indicate that our method
could be adapted to more complex scenes, further confirming
the effectiveness of our method.

The rest of this paper is organized as follows. In Sec. II,
we discuss the related work. Section III describes the proposed
PTT module and PTT-Net. We validate the performance of our
method on KITTI and NuScenes datasets in Sec. IV and we
conclude in section V.

II. RELATED WORK

This section will briefly discuss the related works in 2D
siamese trackers, 3D single object tracking, transformer, and
self-attention mechanism.

A. 2D Siamese Tracking

Early 2D visual trackers mainly focused on correlation
filtering [27]–[30]. However, these methods are based on the
tracking template matching mechanism, so they cannot cope
with the rapid deformation of the tracking target. Recently, the
realization of 2D object tracking tasks based on Siamese net-
works has become the mainstream with the rapid development
of deep learning [31]–[40]. Luca et al. [31] proposed SiamFC
which was the first pioneer work of Siamese trackers. The
visual tracking task was handled as a similarity problem, and
the cross-correlation module was introduced into the network
structure. Subsequently, a large number variants of SiamFC
[31] were proposed. Li et al. [32] introduced the Region
Proposal Network (RPN) into the Siamese network. SiamRPN
could regress more accurate 2D bounding box than SiamFC.
Besides, Li et al. [33] explored the relationship between the
number of network layers and tracker performance, optimized
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the network depth of the tracker to improve the tracking
accuracy. Furthermore, Wang et al. [35] integrated the task
framework of image segmentation and image tracking, and
used the mask to improve the accuracy of the tracker. Paul
et al. [36] proposed a two-stage network for visual tracking,
which used the re-detection of the first frame template and
the previous frame template to modify the tracking target.
Their method surpassed all previous methods on six short-term
tracking benchmarks and four long-term tracking benchmarks,
and achieved amazing results. [37] introduced an informative
enhanced loss, which can enable the network to capture infor-
mation from an overall perspective. Han et al. [38] proposed
an asymmetric convolution module, which could capture the
semantic correlation information well. To address the problem
of decisive samples missing during offline training, Dong et
al. [39] proposed a compact latent network to make the model
could quickly adapt to new scenes. And Dong et al. [40]
introduced a novel hyper-parameter optimization method by
using deep reinforcement learning. Chen et al. [41] proposed
a tracking framework by fusing the template and search
features with transformer. In summary, the 2D visual tracking
method has made great progress in the past decade and has
been applied to many practical scenarios. However, limited
by the sensor, the 2D visual trackers are still very sensitive
to illumination changes. In addition, most of the 2D visual
tracking methods only obtain the pixel coordinates of the
tracking target, but sometimes it is necessary to know the
accurate three-dimensional pose of the tracking target.

B. 3D SOT Using Point Cloud

Giancola et al. [16] proposed the first pioneer LiDAR-
based 3D single object tracker which utilized the Kalman
Filter to generate massive target proposals. They exploited
shape completion to learn the shape information of target,
but their method has a poor generalization ability and could
not run in real-time. Zarzar et al. [42] leveraged 2D Siamese
network which works on Bird-Eye-View (BEV) representation
to generate 3D proposals. However, this method may lose fine-
grained geometry details which are important for tracking tiny
objects. Cui et al. [43] also adopted a 3D Siamese tracker only
using point cloud, but they could not estimate the orientation
and size information of the target. Fang et al. [19] combined
3D Siamese network and 3D RPN network to track targets,
while the performance is limited by the RPN network. Besides,
Zou et al. [44] integrated 2D image and 3D point cloud
information for 3D object tracking. However, this method
relies more on 2D tracker and uses the ground truth to track
objects, which is unreasonable for realistic application. Qi
et al. [17] proposed P2B which used deep hough voting to
obtain the potential centers (votes) and estimated the target
center based on those votes. However, they ignore the fact
of points in different positions have different contributions in
tracking. Furthermore, its random sampling mechanism loses
the location distribution information of the raw point cloud.
To deal with these shortcomings, we propose a PTT module
to capture the feature correlations among the neighbor point
around the target object by weighing different point features.

Moreover, we use farthest point sampling instead of random
sampling to obtain more raw point cloud information.

C. Transformer and Self-attention

Recently, transformer has revolutionized natural language
processing and image analysis [21], [45]–[48]. Hu et al. [45]
and Ramachandran et al. [46] applied scalar dot product self-
attention to local pixel neighbors. Zhao et al. [49] applied
vector self-attention operations to image tasks. These works
combined or replaced CNNs with self-attention layers and
confirmed the transformer’s great potential in visual tasks.

Inspired by those works, Zhao et al. [50] used a Point
Transformer layer by applying vector self-attention operations,
which had a great performance improvement in point cloud
classification and segmentation tasks. Because self-attention
operator, which is the core of transformer networks, is intrin-
sically a set operator: positional information is provided as
attributes of elements that are processed as a set [21], [49].
Therefore, transformer is suitable for point cloud processing
due to its positional attributes. Besides, Nico et al. [51]
proposed SortNet as a part of Point Transformer and achieved
competitive performance on point cloud classification and part
segmentation tasks. Meanwhile, Guo et al. [52] also introduced
Point Cloud Transformer (PCT), which performed well on
shape classification, part segmentation, and normal estimation
tasks. Recently, Pan et al. [53] proposed a PointFormer as
the drop-in replacement backbone for 3D object detection and
gained state-of-the-art performance. Obviously, transformer
has unique advantages for point cloud feature learning.

