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Linear Convergence of Adaptively Iterative
Thresholding Algorithms for Compressed Sensing

Yu Wang, Jinshan Zeng∗, Zhimin Peng, Xiangyu Chang, and Zongben Xu

Abstract—This paper studies the convergence of the adaptively
iterative thresholding (AIT) algorithm for compressed sensing.
We first introduce a generalized restricted isometry property
(gRIP). Then we prove that the AIT algorithm converges to the
original sparse solution at a linear rate under a certain gRIP
condition in the noise free case. While in the noisy case, its
convergence rate is also linear until attaining a certain error
bound. Moreover, as by-products, we also provide some sufficient
conditions for the convergence of the AIT algorithm based on
the two well-known properties, i.e., the coherence property and
the restricted isometry property (RIP), respectively. It should
be pointed out that such two properties are special cases of
gRIP. The solid improvements on the theoretical results are
demonstrated and compared with the known results. Finally,
we provide a series of simulations to verify the correctnessof
the theoretical assertions as well as the effectiveness of the AIT
algorithm.

Index Terms—restricted isometric property, coherence, iter-
ative hard thresholding, SCAD, compressed sensing, sparse
optimization

I. I NTRODUCTION

Let A ∈ R
m×n, b ∈ R

m andx ∈ R
n. Compressed sens-

ing [1], [2] solves the following constrainedℓ0-minimization
problem

min
x∈Rn

‖x‖0 s.t. b = Ax + ǫ, ‖ǫ‖2 ≤ σ (1)

where ǫ ∈ R
m is the measurement noise,σ ∈ R is the

noise variance and‖x‖0 denotes the number of the nonzero
components ofx. Due to the NP-hardness of problem (1)
[3], approximate methods including the greedy method and
relaxed method are introduced. The greedy method approaches
the sparse solution by successively alternating one or more
components that yield the greatest improvement in quality
[3]. These algorithms include iterative hard thresholding(IHT)
[4], accelerated hard thresholding (AHT) [5], ALPS [6], hard
thresholding pursuit (HTP) [7], CLASH [8], OMP [10], [11],
StOMP [12], ROMP [13], CoSaMP [14] and SP [15]. The
greedy algorithms can be quite efficient and fast in many
applications, especially when the signal is very sparse.
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The relaxed method converts the combinatorialℓ0-
minimization into a more tractable model through replacing
theℓ0 norm with a nonnegative and continuous functionP (·),
that is,

min
x∈Rn

P (x) s.t. b = Ax+ ǫ, ‖ǫ‖2 ≤ σ. (2)

One of the most important cases is theℓ1-minimization
problem (also known asbasis pursuit(BP)) [16] in the noise
free case andbasis pursuit denoisingin the noisy case) with
P (x) = ‖x‖1, where ‖x‖1 =

∑n
i=1 |xi| is called theℓ1

norm. Theℓ1-minimization problem is a convex optimization
problem that can be efficiently solved. Nevertheless, theℓ1
norm may not induce further sparsity when applied to certain
applications [17], [18], [19], [20]. Therefore, many nonconvex
functions were proposed as substitutions of theℓ0 norm. Some
typical nonconvex examples include theℓq (0 < q < 1)
norm [17], [18], [19], smoothly clipped absolute deviation
(SCAD) [21] and minimax concave penalty (MCP) [22].
Compared with theℓ1-minimization model, the nonconvex
relaxed models can often induce better sparsity and reduce
the bias, while they are generally more difficult to solve.

The iterative reweighted method and regularization method
are two main classes of algorithms to solve (2) whenP (x)
is nonconvex. The iterative reweighted method includes the
iterative reweighted least squares minimization (IRLS) [23],
[24], and the iterative reweightedℓ1-minimization (IRL1)
algorithms [20]. Specifically, the IRLS algorithm solves a
sequence of weighted least squares problems, which can be
viewed as some approximations to the original optimization
problem. Similarly, the IRL1 algorithm solves a sequence of
non-smooth weightedℓ1-minimization problems, and hence it
is the non-smooth counterpart to the IRLS algorithm. However,
the iterative reweighted algorithms are slow if the nonconvex
penalty cannot be well approximated by the quadratic function
or the weightedℓ1 norm function. The regularization method
transforms problem (2) into the following unconstrained opti-
mization problem

min
x∈Rn

{‖Ax− b‖22 + λP (x)}, (3)

whereλ > 0 is a regularization parameter. For some special
penaltiesP (x) such as theℓq norms (q = 0, 1/2, 2/3, 1),
SCAD and MCP, an optimal solution of the model (3) is a
fixed point of the following equation

x = H(x− sAT (Ax− b)),

whereH(·) is a componentwise thresholding operator which
will be defined in detail in the next section ands > 0 is
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a step size parameter. This yields the corresponding iterative
thresholding algorithm ([19], [25], [26], [27], [28], [29])

x(t+1) = H(x(t) − sAT (Ax(t) − b)).

Compared to greedy methods and iterative reweighted algo-
rithms, iterative thresholding algorithms have relatively lower
computational complexities [30], [31], [32]. So far, most of
theoretical guarantees of the iterative thresholding algorithms
were developed for the regularization model (3) with fixedλ.
However, it is in general difficult to determine an appropriate
regularization parameterλ.

Some adaptive strategies for setting the regularization pa-
rameters were proposed. One strategy is to set the regulariza-
tion parameter adaptively so that‖x(t)‖0 remains the same at
each iteration. This strategy was first applied to the iterative
hard thresholding algorithm (called Hard algorithm for short
henceforth) in [33], and later the iterative soft thresholding
algorithm[34] (called Soft algorithm for short henceforth) and
the iterative half thresholding algorithm [19] (called Half
algorithm for short henceforth). The convergence of Hard
algorithm was justified whenA satisfies the restricted isometry
property (RIP) withδ3k∗ < 1√

32
[33], wherek∗ is the number

of the nonzero components of the truely sparse signal. Later,
Maleki [34] investigated the convergence of both Hard and
Soft algorithms in terms of the coherence. Recently, Zeng et
al. [35] generalized Maleki’s results to a wide class of iterative
thresholding algorithms. However, most of guarantees in [35]
are coherence-based and focus on the noise free case with
the step size equal to 1. While it has been observed that in
practice, the AIT algorithm can have remarkable performances
for noisy cases with a variety of step sizes. In this paper, we
develop the theoretical guarantees of the AIT algorithm with
different step sizes in both noise free and noisy cases.

A. Main Contributions

The main contributions of this paper are the following.

i) Based on the introduced gRIP, we give a new uniqueness
theorem for the sparse signal (see Theorem 1), and
then show that the AIT algorithm can converge to the
original sparse signal at a linear rate (See Theorem 2).
Specifically, in the noise free case, the AIT algorithm
converges to the original sparse signal at a linear rate.
While in the noisy case, it also converges to the original
sparse signal at a linear rate until reaching an error
bound.

ii) The tightness of our analyses is further discussed in two
specific cases. The coherence based condition for Soft
algorithm is the same as those required for both OMP
and BP. Moreover, the RIP based condition for Hard
algorithm is δ3k∗+1 <

√
5−1
2 ≈ 0.618, which is better

than the results in [7] and [9].

The rest of this paper is organized as follows. In section II,
we describe the adaptively iterative thresholding (AIT) algo-
rithm. In section III, we introduce the generalized restricted
isometry property, and then provide a new uniqueness theorem.
In section IV, we prove the convergence of the AIT algorithm.
In section V, we compare the obtained theoretical results with

some other known results. In section VI, we implement a
series of simulations to verify the correctness of the theoretical
results as well as the efficiency of the AIT algorithm. In section
VII, we discuss many practical issues on the implementation
of the AIT algorithm, and then conclude this paper in section
VIII. All the proofs are presented in the Appendices.

Notations. We denoteN andR as the natural number set
and one-dimensional real space, respectively. For any vector
x ∈ R

n, xi is the i-th component ofx for i = 1, . . . , n.
For any matrixA ∈ R

m×n, Ai denotes thei-th column
of A. xT and AT represent the transpose of vectorx and
matrix A respectively. For any index setS ⊂ {1, . . . , n},
|S| represents its cardinality.Sc is the complementary set,
i.e., Sc = {1, . . . , n} \ S. For any vectorx ∈ R

n, xS

represents the subvector ofx with the components restricted
to S. Similarly, AS represents the submatrix ofA with the
columns restricted toS. We denotex∗ as the original sparse
signal with ‖x∗‖0 = k∗, and I∗ = {i : |x∗

i | 6= 0} is the
support set ofx∗. Ir ∈ R

r×r is the r-dimensional identity
matrix. sgn(·) represents the signum function.

II. A DAPTIVELY ITERATIVE THRESHOLDINGALGORITHM

The AIT algorithm for (3) is the following

z(t+1) = x(t) − sAT (Ax(t) − b), (4)

x(t+1) = Hτ (t+1)(z(t+1)), (5)

wheres > 0 is a step size and

Hτ (t+1)(x) = (hτ (t+1)(x1), . . . , hτ (t+1)(xn))
T (6)

is a componentwise thresholding operator. The thresholding
functionhτ (u) is defined as

hτ (u) =

{

fτ (u), |u| > τ
0, otherwise

, (7)

wherefτ (u) is thedefining function.In the following, we give
some basic assumptions of the defining function, which were
firstly introduced in [35].

