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Linear Convergence of Adaptively lterative
Thresholding Algorithms for Compressed Sensing
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~ Abstract—This paper studies the convergence of the adaptively The relaxed method converts the combinatori@)-
iterative thresholding (AIT) algorithm for compressed sersing. minimization into a more tractable model through replacing

We first introduce a generalized restricted isometry propety ; ; ;
(gRIP). Then we prove that the AIT algorithm converges to the the £y norm with a nonnegative and continuous functiép),

original sparse solution at a linear rate under a certain gRP that is,
condition in the noise free case. While in the noisy case, its .

) . . L . ’ = <o.
convergence rate is also linear until attaining a certain eror ;élghp(f) stb=Az+te fefa<o @)

bound. Moreover, as by-products, we also provide some suffent . . e
conditions for the convergence of the AIT algorithm based on On€ of the most important cases is tte-minimization
the two well-known properties, i.e., the coherence propegtand problem (also known abasis pursuit(BP)) [1€] in the noise
the re_stricted isometry property (RIP),_ respectively._ It should free case andbasis pursuit denoisin@n the noisy case) with
be pointed out that such two properties are special cases ofp(x) = ||, where|z|, = I, || is called the;

gRIP. The solid improvements on the theoretical results are . Thes minimization problem is a convex optimization
demonstrated and compared with the known results. Finally,

we provide a series of simulations to verify the correctnesef Problem that can be efficiently solved. Nevertheless, the
the theoretical assertions as well as the effectiveness dfet AIT  nhorm may not induce further sparsity when applied to certain
algorithm. applications[[17],[[18],[[19],.[20]. Therefore, many nomeex
functions were proposed as substitutions ofdheorm. Some
Index Terms—restricted isometric property, coherence, iter- typical nonconvex examples include tfg (0 < ¢ < 1)
ative hard thresholding, SCAD, compressed sensing, sparsenorm [17], [18], [19], smoothly clipped absolute deviation
optimization (SCAD) [21] and minimax concave penalty (MCF) [22].
Compared with the/;-minimization model, the nonconvex
I. INTRODUCTION relaxed models can often induce better sparsity and reduce
the bias, while they are generally more difficult to solve.
The iterative reweighted method and regularization method
are two main classes of algorithms to sol{é (2) whef)
is nonconvex. The iterative reweighted method includes the
min [|z]lo Stb=Azx+e |e|2<o (1) Iterative reweighted least squares minimization (IRLS3]{2
€Rn [24], and the iterative reweighted,-minimization (IRL1)
wheree € R™ is the measurement noise, € R is the algorithms [20]. Specifically, the IRLS algorithm solves a
noise variance anflz||, denotes the number of the nonzergequence of weighted least squares problems, which can be
components ofz. Due to the NP-hardness of problefd (1yiewed as some approximations to the original optimization
[3], approximate methods including the greedy method afdoblem. Similarly, the IRL1 algorithm solves a sequence of
relaxed method are introduced. The greedy method apprsachen-smooth weighted, -minimization problems, and hence it
the sparse solution by successively alternating one or mdséhe non-smooth counterpart to the IRLS algorithm. Howeve
components that yield the greatest improvement in qualitye iterative reweighted algorithms are slow if the nonenv
[3]. These algorithms include iterative hard thresholdiiT) ~ Penalty cannot be well approximated by the quadratic foncti
[4], accelerated hard thresholding (AHT) [5], ALPS [6], tar or the weighted’; norm function. The regularization method
thresholding pursuit (HTP)[7], CLASH [8], OMP [10], [11], transforms problent{2) into the following unconstrainedi-op
StOMP [12], ROMP [[18], CoSaMP_[14] and SP_[15]. Thenization problem
gree.dy .algonthms can be quite e_ff|C|en_t and fast in many min {[| Az — b||2 + AP(x)}, 3)
applications, especially when the signal is very sparse. zeR™