In addition, transformer and attention mechanism have
recently been widely used in 2D tracking tasks [41], [54]–
[58]. The tracker using the transformer or attention also shows
superior performance with the help of the transformer’s power-
ful attention mechanism for features. Therefore, we apply the
transformer to the 3D point cloud tracking task to improve the
performance of the tracker.

III. METHODOLOGY

In this section, we first analyze the challenges and bot-
tlenecks of current LiDAR-based single object trackers and
discuss feasible solutions. Then, we revisit the transformer
and present our PTT module for LiDAR-based object tracking.
Finally, we introduce our PTT-Net in detail.

A. Baseline

P2B [17] is the dominant 3D SOT method using point
clouds. In this work, we use P2B as the baseline. The main
idea of P2B is to localize the target center in 3D search area
and execute the proposal generation and verification jointly.
Hence we can divide P2B into two parts. The first part is
feature enhancement. The input template and search point
clouds are extracted through a shared weight backbone net-
work [59], then the corresponding similarity could be obtained
by calculating the point-wise cosine similarity in an implicitly
embedded space. The second part is the region proposal
network which generates the proposals by deep hough voting
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mechanism [60] from the semantic features. Besides, P2B
also utilizes the proposal clustering network to leverage the
ensemble power and obtain accurate target proposals.

However, P2B tends to suffer from the defects that it gives
no preference to non-accidental coincidences [18] which have
more contribution to locate the target center. Therefore, we
would like to explore the differences among the augmented
features by using the transformer architecture.

B. Challenges

In Sec. I, we had pointed out several challenges for pro-
cessing point cloud data. For 3D single object tracking task,
there are also several challenges as follows.

1) error accumulation and propagation: In tasks involving
point clouds and deep learning, tracking is naturally different
from detection and segmentation due to its spatial-temporal
continuity. Since the tracking target is a sequence, which
makes two frames similar in spatial and temporal terms.
Thus, the dominant tracking algorithms utilize the spatial and
temporal prior information to initialize the search area. In spite
of its effectiveness in reducing computational complexity, bad
tracking results will lead to large tracking error in challenging
scenarios. This is because the consecutive tracking predictions
will accumulate over the historical error and propagate it to the
next frame. And when error accumulates enough, the tracker
will fails.

2) sparsity sensitive: The Siamese network from VOT is
generally adopted in existing algorithms for point cloud object
tracking. However, the image data is usually dense, while point
cloud is naturally sparse. This causes gaps in the effect of
applying Siamese network in image and point cloud. Sparse
point cloud data makes it difficult for the backbone network to
extract robust point cloud features. Hence, the existing LiDAR-
based tracking methods are sensitive to the sparsity of point
cloud data.

3) feature ambiguity: The sparsity of point clouds limits
networks on modeling interactions among point patches lo-
cated in different geometric positions and capturing contextual
information, which makes the features extracted by the models
ambiguous. The points at locations where the object surface
have a low-dimensional structure, such as a plane, contribute
ambiguous features [18]. The feature ambiguity makes the
tracker hard to classify the fore-background points and regress
the box center, and finally leads to bad tracking results.

These challenges motivate us to propose new algorithm to
deal with those problems. To this end, we propose our PTT
(Point-Track-Transformer) module and PTT-Net. PTT module
can handle the sparsity of points with the help of the attention
mechanism in Transformer, where the contribution of each
point is automatically learned in the network training. Besides,
the ambiguity of features will be suppressed through self-
attention mechanism because of the role of attention is to refine
features and guide the network to focus on more representative
features of the tracking target. Finally, our PTT-Net embedded
with PTT module could capture sparse dependencies even
from a few points, thus reducing the accumulation of errors.

C. Revisiting Transformer

Transformer [21] is firstly introduced to aggregate informa-
tion from the entire input sequence for machine translation. It
can handle sequential tasks well due to its attention mecha-
nism. The core architecture of transformer can be divided into
three parts: input feature embedding, position encoding, and
self-attention. Self-attention is the core module, which mainly
focuses on the differences of input features and generates
refined attention features based on global or local context.
Given the input feature G = {gi}Ni=1 after feature embedding,
the general formula of self-attention is:

Q,K, V = α(G), β(G), γ(G)

A = ρ(σ(Q,K) + P )� (V )
(1)

where α, β and γ are point-wise feature transformations (e.g.
linear layers or MLPs). Q, K, and V are the query, key
and value matrices, respectively. σ is the relation function
between Q and K. P is the position encoding feature. ρ is
a normalization function (e.g. softmax). � means Hadamard
product, which is used to obtain the output features from the
attention weights and V . A is the attention feature produced
by the self-attention module. For the relation function σ, the
regular form in machine translation [21] is:

σ(Q,K) = QKT (2)

D. PTT Module

To further integrate the self-attention mechanism into the
point cloud tracking task, we modify the transformer module
proposed in [50] to capture point cloud features better. The
point transformer layer in [50] is proposed to process the raw
point cloud for classification and segmentation tasks. However,
we utilize the point transformer to benefit the tracking task
and enable the tracker to capture spatial relations and object
geometry shape information. All these modifications construct
the PTT module, which is used to refine the features from
raw sparse point clouds and eliminate the ambiguity among
features. The architecture of PTT module is shown in Fig. 2.