Assumption 1. Assume thatfτ satisfies

1) Odevity. fτ (u) is an odd function ofu.
2) Monotonicity . fτ (u) < fτ (v) for any τ ≤ u < v.
3) Boundedness. There exist two constants0 ≤ c2 ≤ c1 ≤

1 such thatu− c1τ ≤ fτ (u) ≤ u− c2τ for u ≥ τ .

Note that most of the commonly used thresholding functions
satisfy Assumption 1. In Fig. 1, we show some typical
thresholding functions including hard [27], soft [25] and half
[19] thresholding functions forℓ0, ℓ1, ℓ1/2 norms respectively,
as well as the thresholding functions forℓ2/3 norm [26] and
SCAD penalty [21]. The corresponding boundedness parame-
ters are shown in Table I.

TABLE I
BOUNDEDNESS PARAMETERSc FOR DIFFERENT THERSHOLDING

FUNCTIONS

fτ,∗ fτ,0 fτ,1/2 fτ,2/3 fτ,1 fτ,SCAD

c1 0 1
3

1
2

1 1
c2 0 0 0 1 0
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Fig. 1. Typical thresholding functionshτ (u) with τ = 1.

This paper considers a heuristic way for setting the threshold
τ (t), specifically, we let

τ (t) = |z(t)[k+1]|,

where z
(t)
[k+1] is the (k + 1)-th largest component ofz(t) in

magnitude andk is thespecified sparsity level, [k+1] denotes
the index of this component. We formalise the AIT algorithm
as in Algorithm 1.

Algorithm 1: Adaptively Iterative Thresholding Algorithm

Initialization: NormalizeA such that‖Aj‖2 = 1 for j = 1, . . . , n.
Given a sparsity levelk, a step sizes > 0 and an initial pointx(0).
Let t := 0;
Step 1: Calculatez(t+1) = x(t) − sAT (Ax(t) − b);

Step 2: Set τ (t+1) = |z
(t+1)
[k+1]

| andIt+1 as the index set of

the largestk components ofz(t+1) in magnitude;

Step 3: Update: if i ∈ It+1, x(t+1)
i = fτ(t+1) (z

(t+1)
i ) , otherwise

x
(t+1)
i = 0;

Step 4: t = t+ 1 and repeatSteps 1-3 until convergence.

Remark 1. At the (t + 1)-th iteration, the AIT algorithm
yields a sparse vectorx(t+1) with k nonzero components. The
sparsity levelk is a crucial parameter for the performance of
the AIT algorithm. Whenk ≥ k∗, the results will get better
as k decreases. Oncek < k∗, the AIT algorithm fails to find
the original sparse solution. Thus,k should be specified as an
upper bound estimate ofk∗.

Remark 2. In Algorithm 1, the columns of matrixA are
required to be normalized. Such operation is only for a clearer
definition of the following introduced generalized restricted
isometry property (gRIP) and more importantly, better the-
oretical analyses. However, as shown in Section VII B, this
requirement is generally not necessary for the use of the AIT
algorithm in the perspective of the recovery performance. We
will conduct a series of experiments in Section VII B for a
detailed explanation.

III. G ENERALIZED RESTRICTEDISOMETRY PROPERTY

This section introduces the generalized restricted isometry
property (gRIP) and then gives the uniqueness theorem.

Definition 1. For any matrixA ∈ R
m×n, and a constant pair

(p, q) wherep ∈ [1,∞), q ∈ [1,∞] and 1
p + 1

q = 1, then the
(k, p, q)-generalized restricted isometry constant (gRIC)βk,p,q

of A is defined as

βk,p,q = sup
S⊂{1,...,n},|S|≤k

sup
x∈R|S|\{0}

‖(I|S| −AT
SAS)x‖q

‖x‖p
.

(8)

We will show that the introduced gRIP satisfies the follow-
ing proposition.

Proposition 1. For any positive constant pair(p, q) with 1
p +

1
q = 1, the generalized restricted isometric constantβk,p,q

associated withA and k must satisfy

1

3
βk,p,q ≤ sup

z∈Rn\{0},‖z‖0≤k

∣

∣zT (ATA− In)z
∣

∣

‖z‖2p
≤ βk,p,q. (9)

The proof of this proposition is presented in Appendix
A. It can be noted that the gRIP closely relates to the
coherence property and restricted isometry property (RIP),
whose definitions are listed in the following.

Definition 2. For any matrixA ∈ R
m×n, the coherence ofA

is defined as

µ = max
i6=j

|〈Ai, Aj〉|
‖Ai‖2 · ‖Aj‖2

, (10)

whereAi denotes thei-th column ofA for i = 1, . . . , n.

Definition 3. For any matrixA ∈ R
m×n, given1 ≤ k ≤ n,

the restricted isometry constant (RIC) ofA with respect tok,
δk, is defined to be the smallest constantδ such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22, (11)

for all k-sparse vector, i.e.,‖z‖0 ≤ k.

By Definition 3, RIC can also be written as:

δk = sup
z∈Rn\{0},‖z‖0≤k

∣

∣zT (ATA− In)z
∣

∣

‖z‖22
, (12)

which is very similar to the middle part of (9). In fact,
Proposition 2 shows that coherence and RIP are two special
cases of gRIP.

Proposition 2. For any column-normalized matrixA ∈
R

m×n, that is,‖Aj‖2 = 1 for j = 1, . . . , n, it holds

(i) βk,1,∞ = µ, for 2 ≤ k ≤ n.
(ii) βk,2,2 = δk, for 1 ≤ k ≤ n.

The proof of this proposition is shown in Appendix B.

A. Uniqueness Theorem Characterized via gRIP

We first give a lemma to show the relation between two
different norms for ak-sparse vector space.

Lemma 1. For any vectorx ∈ R
n with ‖x‖0 = k ≤ n, and

for any 1 ≤ q ≤ p ≤ ∞, then

‖x‖p ≤ ‖x‖q ≤ k
1
q
− 1

p ‖x‖p. (13)



4

This lemma is trivial based on the well-known norm equiv-
alence theorem so the proof is omitted. Note that Lemma 1 is
equivalent to

‖x‖p ≤ kmax{ 1
p
− 1

q
,0}‖x‖q, ∀p, q ∈ [1,∞]. (14)

With Lemma 1, the following theorem shows that ak-sparse
solution of the equationAx = b will be the unique sparsest
solution if A satisfies a certain gRIP condition.

Theorem 1. Let x∗ be a k-sparse solution ofAx = b. If A
satisfies(2k, p, q)-gRIP with

0 < β2k,p,q < (2k)min{ 1
q
− 1

p
,0},

thenx∗ is the unique sparsest solution.

The proof of Theorem 1 is given in Appendix C. According
to Proposition 2 and Theorem 1, we can obtain the following
uniqueness results characterized via coherence and RIP, re-
spectively.

Corollary 1. Let x∗ be a k-sparse solution of the equation
Ax = b. If µ satisfies

0 < µ <
1

2k
,

thenx∗ is the unique sparsest solution.

It was shown in [36] that whenµ < 1
2k−1 , the k-sparse

solution should be unique. In another perspective, it can be
noted that the conditionµ < 1

2k is equivalent tok < 1
2µ while

µ < 1
2k−1 is equivalent tok < 1

2µ + 1
2 . Sincek should be an

integer, these two conditions are almost the same.

Corollary 2. Let x∗ be a k-sparse solution of the equation
Ax = b. If δ2k satisfies

0 < δ2k < 1,

thenx∗ is the unique sparsest solution.

According to [37], the RIP condition obtained in Corollary 2
is the same as the state-of-the-art result and more importantly,
is tight in the sense that once the condition is violated, then
we can construct two different signals with the same sparsity.

IV. CONVERGENCEANALYSIS

In this section, we will study the convergence of the AIT
algorithm based on the introduced gRIP.

A. Characterization via gRIP

To describe the convergence of the AIT algorithm, we first
define

L1 = 2p−1(k∗)max{1− p
q
,0} + (2p−1 − (c2)

p + 1)k∗,

L2 = 2p(2k∗)max{1− p

q
,0} + 2p−1(c1)

pk∗,

and
L = min{ p

√

L1,
p
√

L2},
wherep ∈ [1,∞), q ∈ [1,∞] andc1, c2 are the corresponding
boundedness parameters.

Theorem 2. Let {x(t)} be a sequence generated by the AIT
algorithm. Assume thatA satisfies(3k∗ + 1, p, q)-gRIP with
the constantβ3k∗+1,p,q < 1

L , and let

(i) k = k∗;
(ii) s < s < s, where

s =
(2k∗)max{ 1

q
− 1

p
,0} − 1

L

(2k∗)max{ 1
q
− 1

p
,0} − β3k∗+1,p,q

,

and

s =
(2k∗)max{ 1

q
− 1

p
,0} + 1

L

(2k∗)max{ 1
q
− 1

p
,0} + β3k∗+1,p,q

.