Let A € R™*", b e R™ andz € R". Compressed sens-
ing [1], [2] solves the following constraine}-minimization
problem
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a step size parameter. This yields the correspondingiiteratsome other known results. In section VI, we implement a
thresholding algorithm [([19])[25]126]/ [27] [28]._[29] series of simulations to verify the correctness of the tbtcal
results as well as the efficiency of the AIT algorithm. In &t
Y = H(x(t) B SAT(Ax(t) —b)). VII, we discuss many practical issues on the implementation
Compared to greedy methods and iterative reweighted algd-the AIT algorithm, and then conclude this paper in section
rithms, iterative thresholding algorithms have relatvieiwer VI All the proofs are presented in the Appendices.
computational complexities [30]. [81]. [32]. So far, modt o Notations. We denoteN andR as the natural number set
theoretical guarantees of the iterative thresholdingritlyms and one-dimensional real space, respectively. For anyrect
were developed for the regularization modél (3) with fixed = € R", z; is thei-th component ofr for i = 1,...,n.
However, it is in general difficult to determine an approf@ia For any matrixA € R™*", A; denotes thei-th column
regularization parameter. of A. 7 and AT represent the transpose of vectorand
Some adaptive strategies for setting the regularization paatrix A respectively. For any index sei C {1,...,n},
rameters were proposed. One strategy is to set the reqaar{®| represents its cardinalitys is the complementary set,
tion parameter adaptively so thiat(®||, remains the same ati.e., S = {1,...,n} \ S. For any vectorz € R", g
each iteration. This strategy was first applied to the itegat represents the subvector ofwith the components restricted
hard thresholding algorithm (called Hard algorithm for ghoto S. Similarly, As represents the submatrix of with the
henceforth) in[[3B], and later the iterative soft threslmgd columns restricted t&. We denoter* as the original sparse
algorithm[34] (called Soft algorithm for short hencefgréind  signal with [|z*[|o = k*, and I* = {i : |z}| # 0} is the
the iterative half thresholding algorithm [19] (called Halsupport set ofz™. I, € R™*" is the r-dimensional identity
algorithm for short henceforth). The convergence of Haratrix. sgn(-) represents the signum function.
algorithm was justified whed satisfies the restricted isometry
property (RIP) withdgg« < \/% [33], wherek* is the number [l. ADAPTIVELY ITERATIVE THRESHOLDINGALGORITHM
of the_nonzgro components of the truely sparse signal. Laterthe AIT algorithm for [B) is the following
Maleki [34] investigated the convergence of both Hard and
Soft algorithms in terms of the coherence. Recently, Zeng et ) = 2 — s AT (A2 ), (4)
al. [35] generalized Maleki’s results to a wide class ofdtae (t+1) _ g (t+1)) )
thresholding algorithms. However, most of guarantees &j [3 . = Hrom (2 ’
are coherence-based and focus on the noise free case witleres > 0 is a step size and
the step size equal to 1. While it has been observed that in T
practice, the AIT algorithm can have remarkable perforneanc Hewin (@) = (hren (@), hrern (20)) (6)
for noisy cases with a variety of step sizes. In this paper, Wg a componentwise thresholding operator. The threshgldin
develop the theoretical guarantees of the AIT algorithmhwittynction £, (u) is defined as
different step sizes in both noise free and noisy cases.
he(u) = { frlw), - Jul>7 (7)

. I 0, otherwise ’
A. Main Contributions

The main contributions of this paper are the following.

i) Based on the introduced gRIP, we give a new uniquen
theorem for the sparse signal (see Theofdm 1), a
then show that the AIT algorithm can converge to the
original sparse signal at a linear rate (See Thedrem 2).
Specifically, in the noise free case, the AIT algorithm /
converges to the original sparse signal at a linear rate3) BoundednessThere exist two constants< c; < ¢ <
While in the noisy case, it also converges to the original 1 SUCh thatu —ei7 < fr(u) < w — cp7 foru > 7.
sparse Signa| at a linear rate until reaching an errorNOte that most of the Commonly used threShOlding functions
bound. satisfy Assumption 1. In Fig[]l, we show some typical

i) The tightness of our analyses is further discussed in tBresholding functions including hard [27], soft [25] analifh
specific cases. The coherence based condition for SB#] thresholding functions fofy, £1, ¢, > norms respectively,
algorithm is the same as those required for both OM®s Well as the thresholding functions fby/; norm [26] and
and BP. Moreover, the RIP based condition for Har§CAD penalty[[21]. The corresponding boundedness parame-
algorithm is 83541 < ¥5=1 ~ 0.618, which is better ters are shown in Tab[ I.