For 3D SOT task, given an input of M points with XYZ
coordinates, a backbone network is used to extract the point
cloud and learn deep features. It outputs a subset of the
input containing N interest points (seeds) S = {si}Ni=1. Here,
si = (ci, fi) is composed of a vector ci of 3D coordinate and a
D-dimensional descriptor fi of the local object geometry. Our
goal of using transformer is to perform an attention weighting
operation on the feature space of fi, and output refined features
fi

∗ with the same dimension.
PTT module processes features by utilizing shape and

geometry information. Given a point set S = {si}Ni=1, si =
(ci, fi), ci ∈ R3 and fi ∈ RD. ci and fi represent 3D coor-
dinates and descriptor of point si. Feature embedding module
maps input features into embedding space RM : fi → gi,
gi ∈ RM . Position encoding module extracts higher-level M-
dimensional features pi from input coordinates ci: ci → pi,
pi ∈ RK×M . Finally, the self-attention module calculates
attention weights and attention features f∗i ,f∗i ∈ RD by taking
embedding features and position features as inputs. To avoid
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Fig. 2. PTT module architecture. It consists of three blocks: feature embedding, position encoding, and self-attention. The whole input are the coordinates
and their corresponding features. Feature embedding module maps input features into embedding space. In position encoding module, the k-nearest neighbor
algorithm is used to obtain local position information, then the encoded position features will be learned by an MLP layer. The self-attention module learns
refined attention features for input features based on local context. The output features of PTT module are the sum of input and residual features.

the vanishing gradient problem in the training stage, we also
adopt the residual architecture proposed in [61], and take the
sum of the attention features and input features as output
features.

1) Feature Embedding: The original feature embedding
module in natural language processing is to map each word in
the input sequence to a high-dimensional vector. In this work,
we use the linear layer to complete the feature embedding
operation, and map the input point cloud feature dimension
from D To M : RD → RM , which can place the feature closer
in the embedding space when the semantics are more similar
and make the network have a stronger fitting ability.

2) Position Encoding: Position encoding module plays a
crucial role in transformer, which allows operators to adapt to
the local structure of the input data [21]. 3D point coordinates
are valuable features indicating the local structures. Therefore,
we utilize the coordinates directly as the input of the position
encoding module. Compared to the techniques used in natural
language processing, we use a simple and yet efficient ap-
proach by mapping the coordinates of each point to the feature
dimension and the resulting position encoding is added to the
attention matrix. We adopt the relative coordinates to make the
network better capture the spatial correlation between points
and local geometric shape information. Since the feature fi
extracted by [59] can provide the local context information,
we obtain the position encoding features P = {pi}Ni=1 with
function η. For input point set S including N points, the

position encoding feature for each point is:

pi = η(ci − cj) (3)

where ci is the coordinate of the i-th point in S. cj is the
j-th coordinate in local neighborhood region of ci. η is an
MLP with two linear layers and one ReLU non-linearity. Here,
we use KNN to capture the local context and set k = 16 by
inheriting the experimental results in [50].

3) Self-Attention: As Fig. 2 shows, self-attention module
computes three vectors for each point: Q, K, V through α,
β, γ, where α, β, γ are all shared linear layers. It is worth
noting that K and V are aggregated from the features of the k
neighborhood points, which aims to encode more local context
information. Here, Q ∈ RM , K ∈ Rk×M , and V ∈ Rk×M .
For relation function σ, we use σ(Q,K) to obtain point-wise
attention weights, the detail implementation of σ(Q,K) will
be introduced in next part. And an MLP layer γ is used to
introduce additional trainable transformations and match the
output dimension. Then, we add the position encoding features
P to both the attention vector σ and the transformed features
K. Finally, the residual features recorded as A are defined as
the weighted sum of the attention weights with all V vectors.
The formula is as follows:

A = ρ
(
γ(σ(Q,K) + P )

)
�

(
V + P

)
(4)

where ρ is a normalization function (softmax) and γ is a non-
linear mapping function (MLP) that includes two linear layers
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Fig. 3. The pipeline of PTT-Net. In order to verify the effect of our PTT module, we embed two PTT modules into seeds voting and proposals generation
stage of the deep hough voting framework.

and one ReLU non-linearity. σ is the relation function between
Q and K. A is output attention features.

4) Relations Functions: The relation function σ(Q,K) is
the core of self-attention. Different ways of obtaining the
relation between Query vector and Key vector could construct
different types of attention modules. As mentioned in [50],
self-attention operators can be classified into two types: scalar
attention [21] and vector attention [49]. In scalar attention,
the relation function σ(Q,K) can be expressed in the form
of Eq. 2, which computes the scalar product between Query
vector and Key vector. The vector attention obtains vector
attention weights by using channel-wise subtraction operation.
Besides, it has been confirmed in [50] that vector attention is a
natural fit for point cloud than scalar attention since it supports
adaptive modulation of individual feature channels, not just
whole feature vectors. Therefore, we use the vector attention
structure. The relation function σ(Q,K) is a subtraction
operation. The formula is as follows:

σ(Q,K) = Q−K (5)

E. PTT-Net

This section details our PTT-Net which is a more accurate
and robust target tracking based on the existing open-source
method P2B [17]. In the following, we first explore the effect
of different sampling methods on point cloud-based tracking
tasks. Then, the position where the PTT module is embedded
and the loss function of the network training are described.