Then

‖x(t) − x∗‖p ≤ (ρs)
t‖x∗ − x(0)‖p +

sL

1− ρs
‖AT ǫ‖q,

whereρs = γsL < 1 with

γs = |1− s|(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q.

Particularly, whenǫ = 0, it holds

‖x(t) − x∗‖p ≤ (ρs)
t‖x∗ − x(0)‖p.

The proof of this Theorem is presented in Appendix D.
Under the conditions of this theorem, we can verify that
0 < ρs < 1. We first note thatβ3k∗+1,p,q < 1

L < 1 ≤
(2k∗)max{ 1

q
− 1

p
,0}, then it holdss < 1 < s. The definition

of γs givesγs =
{

(1− s)(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q, if s < s ≤ 1

(s− 1)(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q, if 1 < s < s

.

If s < s ≤ 1, it holds

γs < (1− s)(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q =

1

L
.

Similarly, if 1 < s ≤ s

γs < (s− 1)(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q =

1

L
.

Therefore, we haveγs < 1
L and thus,ρs = γsL < 1.

Theorem 2 demonstrates that in the noise free case, the
AIT algorithm converges to the original sparse signal at a
linear rate, while in the noisy case, it also converges at a
linear rate until reaching an error bound. Moreover, it can be
noted that the constantρs depends on the step sizes. Since
β3k∗+1,p,q < 1

L < (2k∗)max{ 1
q
− 1

p
,0}, ρs reaches its minimum

at s = 1. The trend ofρs with respect tos is shown in Fig.
2. The optimal convergence rate is obtained whens = 1. This
observation is consistent with the conclusion drawn in [6].

By Proposition 2, it shows that the coherence and RIP are
two special cases of gRIP, thus we can easily obtain some
recovery guarantees based on coherence and RIP respectively
in the next two subsections.

Remark 3. From Theorem 2, we can see that the step size
should lie in an appropriate interval, which depends on the
gRIP constant, which is generally NP-hard to verify. However,
we would like to emphasize that the theoretical result obtained
in Thoeorem 2 is of importance in theory and it can give some
insights and theoretical guarantees of the implementationof



5

Fig. 2. The trend ofρs with respect tos.

the AIT algorithm, though it seems stringent. Empirically,
we find that a small interval of the step size, i.e.,[0.9, 1] is
generally sufficient for the convergence of the AIT algorithm.
This is also supported by the numerical experiments conducted
in section VI. In [8], it demonstrates that many algorithms
perform well with either constant or adaptive step sizes. In
section VII C, we will discuss and compare different step-
size schemes including the constant and an adaptive step-size
strategies on the performance of AIT algorithms.

B. Characterization via Coherence

Let p = 1, q = ∞. In this case,L1 = (3 − c2)k
∗,

L2 = (4+ c1)k
∗, andL = (3− c2)k

∗. According to Theorem
2 and Proposition 2, assume thatµ < 1

(3−c2)k∗ , then the
AIT algorithm converges linearly with the convergence rate
constant

ρs = γsL = (|1− s|+ sµ)L < 1

if we takek = k∗ and 1− 1
L

1−µ < s <
1+ 1

L

1+µ . In the following, we
show that the constantγs and thusρs can be further improved
whenp = 1 andq = ∞.

Theorem 3. Let {x(t)} be a sequence generated by the AIT
algorithm for b = Ax + ǫ. Assume thatA satisfies0 < µ <

1
(3−c2)k∗ , and if we take

(i) k = k∗;
(ii) 1− 1

L < s < min{ 1
Lµ , 1 +

1
L},

then it holds

‖x(t) − x∗‖1 ≤ (ρs)
t‖x∗ − x(0)‖1 +

sL

1− ρs
‖AT ǫ‖∞,

whereρs = γsL < 1 with

γs = max{|1− s|, sµ}.
Particularly, whenǫ = 0, it holds

‖x(t) − x∗‖1 ≤ (ρs)
t‖x∗ − x(0)‖1.

The proof of this Theorem is given in Appendix E. As
shown in Theorem 3, the constantγs can be improved from
|1− s|+ sµ to max{|1− s|, sµ}, and also the feasible range

of the step size parameters gets larger from
(

1− 1
L

1−µ ,
1+ 1

L

1+µ

)

to
(

1− 1
L ,min{ 1

Lµ , 1 +
1
L}
)

. We list the coherence-based
convergence conditions of several typical AIT algorithms in
Table II. As shown in Table II, it can be observed that the
recovery condition for Soft algorithm is the same as those of
OMP [38] and BP [39].

TABLE II
COHERENCE BASED CONDITIONS FOR DIFFERENTAIT ALGORITHMS

AIT Hard Half Soft SCAD

c2 0 0 1 0
µ 1

3k∗−1
1

3k∗−1
1

2k∗−1
1

3k∗−1

C. Characterization via RIP

Let p = 2, q = 2. In this case,L1 = 2 + (3 − c22)k
∗, L2 =

4 + 2c21k
∗, and thus

L = min{
√

4 + 2c21k
∗,
√

2 + (3− c22)k
∗}.

According to Theorem 2, and by Proposition 2, we can directly
claim the following corollary.

Corollary 3. Let {x(t)} be a sequence generated by the AIT
algorithm forb = Ax+ǫ. Assume thatA satisfiesδ3k∗+1 < 1

L ,
and if we take

(i) k = k∗;

(ii) s ≤ s ≤ s, wheres =
1− 1

L

1− δ3k∗+1
ands =

1 + 1
L

1 + δ3k∗+1
.

Then

‖x(t) − x∗‖2 ≤ (ρs)
t‖x∗ − x(0)‖2 +

sL

1− ρs
‖AT ǫ‖2,

whereρs = γsL < 1 with γs = |1−s|+sδ3k∗+1. Particularly,
whenǫ = 0, it holds

‖x(t) − x∗‖2 ≤ (ρs)
t‖x∗ − x(0)‖2.

According to Corollary 3, the RIP based sufficient condi-
tions for some typical AIT algorithms are listed in Table III.

TABLE III
RIP BASED CONDITIONS FOR DIFFERENTAIT ALGORITHMS

AIT Hard Half Soft SCAD

c1 0 1/3 1 1
δ3k∗+1

1
2

3√
36+2k∗

1√
2+2k∗

1√
4+2k∗

Moreover, we note that the condition in Corollary 3 for
Hard algorithm can be further improved via using the specific
expression of the hard thresholding operator. This can be
shown as the following theorem.

Theorem 4. Let {x(t)} be a sequence generated by Hard
algorithm for b = Ax + ǫ. Assume thatA satisfiesδ3k∗+1 <√

5−1
2 , and if we takek = k∗ and s = 1, then

‖x(t) − x∗‖2 ≤ ρt‖x∗ − x(0)‖2 +
√
5 + 1

2− 2ρ
‖AT ǫ‖2,

where ρ =
√
5+1
2 δ3k∗+1 < 1. Particularly, whenǫ = 0, it

holds
‖x(t) − x∗‖2 ≤ ρt‖x∗ − x(0)‖2.

The proof of Theorem 4 is presented in Appendix F.
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V. COMPARISON WITH PREVIOUS WORKS

This section discusses some related works of the AIT al-
gorithm, and then compares its computational complexity and
sufficient conditions for convergence with other algorithms.

1) On related works of the AIT algorithm:In [34], Maleki
provided some similar results for two special AIT algorithms,
i.e., Hard and Soft algorithms withk = k∗ and s = 1 for
the noiseless case. The sufficient conditions for convergence
areµ < 1

3.1k∗ andµ < 1
4.1k∗ for Hard and Soft algorithms,

respectively. In [35], Zeng et al. improved and extended
Maleki’s results to a wide class of the AIT algorithm with step
size s = 1. The sufficient condition based on coherence was
improved toµ < 1

(3+c1)k∗ , where the boudedness parameter
c1 can be found in Table I. Compared with these two tightly
related works, several significant improvements are made in
this paper.

(i) Weaker convergence conditions.The conditions ob-
tained in this paper is weaker than those in both [34] and
[35]. More specifically, we give a unified convergence
condition based on the introduced gRIP. Particularly, as
shown in Theorem 3, the coherence based conditions
for convergence areµ < 1

(3−c2)k∗−1 , which is much
better than the conditionµ < 1

(3+c1)k∗ obtained in [35].
Moreover, except Hard algorithm, we firstly show the
convergence of the other AIT algorithms based on RIP.

(ii) Better convergence rate.The asymptotic linear conver-
gence rate was justified in both [34] and [35]. However,
in this paper, we show the global linear convergence
rate of the AIT algorithm, which means it converges at
a linear rate from the first iteration.

(iii) More general model.In this paper, besides the noiseless
modelb = Ax, we also consider the performance of the
AIT algorithm for the noisy modelb = Ax + ǫ, which
is very crucial since the noise is almost inevitable in
practice.