2
than the results in_[7] and [9]. TABLE |

The rest of this paper is organized as follows. In section |l, BOUNDEDNESS PARAMETERS FOR DIFFERENT THERSHOLDING
we describe the adaptively iterative thresholding (AlTgaal FUNCTIONS
rithm. In section Ill, we introduce the generalized reséit
isometry property, and then provide a new uniqueness threore
In section 1V, we prove the convergence of the AIT algorithm. €1 0
In section V, we compare the obtained theoretical results wi 2 0

where f.(u) is thedefining functionin the following, we give
some basic assumptions of the defining function, which were
r%f]atly introduced in[[35].

Assumption 1. Assume thatf. satisfies

1) Odevity. f,(u) is an odd function ofs.

2) Monotonicity. f-(u) < f-(v) foranyr <u < v.

frx fro fra2 fr2s3 fra frscap

1
1 1 1
0 1 0

owl=




Definition 1. For any matrixA € R™*™, and a constant pair

e e (p,q) wherep € [1,00),q € [1,00] and % + % =1, then the
’ 7y (k,p, q)-generalized restricted isometry constant (QREZ), ,
2 £ ] of A is defined as
il 1 _ [(Ts) — A§As)z]q
| Brep.g = sup sup

0 ! - SC{1,...n}.|S|<k zeRIS\{0} 2l

. (8)
-1p o ]

.// Hard
—2r s al 7 . . . .
s - oatven We will show that the introduced gRIP satisfies the follow-

N S ean]] ing proposition.
T T S R T Proposition 1. For any positive constant paifp, ¢) with + +

% = 1, the generalized restricted isometric constéafit,, ,

Fig. 1. Typical thresholding functions (u) with 7 = 1. associated withA and k must SatISfy

1 |2T(ATA - 1,,)2|
. . L. . _ﬁk,p,q < sup D) < Bk,p,q- (9)
This paper considers a heuristic way for setting the threisho 3 2€R™\{0}, ] zo<k 2113
(") specifically, we let
A1) |Z(t) | The proof of this proposition is presented in Appendix
[k+11P A. It can be noted that the gRIP closely relates to the

coherence property and restricted isometry property (RIP)

where 2\ s the (k + 1)-th largest component of®) in
- (k+1) g P whose definitions are listed in the following.

[k+1]
magnitude and is thespecified sparsity levelk + 1] denotes

the index of this component. We formalise the AIT algorithnbefinition 2. For any matrixA € R™*", the coherence ofl

as in Algorithm 1. is defined as
A A 10)
Algorithm 1: Adaptively lterative Thresholding Algorithm H= Ig?]x ||AH2 . ”A'H?’
i J
Initialization: Normalize A such that||A |l =1forj=1,...,n. . .
145112 J where A; denotes the-th column ofd fori=1,...,n.

Given a sparsity levek, a step sizes > 0 and an initial pointz(®).

Lett:=0; T oAt Definition 3. For any matrixA € R™*", givenl < k < n,
Step 1. Calculatez11) = 278 — sA” (Az'") —b); the restricted isometry constant (RIC) dfwith respect tok,

. (t4+1) — |, #+1) t+1 ; . )
Step 2: Setr |21, 417| @ndI**" as the index set of di, is defined to be the smallest constarguch that
the largestk components ot (t+1) in magnitude;
Step 3: Update: ifi € 1t+1, :cgtﬂ) = fT(H])(zEtH)) , otherwise (1=0)|zlI3 < 14z]5 < (1 4+ 8)]|2]|3, (11)
(t+1) .
z; =0

Step 4: t = t + 1 and repeateps 1-3 until convergence. for all k-sparse vector, I'e'uZHO < k.

By Definition[3, RIC can also be written as:
Remark 1. At the (¢ + 1)-th iteration, the AIT algorithm T/ AT
yields a sparse vectar with k nonzero components. The 8 = sup >
sparsity level is a crucial parameter for the performance of zeR™\{0}, [l zllo<k 1213

as k decreases. Onck < k*, the AIT algorithm fails to find proposition 2 shows that coherence and RIP are two special
the original sparse solution. Thug,should be specified as ancases of gRIP.

upper bound estimate af*.

, (12)

_ _ Proposition 2. For any column-normalized matrixd <
Remark 2. In Algorithm 1, the columns of matrid are Rmxn that is, |4;ll2=1for j =1,...,n, it holds

required to be normalized. Such operation is only for a cdear () B = p, for2<k<n.

definition of the following introduced generalized redteit (ii) ﬁk,272 _ 51@7 for 1<k <n.

isometry property (gRIP) and more importantly, better the- - ’ -

oretical analyses. However, as shown in Section VII B, this The proof of this proposition is shown in Appendix B.
requirement is generally not necessary for the use of the AIT

algorithm in the perspective of the recovery performance. V¥ Uniqueness Theorem Characterized via gRIP

will conduct a series of experiments in Section VIl B for a

detailed explanation. We first give a lemma to show the relation between two

different norms for ak-sparse vector space.