1) Sampling Strategies: Here, we first discuss the impact of
different sampling strategies on tracking task. The purpose of
sampling is to extract key points and ensure that the number
of points in the template or search point cloud is aligned with
the input dimension of network. However, different sampling
methods will lead to different degrees of target information
loss. At the same time, we find that in the existing tracking
pipeline, the more foreground points left in the search area
after sampling, the more accurate the regression results of
the network. In contrast, due to the unbalanced distribution of
foreground and background points, the classification accuracy
of the network will decrease. Therefore, a suitable sampling
strategy can not only achieve input alignment, but also improve
the tracking performance of the tracking network.

Random Sample Feature-FPS

FPSSearch Area

Fig. 4. Visualization of different sampling methods. The input points and
sampled points are labeled as black and red respectively. As shown in the
figure, the result of RS depends on the distribution density. And FPS can better
retain the geometric information. However, the Feat-FPS mainly focuses on
the foreground points, which will cause the unbalanced distribution between
foreground and background points.

Common 3D point cloud sampling methods include Random
Sampling (RS), Farthest Point Sampling (FPS), and Farthest
Point Sampling in Feature dimension (Feat-FPS). RS can
achieve high sampling efficiency, but the sampling result de-
pends on the distribution density of point cloud. FPS can better
retain the geometric information of the original point cloud,
and is a more balanced sampling method. In addition, Feat-
FPS proposed in 3D-SSD [62], which can sample in feature
space, has better sampling results for targets of different
semantic categories. The visualization of the three different
sampling methods is shown in Fig. 4. We find that FPS has
more uniform sampling results, while Feat-FPS pays more
attention to points on the target. P2B uses RS, although it
has a higher computational efficiency, it leads to the loss of
some key information, which limits their tracking accuracy.

In summary, for the sampling strategy of tracking task,
we adopted FPS which can retain the geometric information
of the original point cloud and make the foreground and
background points balanced. A demonstration of its good
tracking performance will be shown in Sec. IV-D.
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Background 
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Fig. 5. Visualization of classification(a-b) and tracking(c-d) results with
or without PTT module. The point will be paid more attention if it has
a higher score. Compared (a) with (b), PTT module pays more attention to
the foreground points. Compared (c) with (d), PTT module could still track
targets robustly in crowded scenes(with multiple pedestrians).

2) Embedding Position of PTT: The ability of transformer
to learn self-attention weights inspires us to try it on 3D SOT
task. We formulate the problem of focusing on the differences
of features as self-attention weighting. In order to verify the
effect of our method, we embed our PTT module into the
previous open-source state-of-the-art (SOTA) LiDAR-based
3D SOT work P2B [17]. More specifically, the PTT modules
are inserted in seeds voting stage and proposals generation
stage of P2B respectively. In the seeds voting stage, P2B
generates votes by utilizing the augmented features, which are
obtained from the backbone network (in Fig. 3). We notice
that [17] ignores the differences among different point cloud
features in the search area, and gives no preference to the
points in different locations when generating votes. However,
it is important to focus on the points which contain more geo-
metric information. Therefore, we apply PTT module to weigh
the augmented features and model interactions among point
patches to learn the context-dependent feature (in Fig. 5(a)(b)).

In proposals generation stage, P2B generates proposals
based on local context features. However, their method ignores
the global semantic features of the targets, so that they
could not distinguish similar objects (e.g., two pedestrians,
in Fig. 5(c)(d)). Therefore, we use the PTT module to fur-
ther weigh the target-wise context features obtained by the
aggregation network in P2B for tracking deeper-level target
clues to capture the contextual information between object and
background.

As shown in Fig. 3, we embed our PTT module in the
open-source SOTA method P2B [17] to build PTT-Net. We
add PTT module to the seeds voting and proposal generation
stages, and weigh the augmented features and cluster features
respectively. Experiments show that our PTT-Net outperforms
the SOTA method with remarkable margins.

3) Loss Function: The PTT module is trained with the other
sub-networks in [17]. Therefore, we follow [17] to design our

0 – 20 20 - 100 100 - 500 > 500

26.10%

31.69%

24.95%

17.25%

Number 
of points

Percentage

Fig. 6. The percentages and visualizations of the different number
intervals of point cloud in the car category. The number of frames
containing less than 20 points accounts for 26.10% of the total. The number of
frames containing 20-100 points accounts for 31.69% of the total. In addition,
the number of 100-500 and more than 500 frames are accounting for 24.95%
and 17.25% of the total, respectively. For four different intervals, we visualize
four point clouds with 11, 52, 293, and 883 points, respectively.

loss function. The overall loss consists of two parts as follows:

Lall = Lcv + λ1Lcb + λ2Lrv + λ3Lrb (6)

where λ1, λ2, λ3 represent the weighting coefficient of each
loss. Classification loss includes voting classification loss Lcv

and proposal box classification loss Lcb. The regression loss
includes the voting loss Lrv and the proposal box regression
loss Lrb.