(iv) More general algorithmic framework. In both [34]
and [35], the AIT algorithm was only considered with
unit step size (s = 1). While in this paper, we show that
the AIT algorithm converges whens is in an appropriate
range.

Among these AIT algorithms, Hard algorithm has been
widely studied. In [36], it was demonstrated that ifA has
unit-norm columns and coherenceµ, thenA has the(r, δr)-
RIP with

δr ≤ (r − 1)µ. (15)

In terms of RIP, Blumensath and Davies [33] justified the
performance of Hard algorithm when applied to signal re-
covery problem. It was shown that ifA satisfies a certain
RIP with δ3k∗ < 1√

32
, then Hard algorithm has global

convergence guarantee. Later, Foucart improved this condition
to δ3k∗ < 1

2 or δ2k∗ < 1
4 [4] and further improved it to

δ3k∗ < 1√
3

≈ 0.5773 (Theorem 6.18, [9]). Now we can

improve this condition toδ3k∗+1 <
√
5−1
2 ≈ 0.618 as shown

by Theorem 4.

2) On comparison with other algorithms:For better com-
parison, we list the state-of-the-art results on sufficientcondi-
tions of some typical algorithms including BP, OMP, CoSaMP,
Hard, Soft, Half and general AIT algorithms in Table IV.

TABLE IV
SUFFICIENT CONDITIONS FORDIFFERENTALGORITHMS

Algorithm µ (r, δr)

BP 1
2k∗−1

([39])
(2k∗, 0.707)([41])

OMP 1
2k∗−1

([38])
(13k∗, 1

6
)(Thm. 6.25,[9])

CoSaMP 0.384
4k∗−1

⋆
(4k∗, 0.384)([14])

Hard 1
3k∗−1

(Thm. 3)
(3k∗+1, 0.618)(Thm. 4)

Soft 1
2k∗−1

(Thm. 3)
(3k∗+1, 1√

2+2k∗ )
(Coro. 3)

Half 1
3k∗−1

(Thm. 3)
(3k∗+1, 3√

36+2k∗ )
(Coro. 3)

General AIT 1
(3−c2)k∗−1

(Thm. 3)
(3k∗+1, 1

√

4+2c21k
∗
)(Coro. 3)

⋆: a coherence based sufficient condition for CoSaMP derived by the fact that
δ4k∗ < 0.384 andδr ≤ (r − 1)µ.

From Table IV, in the perspective of coherence, the suffi-
cient conditions of AIT algorithms are slightly stricter than
those of BP and OMP algorithms except Soft algorithm.
However, AIT algorithms are generally faster than both BP
and OMP algorithms with lower computational complexities,
especially for large scale applications due to their linear
convergence rates. As shown in the next section, the number
of iterations required for the convergence of the AIT algorithm
is empirically of the same order of the original sparsity level
k∗, that is,O(k∗). At each iteration of the AIT algorithm, only
some simple matrix-vector multiplications and a projection on
the vector need to be done, and thus the computational com-
plexity per iteration isO(mn). Therefore, the total computa-
tional complexity of the AIT algorithm isO(k∗mn). While the
total computational complexities of BP and OMP algorithms
are generallyO(m2n) andmax{O(k∗mn),O( (k

∗)2(k∗+1)2

4 )},
respectively. It should be pointed out that the computational
complexity of OMP algorithm is related to the commonly used
halting rule of OMP algorithm, that is, the number of maximal
iterations is set to be the true sparsity levelk∗.

Another important greedy algorithm, CoSaMP algorithm,
identifies multicomponents (commonly2k∗) at each iteration.
From Table IV, the RIP based sufficient condition of CoSaMP
is δ4k∗ < 0.384 and a deduced coherence based sufficient
condition isµ < 0.384

4k∗−1 . In the perspective of coherence, our
conditions for AIT algorithms are better than CoSaMP, though
this comparison is not very reasonable. On the other hand,
our conditions for AIT algorithms except Hard algorithm are
generally worse than that of CoSaMP in the perspective of RIP.
However, when the true signal is very sparse, the conditions
of AIT algorithms may be better than that of CoSaMP. At
each iteration of CoSaMP algorithm, some simple matrix-
vector multiplications and a least squares problem should be
considered. Thus, the computational complexity per iteration
of CoSaMP algorithm is generallymax{O(mn),O((3k∗)3)},
which is higher than those of AIT algorithms, especially when
k∗ is relatively large.

Besides BP and greedy algorithms, another class of tightly
related algorithms is the reweighted techniques that have
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been also widely used for solutions toℓq regularization with
q ∈ (0, 1). Two well-known examples of such reweighted
techniques are the iterative reweighted least squares (IRLS)
method [23] and the reweightedl1 minimization (IRL1)
method [20]. The convergence analysis conducted in [24]
shows that the IRLS method converges with an asymptotically
superlinear convergence rate under the assumptions thatA
possesses a certain null-space property (NSP). However, from
Theorem 2, the rates of convergence of AIT algorithms are
globally linear. Furthermore, Lai et al. [42] applied the IRLS
method to the unconstrainedlq minimization problem and also
extended the corresponding convergence results to the matrix
case. It was shown also in [43] that the IRL1 algorithm can
converge to a stationary point and the asymptotic convergence
speed is approximately linear when applied to the uncon-
strainedlq minimization problem. Both in [42] and [43], the
authors focused on the unconstrainedlq minimization problem
with a fixed regularization parameterλ, while in this paper,
we focus on a different model with an adaptive regularization
parameter.

VI. D ISCUSSION

In this section, we numerically discuss some practical issues
on the implementation of AIT algorithms, especially, the
effects of several algorithmic factors including the estimated
sparsity level parameter, the column-normalization operation,
different step-size strategies as well as the formats of different
thresholding operators on the performance of AIT algorithms.
Moreover, we will further demonstrate the performance of sev-
eral typical AIT algorihtms including Hard, Half and SCAD
via comparing with many state-of-the-art algorithms such as
CGIHT [50], CoSaMP [14], 0-ALPS(4) [6] in the perspective
of the 50% phase transition curves [47], [49].

A. Robustness of the estimated sparsity level

In the preceding proposed algorithms, the specified sparsity
level parameterk is taken exactly as the true sparsity levelk∗,
which is generally unknown in practice. Instead, we can often
obtain a rough estimate of the true sparsity level. Therefore, in
this experiment, we will explore the performance of the AIT
algorithm with a variety of specified sparsity levels. We varied
k from 1 to 150 while keptk∗ = 15. The experiment setup is
the same with Section VI. A.

From Fig. 3, we can observe that these AIT algorithms
are efficient for a wide range ofk. Interestingly, the point
k = k∗ is a break point of the performance of all these AIT
algorithms. Whenk < k∗, all AIT algorithms fail to recover
the original sparse signal, while whenk ≥ k∗, a wide interval
of k is allowed for small recovery errors, as shown in Fig. 3
(b) and (d). In the noise free case, if‖x(t) − x∗‖2 < 10−10,
the feasible intervals of the specified sparsity levelk are
[15, 109] for SCAD and Soft,[15, 81] for Half and[15, 65] for
Hard, respectively. This observation is very important forreal
applications of AIT algorithms becausek∗ is usually unknown.
In the noisy case, if‖x(t)−x∗‖2 < 10−2, the feasible intervals
of sparsity levelk are [15, 105] for SCAD, [15, 40] for Soft,
[15, 37] for Half and [15, 26] for Hard, respectively.
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Fig. 3. On robustness of the specified sparsity level. (a) Thetrends of the
recovery precision with different estimated sparsity levels in noiseless case.
(b) The detailed trends of the recovery precision with different estimated
sparsity levels in noiseless case. (c) The trends of the recovery precision with
different estimated sparsity levels in noiseless case. (d)The detailed trends of
the recovery precision with different estimated sparsity levels in noisy case.

TABLE V
THE RECOVERY PRECISION OF DIFFERENTAIT ALGORITHMS WITH OR

WITHOUT COLUMN-NORMALIZATION (NOISELESS CASE)

Algorithm Hard Soft Half SCAD

no normalization 5.719e-6 1.425e-8 5.062e-6 9.330e-9
normalization 5.703e-5 1.437e-8 5.935e-5 8.505e-9

B. With vs Without Normalization

As shown in Algorithm 1, the column-normalization on the
measurement matrixA is required in consideration of a clearer
definition of the introduced gRIP and more importantly, better
theoretical analyses. However, in this subsection, we will
conduct a series of simulations to show that such requirement
is generally not necessary in practice. The experiment setup is
similar to Section VI.A. More specifically, we setm = 250,
n = 400 and k∗ = 15. The nonzero components ofx∗

were generated randomly according to the standard Gaussian
distribution. The matrixA was generated from i.i.d Gaussian
distribution N (0, 1/250) without normalization. In order to
adopt Algorithm 1, we letΛ be the corresponding column-
normalized factor matrix ofA (i.e., Λ is a diagonal matrix
and its diagonal element is thel2-norm of the corresponding
column ofA), andÂ = AΛ−1 be the corresponding column-
normalized measurement matrix. Assume thatx̂ is a recov-
ery via Algorithm 1 corresponding tôA, then x̄ = Λ−1x̂
is the corresponding recovery ofx∗. For each algorithm,
we conducted 10 times experiments independently in both
noiseless and noise (signal-to-noise ratio (SNR): 60dB) cases,
and recorded the average recovery precision. The recovery
precision is defined as‖x̃−x∗‖2

‖x∗‖2
, where x̃ and x∗ represent

the recovery and original signal, respectively. The experiment
results are shown in Table V and VI.
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TABLE VI
THE RECOVERY PRECISION OF DIFFERENTAIT ALGORITHMS WITH OR

WITHOUT COLUMN-NORMALIZATION (WITH 60DB NOISE)

Algorithm Hard Soft Half SCAD

no normalization 1.217e-3 5.739e-3 1.206e-3 1.282e-3
normalization 1.214e-3 5.498e-3 1.205e-3 1.264e-3

From Table V and VI, we can see that the column-
normalization operator has almost no effect on the perfor-
mance of the AIT algorithm in both noiseless and noise
cases. Therefore, in the following experiments, we will
adopt the more practical AIT algorithm without the column-
normalization for better comparison with the other algorithms.