IIl. GENERALIZED RESTRICTEDISOMETRY PROPERTY ~ Lemma 1. For any vectorr € R" with ||z|[o = k < n, and

. L . . . forany1 < ¢ < p < oo, then
This section introduces the generalized restricted isgmet yisasr=

property (gRIP) and then gives the uniqueness theorem. |2llp < [l2]lq < k5772l (13)



Theorem 2. Let {z(Y)} be a sequence generated by the AIT

This lemma is trivial based on the well-known norm equivg:goégggéﬁgsume thaffagifée;se(fk +1,p,q)-gRIP with
alence theorem so the proof is omitted. Note that Lefima 1'is Sk*flpa = T

equivalent to (i) k=Fk";
ax{1l_10 (i) s <s <3, where
ll, < k™G~ 2]l Vp, g € [1,00].  (14) (2ksymax{d-3.0} _ 1

[V
Il

With Lemmall, the following theorem shows thak-aparse ok 5301 _ g ;
solution of the equatiomz = b will be the unique sparsest (27) T P3kT+Lpa

solution if A satisfies a certain gRIP condition. and L4
(2k*)max{a—570} +%

Theorem 1. Let z* be ak-sparse solution oAz = b. If A s max{I-1 0] :
satisfies(2k, p, ¢)-gRIP with (2k*)" a5 + Bake1p.g

. Then
0 < Bonpg < (2k)™M7—50

thenz* is the unique sparsest solution.

sL
1_ps

2 — 2", < (ps) 2™ — 2|, + A ellq,
The proof of Theorerl1 is given in Appendix C. Accordingvherep, = vsL < 1 with

to Propositiod 2 and Theorelm 1, we can obtain the following - |(2k*)ma"{3*%*°} L sB

unigueness results characterized via coherence and RIP, re Vs = 5 8P3k"+1,p,q-

spectively. Particularly, whene = 0, it holds

Corollary 1. Let z* be ak-sparse solution of the equation Hx(t) — ||, < (ps)' |2 — x(0)||p.

Ax = b. If i satisfies ) ) ) )
The proof of this Theorem is presented in Appendix D.

0<pu< i7 Under the conditions of this theorem, we can verify that
) _ 2k ] 0 < ps < 1. We first note thatBs+41p4 < + < 1 <
thenz* is the unique sparsest solution. (2k*)max{%7%70}7 then it holdss < 1 < 3. The definition

It was shown in[[36] that whem < 52, the k-sparse Of v, givesy, =

solution should be unique. In another perspective, it can symax{2—10} )
noted that the conditiop < 5- is equivalent tok < - while (1 —5)(2k") o . + 803k 41,p.q, 1f S <5<
I (s = DEE)™ 750 4 6By g, if 1<s <5

1 < 5z is equivalent tok < i + $. Sincek should be an

integer, these two conditions are almost the same. If s <s <1, itholds
Corollary 2. Let z* be ak-sparse solution of the equation symax{1—1 0} 1
T < (1—-35)(2k ’ * = —.
Az = b. If 0y, satisfies s < (1= 8)(2F7) TSP L
0< by < 1, Similarly, if 1 < s <3
symax{l_1 _ 1
thenz* is the unique sparsest solution. vs < 3= 1) k)00 158, = I

According to [37], the RIP condition obtained in Corollaly 2rherefore, we have, < L and thusp, = 7,L < 1.
is the same as the state-of-the-art result and more imfytan  Theorem[2 demonstrates that in the noise free case, the
is tight in the sense that once the condition is violatedntheyIT algorithm converges to the original sparse signal at a
we can construct two different signals with the same sparsifinear rate, while in the noisy case, it also converges at a
linear rate until reaching an error bound. Moreover, it can b

IV. CONVERGENCEANALYSIS noted that the constant, depends on the step size Since
In this section, we will study the convergence of the AlBs;. 11,4 < 1 < (2k*)ma"{%*%70}, ps reaches its minimum
algorithm based on the introduced gRIP. at s = 1. The trend ofp, with respect tos is shown in Fig.
[2. The optimal convergence rate is obtained whea 1. This
A. Characterization via gRIP observation is consistent with the conclusion drawri_in [6].