IV. EXPERIMENTS

We used KITTI tracking dataset [24] and NuScenes [25]
dataset as the benchmark. Similar to [16], [17], [19], [44], we
mainly focused on rigid car tracking and performed ablation
studies on KITTI. We also conducted extended experiments
with other three target categories (Pedestrian, Van, Cyclist) to
comprehensively evaluate the performance of our method for
non-rigid objects (Pedestrian) tracking on KITTI. Besides, we
also follow BAT [64] to evaluate our PTT-Net on NuScenes.
The experiments show that PTT-Net outperforms previous
SOTA methods with remarkable margins and can run at 40
fps. 1

A. Experimental Protocols

1) Datasets: We used the training set of KITTI and
NuScenes dataset to train and evaluate our method. For KITTI
dataset, there are more than 20,000 manually labeled 3D
objects using Velodyne HDL-64E 3D lidar (10HZ). Following
[16], [17], [19], [44], we split the dataset as follows: 0-16 for
training, 17-18 for validation and 19-20 for testing. Specially,
we first extract each frame label from every scene label of
KITTI tracking benchmark. Then, we further extract each ID
label from every frame label, and finally concatenate the labels
of the same ID to obtain each tracklet label from its first frame
to its final frame. By this way, we convert the KITTI MOT
label to SOT label. Furthermore, for each tracklet, only the

1Our experiment video is available at https://youtu.be/z5Vkm8r9Wus.

https://youtu.be/z5Vkm8r9Wus
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TABLE I
PERFORMANCE COMPARISON ON KITTI FOR THE CAR CATEGORY. RED AND BLUE MEAN THE PERFORMANCE SCORE IS RANKED FIRST AND SECOND

RESPECTIVELY.

Module Modality 3D Success 3D Precision FPS

AVOD-Tracking [63] RGB+LiDAR 63.1 69.7 -
F-Siamese [44] RGB+LIDAR 37.1 50.6 -

SC3D [16] LiDAR only 41.3 57.9 1.8
ETP2D-3D [42] LiDAR only 36.3 51.0 -

P2B [17] LiDAR only 56.2 72.8 45.5
3D-SiamRPN [19] LiDAR only 58.2 76.2 20.8

PTT-Net(Ours) LiDAR only 67.8 81.8 40.0

first frame includes the 3D ground truth bounding box (bbox)
in the testing phase. Therefore, we initialize our tracker with
the first frame 3D ground truth bbox during tracking, and then
track the object in the sequence frames by our tracker. In order
to better illustrate that the point cloud in KITTI is challenging
for tracking task, we choose the Car category and count the
number of foreground points in each frame, then calculate
the percentage referred to all frames from 00-20 sequence in
Fig. 6. The total number of frames is 27292. The number of
frames that are less than 20 points is 7123, accounting for
26.10% of the total. The number of frames between 20-100
is 8650, accounting for 31.69% of the total. In addition, the
number of 100-500 and more than 500 frames are 6810 and
4709, respectively, accounting for 24.95% and 17.25% of the
total. This fully shows that about half of the frames in KITTI
are sparse scenes. Hence the KITTI dataset is challenging
for tracking task. This will be the bottleneck of limiting the
tracking accuracy as mentioned in Sec. III-B. Furthermore, we
exemplify the visualization results of point clouds at various
number intervals in Fig. 6.

For NuScenes dataset, there are 1000 driving scenes and 23
object categories, which make it is more challenging because
of more complex scenes. We follow the same settings with the
BAT [64] to obtain a fair comparison, and directly refer to the
results reported in BAT [64] for comparison.

2) Evaluation Metric: Following previous work [16], [17],
[19], [44], we report Success and Precision metrics defined by
One Pass Evaluation (OPE) [65], which represent the overlap
and error Area Under the Curve (AUC) respectively.

3) Implementation Details: We use FPS in our implemen-
tation instead of RS used in original P2B [17] for point cloud
sampling. In the training stage, we use the Adam optimizer
and set the initial learning rate to 0.001 and decrease by 5
times after 12 epochs. The batch size is 48 and the training
epoch is 60. Besides, we extend the offset from (x, y, θ) to
(x, y, z, θ) when generating more template samples during
data augmentation in [17]. In the testing stage, we also add
Z axis offset to generate the predicted box. Other parameters
are consistent with settings of [17]. Meanwhile, we also follow
the tracking setting of P2B [17]. Specially, we initialize the
template point cloud with the point cloud of the first frame
ground truth and update the template point cloud by fusing the
point cloud of first frame ground truth with previous result.
The search point cloud is updated based on the point cloud of

the previous result, which can better meet the requirement of
real scenes.

B. Quantitative Experiment

To better evaluate our method, we designed two quantitative
experiments. In the first experiment, we quantitatively evalu-
ated our method for 3D car tracking. In the second experiment,
we further compared PTT-Net with the previous methods
among different categories on both KITTI and NuScenes
datasets.

1) Comparisons on car category: We compared the perfor-
mance of our PTT-Net with the existing methods on the KITTI
dataset and reported the results for 3D car tracking in Tab. I. To
meet the requirement of real scenarios, we generate the search
area centered on the previous tracking result. The results show
that our PTT-Net has achieved SOTA performance in all eval-
uation metrics with remarkable margins. Compared with the
baseline algorithm P2B [17], our performance has been greatly
improved by ∼11% in 3D Success. Besides, compared with
the previous SOTA method 3D-SiamRPN [19], our method
performs better by a margin of ∼9% and ∼5% in 3D Success
and 3D Precision respectively. It verifies the superiority of
our method, and shows that PTT-Net could work better in
challenging scenarios like sparse or occlusion scenarios, while
other trackers often fail to track in these scenes. Additionally,
compared with [63] and [44] which both use RGB+LIDAR
fusion information, the Success/Precision results of PTT-Net
outperform them 4.7%/12.1% and 30.7%/31.2% respectively.
We think that this is because our method can capture important
feature representations on tracking targets even if it is only
based on raw point cloud data. More importantly, compared
with other methods, our proposed method not only has a good
performance, but also could run in real time with 40 FPS.