C. Constant vs Adaptive Step Size

From Algorithm 1, we only consider the constant step-
size. However, according to many previous and empirical
studies [6], [46], we have known that certain adaptive step-size
strategies may improve the performance of AIT algorithms.
In this subsection, we will compare the performance of two
different step-size schemes, i.e., the constant step-sizestrategy
and an adaptive step-size strategy introduced in [46] via the so-
called 50% phase transition curve [49]. More specifically, the
adaptive step-size scheme can be described as follows. Assume
that x(t) is the t-th iteration, then at(t + 1)-th iteration, the
step sizes(t+1) is set as

s(t+1) =
‖(AT (b−Ax(t)))It‖2
‖(AAT (b−Ax(t)))It‖2 , (16)

whereIt is the support set ofx(t), A is the measurement ma-
trix and b is the measurement vector. Similar to [46], we will
call the AIT algorithm with such adaptive step-size strategy
the normalised AIT (NAIT) algorithm, and correspondingly,
several typical AIT algorithms such as Hard, Soft, Half and
SCAD algorithms with such adaptive step-size strategy NHard,
NSoft, NHalf and NSCAD for short, respectively. Note that
NHard algorithm studied here is actually the same with
the normalised iterative hard thresholding (NIHT) algorithm
proposed in [46].

50% phase transition curve was first introduced in [48]
and has been widely used to compare the recovery ability
for different algorithms in compressed sensing [47], [49].For
a fixed n, any given problem setting(k,m, n) can depict a
point in the space(m/n, k/m) ∈ (0, 1]2. For any algorithm,
its 50% phase transition curve is actually a functionf on the
(k/m,m/n) space. More specifically, if the point(m/n, k/m)
lies below the curve of the algorithm, i.e.k/m < f(m/n),
then it means the algorithm could recover the sparse signal
from the given(k,m, n)-problem with high probability, oth-
erwise the successful recovery probability is very low [48].
Moreover, the 50% phase transition curve usually depends on
the prior distribution ofx∗ as depicted in many researches
[27], [47], [49].

In these experiments, we consider two common distributions
of x∗, the first one is the standard Gaussian distribution,
and the second one is a binary distribution, which takes

−1 or 1 with an equal probability. For any given(k,m, n),
the measurement matrixA ∈ R

m×n is generated from the
Gaussian distributionN (0, 1

m ), and the nonzero components
of the originalk-sparse signalx∗ are generated independently
and identically distribution (i.i.d.) according to the Gaussian
or binary distributions. For any experiment, we consider itas
a successful recovery if

‖x̃− x∗‖∞
‖x∗‖∞

≤ 10−3,

wherex∗ is the original sparse signal and̃x is the correspond-
ing recovery signal. We setn = 512, m = 50, 100, ..., 500. To
determinef(m/n), we exploit a bisection search scheme as
the same as the experiment setting in [47]. We compare the
50% phase transition curves of Hard, Soft, Half and SCAD
algorithms with their adaptive step-size versions, i.e., NHard,
NSoft, NHalf, NSCAD in Fig. 4.

From Fig. 4 (a) and (c), we can see that the performances
of all AIT algorithms except Soft algorithm adopting the
adaptive step-size strategy (16) are significantly better than
those of the corresponding AIT algorithms with a constant
step size in the Guassian case. In this case, NSCAD has the
best performance, then NHalf and NHard, while NSoft is the
worst. The performance of NSCAD is slightly better than those
of NHalf and NHard, and much better than NSoft. While for
the binary case, as shown in Fig. 4 (b) and (d), NSCAD breaks
down with the curve fluctuating around 0.1 while NHalf and
NHard still perform well. In the binary case, Soft as well
as NSoft perform the worst. In addition, we can see that
the performances of Soft and NSoft are almost the same in
all cases, which means that such adaptive step-size strategy
(16) may not bring the improvement on the performance of
Soft algorithm. Moreover, some interesting phenomena can
also be observed in Fig. 4, that is, the performance of the
AIT algorithm depends to some extent on the choice of the
thresholding operator, and for different prior distributions of
the original sparse signal, the AIT algorithm may perform very
different. For these phenomena, we will study in the future
work.

D. Comparison with the State-of-the-art Algorithms

We also compare the performance of several AIT algorithms
including NHard, NSCAD and NHalf with some typical state-
of-the-art algorithms such as conjugate gradient iterative hard
thresholding (CGIHT) [50], CoSaMP [14], 0-ALPS(4) [6] in
terms of their 50% phase transition curves. For more other
algorithms like MP [3], HTP [7], OMP [10], CSMPSP [51],
CompMP [52], OLS [53] etc., their 50% phase transition
curves can be found in [49], and we omit them here. For all
considered algorithms, the estimated sparsity level parameters
are set to be the true sparsity level ofx∗. The result is shown
in Fig 5.

From Fig. 5, we can see that almost all algorithms have
better performances for the Gaussian distribution case than
for the binary distribution case, especially NSCAD algorithm.
More specifically, as shown in Fig. 5(a), for the Gaussian
distribution, NSCAD has the best performance among all these
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(c) AIT for Gaussian case
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Fig. 4. 50% phase transition curves of different AIT algorithms with two
different step-size schemes. (a) AIT algorithms with an adaptive step size
for Gaussian case. (a) AIT algorithms with an adaptive step size for Binary
case. (c) AIT algorithms with a constant step size for Gaussian case. (d) AIT
algorithms with a constant step size for Binary case.
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Fig. 5. 50% phase transition curves of different algorithms. (a) Gaussian
distribution case. (b) Binary distribution case.

algorithms, and NHalf is slightly worse than NSCAD and
better than the other algorithms. While in the binary case,
it can be seen from Fig. 5(b), all AIT algorithms perform
worse than the other algorithms like CGIHT, CoSaMP, 0-
ALPS(4), especially, NSCAD algorithm is much worse than
the other algorithms. These experiments demonstrate that AIT
algorithms are more appropriate for the recovery problems that
the original sparse signals obey the Gaussian distribution.

VII. C ONCLUSION

We have conducted a study of a wide class of AIT al-
gorithms for compressed sensing. It should be pointed out
that almost all of the existing iterative thresholding algorithms
like Hard, Soft, Half and SCAD are included in such class
of algorithms. The main contribution of this paper is the
establishment of the convergence analyses of the AIT algo-
rithm. In summary, we have shown when the measurement
matrix satisfies a certain gRIP condition, the AIT algorithm
can converge to the original sparse signal at a linear rate in
the noiseless case, and approach to the original sparse signal
at a linear rate until achieving an error bound in the noisy

case. As two special cases of gRIP, the coherence and RIP
based conditions can be directly derived for the AIT algorithm.
Moreover, the tightness of our analyses can be demonstrated
by two specific cases, that is, the coherence-based condition
for Soft algorithm is the same as those of OMP and BP, and
the RIP based condition for Hard algorithm is better than the
recent resultδ3k∗ < 1√

3
≈ 0.5773 obtained in Theorem 6.18

in [9]. Furthermore, the efficiency of the algorithm and the
correctness of the theoretical results are also verified viaa
series of numerical experiments.

In section VII, we have numerically discussed many prac-
tical issues on the implementation of AIT algorithms, in-
cluding the specified sparsity level parameterk, the column-
normalization requirement as well as different step-size setting
schemes. We can observe the following several interesting
phenomena:

(i) The AIT algorithm is robust to the specified sparsity
level parameterk, that is, the parameterk can be spec-
ified in a large range to guarantee the well performance
of the AIT algorithm.

(ii) The column-normalization of the measurement matrix
A is not necessary for the use of AIT algorithms in the
perspective of the recovery performance.

(iii) Some adaptive step-size strategies may significantlyim-
prove the performance of AIT algorithms.

(iv) The performance of AIT algorithm depends to some ex-
tent on the prior distribution of the original sparse signal.
Compared with the binary distribution, AIT algorithms
are more appropriate for the recovery of the sparse signal
generated by the Gaussian distribution.