2) Comparisons on other categories: For four categories in
KITTI tracking dataset, the Car category is the rigid object.
To evaluate the tracking performance in more scenes and
especially containing non-rigid objects, we further compared
our method with previous methods on Pedestrian, Van, and
Cyclist (Tab. II). Except for F-Siamese [44], which fuses image
and point cloud information, all other methods adopt the same
experimental settings.

As shown in Tab. II, the average performance of PTT-Net
outperforms SC3D [16], P2B [17] and 3D-SiamRPN [19] by
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TABLE II
EXTENSIVE COMPARISONS WITH DIFFERENT CATEGORIES ON KITTI(LEFT) AND NUSCENES(RIGHT) DATASET. RED AND BLUE MEAN THE

PERFORMANCE SCORE IS RANKED FIRST AND SECOND RESPECTIVELY. AND FRAME NUMBER INDICATES THE INSTANCE NUMBER OF EACH CATEGORY.

Dataset KITTI NuScenes
Category Car Pedestrian Van Cyclist Mean Car Truck Trailer Bus Mean

Frame Number 6424 6088 1248 308 14068 64159 13587 3352 2953 84051

3D Success

SC3D [16] 41.3 18.2 40.4 41.5 31.2 22.31 30.67 35.28 29.35 24.43
P2B [17] 56.2 28.7 40.8 32.1 42.4 38.81 42.95 48.96 32.95 39.68

F-Siamese [44] 37.1 16.2 - 47.0 - - - - - -
3D-SiamRPN [19] 58.2 35.2 45.6 36.1 46.6 - - - - -

BAT [64] 65.4 45.7 52.4 33.7 55.0 40.73 45.34 52.59 35.44 41.76
PTT-Net(Ours) 67.8 44.9 43.6 37.2 55.1 41.22 50.23 61.66 43.86 43.58

3D Precision

SC3D [16] 57.9 37.8 47.0 70.4 48.5 21.93 27.73 28.12 24.08 23.19
P2B [17] 72.8 49.6 48.4 44.7 60.0 43.18 41.59 40.05 27.41 42.24

F-Siamese [44] 50.6 32.2 - 77.2 - - - - - -
3D-SiamRPN [19] 76.2 56.2 52.8 49.0 64.9 - - - - -

BAT [64] 78.9 74.5 67.0 45.4 75.2 43.29 42.58 44.89 28.01 42.70
PTT-Net(Ours) 81.8 72.0 52.5 47.3 74.2 45.26 48.56 56.05 39.96 46.04
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Fig. 7. Tracking Success and Precision vs. speed of the dominant trackers
on Car category. The proposed PTT-Net is superior than SC3D [16], P2B
[17], 3D SiamRPN [19] at 3D Success and 3D Precision, and could maintain
a good inference speed.

∼24%,∼13% and∼9% respectively. It is worth noting that the
Success/Precision results of PTT-Net show an improvement
(9.7%/15.8%) on non-rigid object (Pedestrian) tracking. The
result also verifies that our PTT module can help the network
understand and learn the important features of the target
better. Additionally, we notice that there are performance gaps
between our method and the best method F-Siamese [44] in
Van and Cyclist categories. We believe there are two reasons.
First, the cyclist has the least training samples (only 1529
samples for training), which may limit the performance of the

Fig. 8. The comparison of different points number intervals in the first
frame between PTT and P2B. The Success and Precision results are shown
in two line charts separately. Only one case that the performance of PTT
is lower than P2B when the points number interval is in [50,100]. And the
average accuracy of PTT is much higher than that of P2B.

transformer. And we did not do any extra data augmentation
for cyclist because we would like to use a fair setting among
all categories. Second, F-Siamese firstly utilizes a 2D siamese
tracker in the front end only using dense image data, and
generates a search area based on the results of the 2D siamese
tracker, which provides prior information for subsequent 3D
SOT. We believe that the data fusion in F-Siamese may result
in the better performance. Additionally, we also notice that
the Success results of P2B achieves 28.7%/32.1% in pedestrian
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Original Point Cloud Search Area with PTT Module

GT Box Predict Box Attention Points Attention Score
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without PTT Module

Fig. 9. Comparison of visualization results with or without PTT module. We compared the attention points and corresponding scores in the third column
and the fourth column when the network had the PTT module or not. Furthermore, the tracking difficulty is increasing as the number of initial points in the
search area decreases from top to bottom.

and cyclist respectively, and our method brings +16.2%/+5.2%
gains in the two categories. Because our method is based on
P2B, we believe the results also verify the effectiveness of our
method. Besides, our performance is much higher than that
of F-Siamese method in the categories with more abundant
data, such as vehicles and pedestrians. The Success/Precision
results of PTT-Net outperform F-siamese by 30.7%/31.2% and
28.7%/39.8% in vehicles and pedestrian category respectively.

Besides, we also evaluated our PTT-Net on NuScenes
dataset to further confirm the effectiveness of our method.
Although KITTI dataset is commonly used by previous 3D
SOT methods, its scale is too small and this may limit the
performance of proposed network. Recently, BAT [64] reports
the results of the dominant methods on NuScenes dataset.
Hence we follow the settings of BAT and evaluate our PTT-
Net on NuScenes, and report the results in Tab II. As shown
in Tab II, our PTT-Net outperforms BAT in all categories.
This indicates that our PTT-Net could address the challenging
scenes in NuScenes more effectively.

3) Comparison of speed and performance: We further show
the comparisons with previous trackers in terms of speed,
3D Success and 3D Precision on Car category. As shown in
Fig. 7, our PTT-Net achieves SOTA performance on both 3D
Success and 3D Precision. Meanwhile, our method has less
computational burden. In other words, our method has both
high accuracy and fast running speed.

4) Comparisons in different points intervals: Here, we
choose the Car category and divide the tracking sequence
according to the number of points in the first frame, which
is used to initialize the template point cloud and plot the cor-
responding tracking performance curve (Fig. 8). As mentioned
in Sec. III-B, the sparsity of point cloud limits the performance
of 3D SOT trackers. Generally, in extremely sparse scenes (the
number of points on the target is less than 50), most existing
trackers often track off or fail. However, as shown in Fig. 8, the
performance of our method outperforms P2B in both Success
and Precision with a large margin when points number is less
than 50. This shows that our method could deal with sparse
scenes better and has more robust performance.

C. Qualitative Experiment
1) PTT Module show: To show the effects of PTT modules

in PTT-Net, we exemplified the attention points and scores
when PTT-Net utilizes PTT Module or not in Fig. 9. For
attention points and scores, we set the voting scores in the
voting stage as attention scores. The higher the score, the
more attention the corresponding points have been focused
on. As shown in Fig. 9, from the first row to the fourth row,
the point cloud of tracking target becomes more sparse, which
makes the tracking difficulty higher. However, the results show
that our PTT module can achieve robust tracking in all these
different scenarios. And the attention scores tend to be higher
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Fig. 10. Advantageous cases of PTT-Net compared with SC3D and P2B (a-b). In (a) and (b), the number of point clouds in the first frame is less than
50. Our method can track the target accurately. However, in scenario (a), both P2B and SC3D failed to track. In scenario (b), even though P2B could track
the target, it still has an inaccurate z-axis estimation for the target. Meanwhile, SC3D has failed to track. These results show the robustness of our method in
sparse point cloud scenarios. Please see our experiment video for more details.

frame=10

Tracking results show with search points
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Ground Truth PTT-Net(Ours)

Fig. 11. Failure cases. no points in the initial search area

in the location where the target features are rich. Meanwhile,
we also observe that our PTT module helps network filter
the background noise better and focus on the tracking target.
Especially, from the visualization results in the fourth row of
Fig. 9, even if there are few points, our PTT module could
still help the network focus more on the foreground points,
which once again proves the power of our PTT module.

2) Advantageous cases: We visualized our advantageous
cases over P2B and SC3D in Fig. 10. We can observe from
Fig. 10 (a) that in the sparse scenarios (less than 50 points)
where both SC3D and P2B tracked off course or even failed,
our PTT-Net still tracks the target robustly. In Fig. 10 (b),
even though P2B can track the target, their position estimation

still has a large deviation in z axis. This also shows the
effectiveness of our method. We could not only track the
target robustly in sparse scenes, but also estimate the location
information of the target more accurately.

3) Failure cases: The Fig. 10 shows that PTT-Net can work
well in most of scenes compared to SC3D and P2B. However,
the sparsity of points still influences the performance of PTT-
Net. Our method tends to fail when the points are extremely
sparse. To show the failure case of our method in more detail,
we visualized the failed tracking result when the points are less
than 20. As shown in Fig. 11, our PTT-Net could not learn
effective object features since there are almost no points in the
initial search area. In addition, due to the sparse point cloud,
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TABLE III
DIFFERENT WAYS FOR TEMPLATE GENERATION. “FIRST & PREVIOUS" DENOTES “THE FIRST GROUND TRUTH (GT) AND PREVIOUS RESULT".

Source of Success Precision
template points PTT-Net 3D-SiamRPN [19] P2B [17] SC3D [16] PTT-Net 3D-SiamRPN [19] P2B [17] SC3D [16]

The First GT 62.9 57.2 46.7 31.6 76.5 75.0 59.7 44.4
Previous result 64.9 - 53.1 25.7 77.5 - 68.9 35.1

First & Preivous 67.8 58.2 56.2 34.9 81.8 76.2 72.8 49.8
All previous 59.8 - 51.4 41.3 74.5 - 66.8 57.9

TABLE IV
DIFFERENT WAYS FOR SEARCH AREA GENERATION.

Success Precesion
SC3D [16] P2B [17] PTT-Net(Ours) SC3D [16] P2B [17] PTT-Net(Ours)

Previous Result 41.3 56.2 67.8 57.9 72.8 81.8
Previous GT 64.6 82.4 75.9 74.5 90.1 88.9
Current GT 76.9 84.0 76.1 81.3 90.3 89.1

the feature ambiguity also leads to the inaccurate estimation
of the bounding box, which causes the propagation of errors
and failure case finally.

D. Ablation Study

Here, we ablate the network architecture on KITTI dataset.
First, we discuss different ways for seeds sampling, template
generation, and search area generation. Then we ablate the
different embedded position of our PTT module. Finally, dif-
ferent parameters selection of PTT module are also discussed.