(v) The performance of the AIT algorithm depends on the
specific thresholding operator.

All of these phenomena are of interest, and we will study them
in our future work.
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APPENDIX A: PROOF OFPROPOSITION1

Proof: For any index setS ⊂ {1, . . . , n} with |S| ≤ k
and a vectorx ∈ R

|S|, since 1
p +

1
q = 1, thenℓp andℓq norms

are dual to each other, which implies that

‖(I|S| −AT
SAS)x‖q = sup

y∈R|S|\{0}

∣

∣yT (I|S| −AT
SAS)x

∣

∣

‖y‖p
.

(17)
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By Definition 1, then

βk,p,q = sup
|S|≤k

sup
x,y∈R|S|\{0}

∣

∣yT (I|S| −AT
SAS)x

∣

∣

‖x‖p‖y‖p
. (18)

It is obvious that

βk,p,q ≥ sup
|S|≤k

sup
x∈R|S|\{0}

∣

∣xT (I|S| −AT
SAS)x

∣

∣

‖x‖2p

= sup
z∈Rn\{0},‖z‖0≤k

∣

∣zT (In −ATA)z
∣

∣

‖z‖2p
,

which implies the right-hand side of (9).
On the other hand, by (18), we can also observe that

βk,p,q = sup
|S|≤k

sup
‖x‖p,‖y‖p≤1

|yTx− yTAT
SASx|, (19)

and for anyx, y ∈ R
|S|,

|yTx− yTAT
SASx|

=
∣

∣

∣

1

2
(‖x‖22 + ‖y‖22 − ‖x− y‖22)

− 1

2
(‖ASx‖22 + ‖ASy‖22 − ‖ASx−ASy‖22)

∣

∣

∣

≤ 1

2

∣

∣

∣
‖x‖22 − ‖ASx‖22

∣

∣

∣
+

1

2

∣

∣

∣
‖y‖22 − ‖ASy‖22

∣

∣

∣

+
1

2

∣

∣

∣
‖x− y‖22 − ‖AS(x− y)‖22

∣

∣

∣
. (20)

Furthermore, it can be noted that

sup
u,v∈R|S|,‖u‖p,‖v‖p≤1

∣

∣

∣
‖u− v‖22 − ‖AS(u− v)‖22

∣

∣

∣

≤ 4 sup
w∈R|S|,‖w‖p≤1

∣

∣

∣
‖w‖22 − ‖ASw‖22

∣

∣

∣
, (21)

since‖u − v‖p ≤ 2 for ‖u‖p ≤ 1 and ‖v‖p ≤ 1. Plugging
(20) and (21) into (19), it yields

βA
k,p,q ≤ 3 sup

|S|≤k

sup
‖x‖p≤1

∣

∣

∣
‖x‖22 − ‖ASx‖22

∣

∣

∣

= 3 sup
‖z‖0≤k,‖z‖p≤1

∣

∣

∣
‖z‖22 − ‖Az‖22

∣

∣

∣

= 3 sup
z∈Rn\{0},‖z‖0≤k

∣

∣zT (ATA− In)z
∣

∣

‖z‖2p
,

which implies the left-hand side of (9). Therefore, the proof
of this proposition is completed.

APPENDIX B: PROOF OFPROPOSITION2

Proof: (i) The definition of gRIP inducesβk,1,∞ ≥ β2,1,∞
for all k ≥ 2. Therefore, if we can claim the following two
facts: (a)β2,1,∞ ≥ µ, and (b)βk,1,∞ ≤ µ for all k ≥ 2, then
Proposition 2 (i) follows.

We first justify the fact (a). Suppose the maximal element
of In − ATA in magnitude appears at thei0-th row and the
j0-th column. Because for anyj, thej-th diagonal elements of
In−ATA equals to1−‖Aj‖2 = 0, we knowi0 6= j0. Without
loss of generality, we assume thati0 < j0. Let Ai0 andAj0

be thei0-th andj0-th column vector ofA, respectively, then
Definition 2 gives

µ = |AT
i0Aj0 |.

Let S = {i0, j0} ande = (0, 1)T . Then

β2,1,∞ ≥ ‖(I2 −AT
SAS)e‖∞

= ‖e−AT
SAj0‖∞

= µ. (22)

Then we prove the fact (b). For any vectorx ∈ R
k and a

subsetS ⊂ {1, 2, . . . , n} with |S| = k, let B = Ik − AT
SAS

andz = Bx. Then

|zi| = |
k
∑

j=1

Bijxj | ≤
k
∑

j=1

|Bijxj | ≤ µ‖x‖1,

for any i = 1, . . . , k. It implies that

‖Bx‖∞ ≤ µ‖x‖1.

By the definition ofβk,1,∞, it implies

βk,1,∞ ≤ µ. (23)

According to (22) and (23), for all2 ≤ k ≤ n, it holds

βk,1,∞ = µ.

(ii) From the inequality (9) and the equality (12), we know

δk ≤ βk,p,q. (24)

To prove
δk ≥ βk,p,q, (25)

note that equality (19) leads to

βk,p,q ≤ sup
S⊂{1,...,n},|S|≤k

‖I|S| −AT
SAS‖2, (26)

and further

sup
S⊂{1,...,n},|S|≤k

‖I|S| −AT
SAS‖2 (27)

= sup
|S|≤k

sup
x∈R|S|\{0}

|xT (I|S| −AT
SAS)x|

‖x‖22

= sup
z∈Rn\{0},‖z‖0≤k

|zT (In −ATA)z|
‖z‖22

= δk,

where the last equality holds by the equivalent definition of
RIP (this can be also referred to Definition 1 in [4]). From
(24)-(27), we can conclude that

δk = βk,p,q.

APPENDIX C: PROOF OFTHEOREM 1

Proof: We prove this theorem by contradiction. Assume
x∗∗ satisfiesAx∗∗ = b and‖x∗∗‖0 ≤ k. Then

A(x∗ − x∗∗) = 0,

which implies

(In −ATA)(x∗ − x∗∗) = x∗ − x∗∗.
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Let x = x∗−x∗∗, S be the support ofx andxS be a subvector
of x with the components restricted toS. It follows

(I|S| −AS
TAS)xS = xS ,

and further

‖(I|S| −AS
TAS)xS‖q = ‖xS‖q, (28)

for any q ∈ [1,∞]. Since‖x∗‖0 ≤ k and ‖x∗∗‖0 ≤ k, then
|S| ≤ 2k. For anyp ∈ [1,∞), and by the definition of gRIP,
we have

‖(I|S| −AS
TAS)xS‖q ≤ β2k,p,q‖xS‖p.

By Lemma 1, there holds

‖xS‖p ≤ (2k)max{ 1
p
− 1

q
,0}‖xS‖q.

By the assumption of this theorem, then

‖(I|S| −AS
TAS)xS‖q ≤ β2k,p,q(2k)

max{ 1
p
− 1

q
,0}‖xS‖q

< ‖xS‖q,

which contradicts with (28). Therefore,x∗ is the unique
sparsest solution.

APPENDIX D: PROOF OFTHEOREM 2

Before justifying the convergence of the AIT algorithm
based on gRIP, we first introduce two lemmas.

Lemma 2. For anyx, y ∈ R
n, andp ∈ [1,∞), then

‖x+ y‖pp ≤ 2p−1(‖x‖pp + ‖y‖pp). (29)

Moreover, ifxi · yi ≥ 0 for i = 1, . . . , n, then

‖x+ y‖pp ≥ ‖x‖pp + ‖y‖pp. (30)

The proof of Lemma 2 is obvious sincef(z) = zp is convex
for p ≥ 1 and anyz ≥ 0, and‖x‖p ≤ ‖x‖1 for any x ∈ R

n.
We will omit it due to the limitation of the length of the paper.

Lemma 3. For any t ≥ 1 and q ∈ [1,∞], if k ≥ k∗, the
following inequality holds for the AIT algorithm:

τ (t) ≤ (
∑

i∈It
+

|z(t)i − x∗
i |q)1/q = ‖z(t)

It
+
− x∗

It
+
‖q, (31)

whereIt+ is the index set of the largestk + 1 components of
z(t) in magnitude.

Proof: Whenq = ∞, we need to show

τ (t) ≤ max
i∈It

+

|z(t)i − x∗
i |, (32)

then Lemma 1 shows that (31) holds for allq ∈ [1,∞].
Let It be the index set of the largestk components of

z(t) in magnitude, thenIt+ = It ∪ {[k + 1]}, where [k + 1]
represents the index of the(k + 1)-th largest component of
z(t) in magnitude. We will prove (32) in the following two
cases.

Case (i). IfI∗ = It, then

τ (t) = |z(t)[k+1]| = |z(t)[k+1] − x∗
[k+1]|

≤ max
i∈It

+

|z(t)i − x∗
i |. (33)

Case (ii). If I∗ 6= It, then there existsi0 ∈ It such that

i0 /∈ I∗.