1) Ways for seeds sampling: The first ablation study pre-
sented is designed to support our claim that FPS could benefit
the classification task. As mentioned in Sec. III-E1, different
sampling methods will lead to different degrees of target
information loss. Here, we compared the effects of three
different down-sampling methods: Random Sampling (RS),
Farthest Point Sampling (FPS), and Feat-FPS proposed by
[62] (Tab. V) on the performance of our method. We also
showed the visualizations of three sampling methods (Fig. 4).
We found that RS had the worst performance, and FPS could
obtain the best performance, which was ∼7% higher than RS.
Besides, Feat-FPS also had good tracking performance, which
was only ∼1% lower than the FPS. We attribute this result
to the fact that FPS can obtain seeds which belong to the
foreground and background points uniformly. Meanwhile, FPS
could keep the distribution probability of the original input
point cloud to the greatest extent while reducing the dimension
of the input, which will be beneficial to the classification and
regression tasks of the tracking network.

2) Ways for template generation: Our method is consistent
with P2B when generating template point clouds. Therefore,
we explored the different way of template point cloud genera-
tion, including the first ground truth, previous result, the fusion
of the first ground truth and previous result, and all previous
results. Specially, the fusion between first frame ground truth
and previous results means the fusion of two point clouds

TABLE V
PERFORMANCE OF DIFFERENT SAMPLING METHODS.

Random Sample Feat-Fps Fps

3D Success 60.4 66.1 67.8
3D Precision 73.7 80.0 81.8

TABLE VI
DIFFERENT EMBEDDED POSITIONS OF PTT MODULE.

Ablation 3D Success 3D Precision

baseline [17] 56.2 72.8
Only PTT in Vote 62.1 76.9
Only PTT in Prop 65.7 78.9

PTT in all (PTT-Net) 67.867.867.8 81.881.881.8

within the two 3D bounding boxes respectively. First, we
extract the points in the box from the point cloud according
to the first frame ground-truth box and the predicted box in
the previous frame. Second, according to the angle of the box
and the coordinates of the center point, the two frames of
point clouds are normalized to the same coordinate system
by rotating and translating respectively. Finally, the updated
template point clouds could be obtained by concatenating two
point clouds directly. We reported the results in Tab. III. We
found that our PTT-Net outperformed 3D-SiamRPN, P2B and
SC3D in all settings. Besides, the proposed method has the
best performance by fusing the first ground truth and the
previous result. We believe that this is because our method
has more robust tracking results in sparse scenes. Therefore,
if we fuse the first ground truth and the previous result to
update the template points, it could further enhance the target
information and improve the algorithm performance.

3) Ways for search area generation: The generation strat-
egy of search area in object tracking task directly determines
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TABLE VII
ABLATION STUDY OF HYPER-PARAMETERS IN PTT MODULE.

3D Success 3D Precision

Head Number

1 67.8 81.8
2 67.2 80.9
4 65.6 79.1
8 65.5 78.1

Layer Number

1 67.8 81.8
2 64.7 78.5
4 64.0 76.8
8 62.6 76.5

the feature scale and quality that the network can learn. In
previous work SC3D [16], P2B [17], there are performance
comparisons in different search area situations. To further
explore the performance of our method, we also conducted
experiments on the search area generation strategies, and
compared them with SC3D [16] and P2B [17]. The experi-
mental results are shown in Tab. IV. Specifically, we compared
three different search area generation methods: 1) centered
on previous result; 2) centered on previous ground truth; 3)
centered on current ground truth. The results show that the
performance of the three methods has been greatly improved
with search area generated by ground-truth. The reason is that
each frame uses the ground-truth result, which can effectively
avoid the accumulation of errors caused over time. However,
it is worth noting that our method PTT is slightly lower than
P2B after using the ground-truth, but the performance is still
at a similar level.

4) Positions for PTT module embedding: To verify our
design in Sec. III-E of positions where PTT modules are em-
bedded, we tried different schemes (Tab. VI). The results show
that embedding PTT module in both stages of [17] can obtain
the best improvement. Comparing (a) with (b) in Fig. 5, PTT-
Net has better point cloud classification results which focus
on foreground points. Comparing (c) with (d), PTT-Net could
still track the target pedestrian robustly when more proposal
centers are generated from another pedestrian. Besides, as
shown in Fig. 9, PTT-Net can focus on foreground points with
the help of PTT module. This result effectively shows that the
transformer can learn more target-wise information.

5) Parameters selection for PTT module: Here we discuss
the details of our PTT module, including the number of heads
and the number of attention layers, as shown in Tab. VII. For
the number of heads, we observe that head = 1 and layer = 1
achieves the best performance, and stacking more heads or
layers could not bring in performance improvement but more
parameters and lower speed. We believe that since our PTT
module is directly applied on the fusion feature, which already
has the similarity representations, more heads or layers in PTT
may make the feature focus on other unimportant features, thus
distracting the already fused similarity features. Therefore, we
set both the heads and layers to 1.

E. Timing Breakdow

We calculated the average running time of all test frames for
car to measure PTT-Net’s speed. PTT-Net achieved 40 FPS on
a single NVIDIA 1080Ti GPU, including 8.3 ms for preparing
point cloud, 16.2 ms for model forward propagation, and 0.5
ms for post-processing. The running time of SC3D [16], P2B
[17] and 3D-SiamRPN [19] on the same platform are 1.8FPS,
45.5FPS and 20.8FPS, respectively.

V. CONCLUSIONS

In this work, we explored the application of transformer
network in 3D SOT task and proposed PTT module. The
PTT module aims at weighing point cloud features to focus
on the important features of objects. We also embedded
the PTT module into the open-source state-of-the-art method
[17] to build a PTT-Net 3D tracker. Experiments show that
PTT-Net outperforms previous state-of-the-art methods with
remarkable margins. We hope that our work will inspire further
investigation of the application of transformers to 3D object
tracking.
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