OtherwiseIt ⊂ I∗ andIt 6= I∗ which contradicts with|It| ≥
k∗ and |I∗| = k∗. Thus,x∗

i0 = 0 and

τ (t) = |z(t)[k+1]| ≤ |z(t)i0
| = |z(t)i0

− x∗
i0 |

≤ max
i∈It

+

|z(t)i − x∗
i |. (34)

Combining (33) and (34) gives (32).
Proof of Theorem 2:In order to prove this theorem, we

only need to justify the following two inequalities, i.e., for any
t ∈ N,

‖z(t+1)
St − x∗

St‖q ≤ γs‖x(t) − x∗‖p + s‖AT ǫ‖q, (35)

and for anyt ≥ 1,

‖x(t) − x∗‖p ≤ L‖z(t)St−1 − x∗
St−1‖q. (36)

Then combining (35) and (36), it holds

‖x(t+1) − x∗‖p ≤ L‖z(t+1)
St − x∗

St‖q
≤ ρs‖x(t) − x∗‖p + sL‖AT ǫ‖q.

Since0 < ρs < 1 under the assumption of this theorem, then
by induction for anyt ≥ 1, we have

‖x(t) − x∗‖p ≤ (ρs)
t‖x∗ − x(0)‖p +

sL

1− ρs
‖AT ǫ‖q.

First, we turn to prove the inequality (35). By theStep 1 of
Algorithm 1, for anyt ∈ N,

z(t+1) = x(t) − sAT (Ax(t) − b),

and we note thatb = Ax∗ + ǫ, then

z(t+1) − x∗ = (In − sATA)(x(t) − x∗) + sAT ǫ

= (1− s)(x(t) − x∗) + s(In −ATA)(x(t) − x∗) + sAT ǫ.

For any t ∈ N and q ∈ [1,∞], let St = It+1
+

⋃

It
⋃

I∗.
Noting thatIt, I∗ ⊂ St, it follows

A(x(t) − x∗) = ASt(x
(t)
St − x∗

St).

Then we have

z
(t+1)
St − x∗

St = (1− s)(x
(t)
St − x∗

St)

+s(I|St| −AT
StASt)(x

(t)
St − x∗

St) + sAT
Stǫ.

Therefore,

‖z(t+1)
St − x∗

St‖q ≤ |1− s| · ‖x(t)
St − x∗

St‖q
+ s‖(I|St| −AT

StASt)(x
(t)
St − x∗

St)‖q + s‖AT
Stǫ‖q. (37)

Since‖x(t)‖0 ≤ k = k∗ and‖x∗‖0 = k∗ then

|It| ≤ k∗, |It+1
+ | ≤ k∗ + 1, |I∗| = k∗,
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and hence|St| ≤ 3k∗ + 1. For anyp ∈ [1,∞), by (14) and
the definition of gRIP (8), it holds

‖x(t) − x∗‖q ≤ (2k∗)max{ 1
q
− 1

p
,0}‖x(t) − x∗‖p, (38)

and

‖(I|St| −AT
StASt)(x

(t)
St − x∗

St)‖q
≤ β3k∗+1,p,q‖x(t)

St − x∗
St‖p = β3k∗+1,p,q‖x(t) − x∗‖p.(39)

Plugging (38) and (39) into (37), then

‖z(t+1)
St − x∗

St‖q
≤
(

|1− s|(2k∗)max{ 1
q
− 1

p
,0} + sβ3k∗+1,p,q

)

‖x(t) − x∗‖p
+ s‖AT

Stǫ‖q
≤ γs‖x(t) − x∗‖p + s‖AT ǫ‖q.

Thus, we have obtained the inequality (35).
Then we turn to the proof of (36). We will prove it in two

steps.
Step a): For anyp ∈ [1,∞),

‖x(t) − x∗‖pp = ‖x(t)
I∗ − x∗

I∗‖pp + ‖x(t)
It\I∗‖pp. (40)

By Lemma 2,

‖x(t)
I∗ − x∗

I∗‖pp = ‖x(t)
I∗ − z

(t)
I∗ + z

(t)
I∗ − x∗

I∗‖pp
≤ 2p−1‖z(t)I∗ − x

(t)
I∗ ‖pp + 2p−1‖z(t)I∗ − x∗

I∗‖pp. (41)

Moreover, by theStep 3 of Algorithm 1 and Assumption 1,
for any i ∈ It:

sgn(x
(t)
i ) = sgn(z

(t)
i ) and |x(t)

i | ≤ |z(t)i |.
Thus, for anyi ∈ It \ I∗, it holds

x
(t)
i · (z(t)i − x

(t)
i ) ≥ 0. (42)

With (42) and by Lemma 2, we have

‖z(t)It\I∗‖pp = ‖x(t)
It\I∗ + (z

(t)
It\I∗ − x

(t)
It\I∗)‖pp.

≥ ‖x(t)
It\I∗‖pp + ‖z(t)It\I∗ − x

(t)
It\I∗‖pp. (43)

Plugging (41) and (43) into (40), it becomes

‖x(t) − x∗‖pp ≤ 2p−1(‖z(t)I∗ − x
(t)
I∗ ‖pp + ‖z(t)I∗ − x∗

I∗‖pp)
+ ‖z(t)It\I∗‖pp − ‖z(t)It\I∗ − x

(t)
It\I∗‖pp. (44)

Furthermore, by theStep 2 of Algorithm 1, Assumption 1 and
Lemma 3, for anyt ≥ 1, we have:

(a) if i ∈ It, c2τ (t) ≤ |z(t)i − x
(t)
i | ≤ c1τ

(t) ≤ τ (t);
(b) if i 6∈ It, |z(t)i − x

(t)
i | = |z(t)i | ≤ τ (t);

(c) τ (t) ≤ ‖z(t)
It
+
− x∗

It
+
‖q.

By the above facts (a)-(c), it holds

‖z(t)I∗ − x
(t)
I∗ ‖pp ≤ k∗ max

i∈I∗
|z(t)i − x

(t)
i |p ≤ k∗|τ (t)|p, (45)

and

‖z(t)It\I∗ − x
(t)
It\I∗‖pp ≥ |It \ I∗| min

i∈It\I∗
|z(t)i − x

(t)
i |p

≥ |It \ I∗|(c2)p|τ (t)|p, (46)

where|It\I∗| represents the cardinality of the index setIt\I∗.
Plugging (45), (46) into (44), it follows

‖x(t) − x∗‖pp ≤ 2p−1‖z(t)I∗ − x∗
I∗‖pp + ‖z(t)It\I∗‖pp

+ (2p−1k∗ − (c2)
p|It \ I∗|)|τ (t)|p. (47)

Furthermore, we note that

‖z(t)It\I∗‖pp = ‖z(t)It\I∗ − x∗
It\I∗‖pp

≤ |It \ I∗| max
i∈It\I∗

|z(t)i − x∗
i |p

= |It \ I∗| · ‖z(t)It\I∗ − x∗
It\I∗‖p∞

≤ |It \ I∗| · ‖z(t)It\I∗ − x∗
It\I∗‖pq ,

where the first equality holds becausex∗
It\I∗ = 0, and the

second inequality holds because of Lemma 1. Therefore, (47)
becomes

‖x(t) − x∗‖pp
≤ 2p−1‖z(t)I∗ − x∗

I∗‖pp + |It \ I∗| · ‖z(t)It\I∗ − x∗
It\I∗‖pq

+
(

2p−1k∗ − (c2)
p|It \ I∗|

)

|τ (t)|p

≤ 2p−1‖z(t)I∗ − x∗
I∗‖pp

+ (2p−1k∗ − (c2)
p|It \ I∗|+ |It \ I∗|)‖z(t)

It
+
− x∗

It
+
‖pq

≤ 2p−1(k∗)max{1− p

q
,0}‖z(t)I∗ − x∗

I∗‖pq
+ (2p−1 − (c2)

p + 1)k∗‖z(t)
It
+
− x∗

It
+
‖pq

≤ L1‖z(t)St−1 − x∗
St−1‖pq, (48)

where the second inequality holds by the fact (c), i.e.,τ (t) ≤
‖z(t)

It
+
− x∗

It
+
‖q, the third inequality holds by Lemma 1 and

|It \ I∗| ≤ k∗ and the last inequality holds becauseSt−1 =
It+ ∪ It−1 ∪ I∗. Thus, it implies

‖x(t) − x∗‖p ≤ p
√

L1‖z(t)St−1 − x∗
St−1‖q. (49)

Step b): By Lemma 2,

‖x(t) − x∗‖pp = ‖x(t)
It − x∗

It‖pp + ‖x∗
I∗\It‖pp

≤ 2p−1‖z(t)It − x∗
It‖pp + 2p−1‖z(t)It − x

(t)
It ‖pp

+ 2p−1‖z(t)I∗\It − x∗
I∗\It‖pp + 2p−1‖z(t)I∗\It‖pp

= 2p−1‖z(t)It∪I∗ − x∗
It∪I∗‖pp

+ 2p−1(‖z(t)It − x
(t)
It ‖pp + ‖z(t)I∗\It‖pp). (50)

Moreover, by Lemma 1, it holds

‖z(t)It∪I∗ − x∗
It∪I∗‖pp

≤ (|It ∪ I∗|)max{1− p

q
,0}‖z(t)It∪I∗ − x∗

It∪I∗‖pq
≤ (2k∗)max{1− p

q
,0}‖z(t)It∪I∗ − x∗

It∪I∗‖pq , (51)

where the last inequality holds for|It ∪ I∗| ≤ 2k∗. We also
have

‖z(t)It − x
(t)
It ‖pp ≤ k∗max

i∈It
|z(t)i − x

(t)
i |p

≤ k∗(c1τ
(t))p ≤ k∗(c1)

p‖z(t)
It
+
− x∗

It
+
‖pq . (52)
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Since|It| = |I∗| = k∗, then

|I∗ \ It| = |It \ I∗|.
Thus, it holds

‖z(t)I∗\It‖pp ≤ |I∗ \ It| max
i∈I∗\It

|z(t)i |p ≤ |I∗ \ It| · |τ (t)|p

= |It \ I∗| · |τ (t)|p ≤ |It \ I∗| min
i∈It\I∗

|z(t)i |p

≤ ‖z(t)It\I∗‖pp = ‖z(t)It\I∗ − x∗
It\I∗‖pp

≤ (k∗)max{1− p

q
,0}‖z(t)It\I∗ − x∗

It\I∗‖pq . (53)

Plugging (51), (52) and (53) into (50), and further since
St−1 = It+ ∪ It−1 ∪ I∗, and thusIt+ ⊂ St−1, It ⊂ It+ ⊂
St−1, It ∪ I∗ ⊂ St−1, It \ I∗ ⊂ St−1, it becomes

‖x(t) − x∗‖pp
≤ (2p(2k∗)max{1− p

q
,0} + 2p−1(c1)

pk∗)‖z(t)St−1 − x∗
St−1‖pq

= L2‖z(t)St−1 − x∗
St−1‖pq. (54)

Thus, we have

‖x(t) − x∗‖p ≤ p
√

L2‖z(t) − x∗‖q. (55)

From (49) and (55), for anyt ≥ 1, it holds

‖x(t) − x∗‖p ≤ min{ p
√

L1,
p
√

L2}‖z(t) − x∗‖q
= L‖z(t) − x∗‖q
= L‖z(t)St−1 − x∗

St−1‖q, (56)

where the last equality holds forSt−1 = It+∪It−1∪I∗. Thus,
we have obtained (36).

Therefore, we end the proof of this theorem.

APPENDIX E: PROOF OFTHEOREM 3

Proof: The proof is similar to that of Theorem 2. Accord-
ing to the proof of Theorem 2, we have known that (37)-(39)
hold for all pairs of(p, q) with 1

p +
1
q = 1, and thus obviously

hold for p = 1 and q = ∞. In the following, instead of
the inequality (35), we will derive a tighter upper bound of
‖z(t+1)

St − x∗
St‖∞, that is,

‖z(t+1)
St − x∗

St‖∞
≤ max{µs, |1− s|}‖x(t) − x∗‖1 + s‖AT ǫ‖∞. (57)

Now we turn to prove the inequality (57). According to (4),
it can be observed that

‖z(t+1) − x∗‖∞ ≤
‖
(

(1− s)In + s(In −ATA)
)

(x(t) − x∗)‖∞ + s‖AT ǫ‖∞.

Let B = (1 − s)In + s(In − ATA) andBij be the(i, j)-th
element ofB. Since‖Aj‖2 = 1 for all j = 1, . . . , n, then

Bii = 1− s,

for all i = 1, . . . , n. Moreover, by the definition of the
coherenceµ, the absolutes of all the off-diagonal elements
of In −ATA are no bigger thanµ. Thus,

|Bij | ≤ sµ,

for any i 6= j. As a consequence, it holds

max
i,j∈{1,...,n}

|Bij | ≤ max{|1− s|, sµ} = γs.

Furthermore, for anyi = 1, . . . , n,

∣

∣

∣
z
(t+1)
i − x∗

i

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

n
∑

j=1

Bij(x
(t)
j − x∗

j ) + sAT
i ǫ

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

n
∑

j=1

Bij(x
(t)
j − x∗

j )

∣

∣

∣

∣

∣

∣

+ s‖AT ǫ‖∞

≤ γs‖x(t) − x∗‖1 + s‖AT ǫ‖∞.

This implies

‖z(t+1)
St − x∗

St‖∞ ≤ γs‖x(t) − x∗‖1 + s‖AT ǫ‖∞.

Therefore, we obtain the (57). According to the proof of
Theorem 2, we have that the inequality (36) still holds when
p = 1 andq = ∞, that is,

‖x(t) − x∗‖1 ≤ L‖z(t)St−1 − x∗
St−1‖∞. (58)

Similar to the rest of the proof of Theorem 2, combining (57)
and (58), we can conclude the proof of this theorem.

APPENDIX F: PROOF OFTHEOREM 4

Proof: The proof of this theorem is also very similar to
that of Theorem 2. According to the proof of Theorem 2,
we have known that (35) holds for all pairs of(p, q) with
1
p + 1

q = 1, and thus obviously holds forp = 2 and q = 2,
that is,

‖z(t+1)
St − x∗

St‖2 ≤ δ3k∗+1‖x(t) − x∗‖2 + ‖AT ǫ‖2, (59)

whereSt = It+1
+ ∪It ∪I∗, It+1

+ is the index set of the largest
k + 1 components ofz(t+1), It andI∗ represent the support
sets ofx(t) andx∗, respectively. In the following, instead of
the inequality (36), we will derive a tighter upper bound of
‖x(t) − x∗‖2, that is,

‖x(t) − x∗‖2 ≤
√
5 + 1

2
‖z(t)St−1 − x∗

St−1‖2. (60)

Now we turn to prove the inequality (60). It can be noted
that

‖x(t) − x∗‖22 = ‖x(t)
It − x∗

It‖22 + ‖x(t)
I∗\It − x∗

I∗\It‖22. (61)

On one hand, sincex(t)
i = z

(t)
i for any i ∈ It, then

‖x(t)
It − x∗

It‖22 = ‖z(t)It − x∗
It‖22. (62)

On the other hand, we can also observe thatx
(t)
i = 0 for any
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i ∈ I∗ \ It, and thus

‖x(t)
I∗\It − x∗

I∗\It‖22 = ‖x∗
I∗\It‖22 =

∑

i∈I∗\It

(x∗
i − z

(t)
i + z

(t)
i )2

≤
∑

i∈I∗\It

(√
5 + 3

2
(x∗

i − z
(t)
i )2 +

√
5 + 1

2
(z

(t)
i )2

)

≤
∑

i∈I∗\It

√
5 + 3

2
(x∗

i − z
(t)
i )2 +

∑

i∈It\I∗

√
5 + 1

2
(z

(t)
i )2

=

√
5 + 3

2
‖z(t)I∗\It − x∗

I∗\It‖22 +
√
5 + 1

2
‖z(t)It\I∗‖22

=

√
5 + 3

2
‖z(t)I∗\It − x∗

I∗\It‖22 +
√
5 + 1

2
‖z(t)It\I∗ − x∗

It\I∗‖22.
(63)

The first inequality holds by the following relation

(a+b)2 = a2+b2+2ab ≤ (1+

√
5 + 1

2
)a2+(1+

√
5− 1

2
)b2

for any a, b ∈ R. The second inequality holds due to the
following facts:

(a) for anyi ∈ I∗ \ It, |zti | ≤ τ (t),
(b) for any i ∈ It \ I∗, |zti | ≥ τ (t),
(c) |I∗ \ It| = |It \ I∗|,

and hence
max

i∈I∗\It
|z(t)i | ≤ min

i∈It\I∗
|z(t)i |.

The last equality holds forx∗
i = 0, ∀i ∈ It \ I∗. Plugging (62)

and (63) into (61), we have

‖x(t) − x∗‖22 ≤ ‖z(t)It − x∗
It‖22 +

√
5 + 1

2
‖z(t)It\I∗ − x∗

It\I∗‖22

+

√
5 + 3

2
‖z(t)I∗\It − x∗

I∗\It‖22

= ‖z(t)It
⋂

I∗ − x∗
It

⋂

I∗‖22 +
√
5 + 3

2
‖z(t)It\I∗ − x∗

It\I∗‖22

+

√
5 + 3

2
‖z(t)I∗\It − x∗

I∗\It‖22

≤
√
5 + 3

2
‖z(t)St−1 − x∗

St−1‖22,

whereSt−1 = It+∪It−1∪I∗. The last inequality holds because
the setsIt ∩ I∗, It \ I∗ andI∗ \ It do not intersect with each
other and

(It∩I∗)∪(It\I∗)∪(I∗\It) = (It∪I∗) ⊂ (It+∪I∗) ⊂ St−1,

and
√
5+3
2 > 1. Therefore, the above inequality implies (60).

Similar to the rest of the proof of Theorem 2, combining
(59) and (60), we can conclude the proof of this theorem.
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