To describe the convergence of the AIT algorithm, we first By Propositiorﬂz, it shows that the coherenpe and RIP are
two special cases of gRIP, thus we can easily obtain some

define recovery guarantees based on coherence and RIP respectivel
Ly = 20~ (g ymax U= 08 L (9P ()P 4 1)k, in the next two subsections.
Ly = 2”(2k*)ma"{1’§’0} + 2P ey )PET, Remark 3. From Theoreni]2, we can see that the step size
should lie in an appropriate interval, which depends on the
and L .
L = min{ {/L_l, {’/L—Q}, gRIP constant, which is generally NP-hard to verify. Howeve

we would like to emphasize that the theoretical result otetdi
wherep € [1,0), ¢ € [1,00] andcy, ¢z are the correspondingin Thoeoreni P is of importance in theory and it can give some
boundedness parameters. insights and theoretical guarantees of the implementatibn



TABLE Il
COHERENCE BASED CONDITIONS FOR DIFFERENAIT ALGORITHMS

AIT Hard Half Soft SCAD

co 0 0 1 0
1 1 1 1
H 3k*—1 3k*—1 2k —1  3k*—1
s s =1 5
Fig. 2. The trend ofp, with respect tos. C. Characterization via RIP

Letp =2,¢q = 2. In this case,L; =2+ (3 — c2)k*, Ly =

) ) . . 4+42c3k*, and thus
the AIT algorithm, though it seems stringent. Empirically,

we find that a small interval of the step size, i/8.9,1] is L= min{\/4+ 202k, \/2 +(3— R)k*}.

generally sufficient for the convergence of the AIT algonith

This is also supported by the numerical experiments coeducf\ccording to Theoreril2, and by Propositidn 2, we can directly
in section VI. In [8], it demonstrates that many algorithmglaim the following corollary.

perform well with either constant or adaptive step sizes. l@orollary 3. Let {#(V} be a sequence generated by the AT

section VII C, we will discuss and compare different Ste%’lgorithmforb: Az—+e. Assume thatl satisfiesss. q < L
size schemes including the constant and an adaptive step-$l 4 if we take ' * L

strategies on the performance of AIT algorithms.

(i) k=Fk"
" _ -1 _ 1+ 7
B. Characterization via Coherence (i) s<s<5 wheres = —"— ands = ;———"—.
3k*+1 3k*+1
Let p = 1,¢ = oo. In this case, L1 = (3 — c2)k*, Then
Ly = (4+c¢1)k*, and L = (3 — c2)k*. According to Theorem © fx - (0) sl .
and Propositiori ]2, assume that < ﬁ then the [z — 2™ [l2 < (ps)"[lz* — ™2 + 1= A €l|2,
AIT algorithm converges linearly with the convergence rate
constant wherep, = v,L < 1 with v = |1 —s|+sd3x+41. Particularly,
ps =vsL = (|1 —s| + sp)L < 1 whene = 0, it holds
if we takek = k* and =L < s < XL In the following, we 2 = 2|2 < (p)"[|l2* — 2.

1—p 1+p° .
show that the constant and thusp, can be further improved  according to CorollanB, the RIP based sufficient condi-

whenp =1 andg = oo. tions for some typical AIT algorithms are listed in Tablg Ill
Theorem 3. Let {z(¥} be a sequence generated by the AIT TABLE Il
algorithm forb_ = Az + e. Assume thatd satisfiesd < u < RIP BASED CONDITIONS FOR DIFFERENTAIT ALGORITHMS
(3_0%, and if we take
2)k
(i) k=Fk7
(ii) 1_% <s< min{ﬁ,l + %}’ AIT Hard Half Soft SCAD
then it holds c1 0 1/3 h !
. . o sl . O3k* 41 2 36+2k* 2t 2k* A2k*
29 — 2y < (o) la* 2@l + =2 ATe]
py
wherep, = ;L < 1 with Moreover, we note that the condition in Corolldry 3 for

Hard algorithm can be further improved via using the specific
_ _ expression of the hard thresholding operator. This can be
Particularly, whene = 0, it holds shown as the following theorem.

Vs = max{|l — s[, su}.

28 — 2% ||y < (ps)! |l — 21 Theorem 4. Let {z(Y)} be a sequence generated by Hard

. L . . algorithm forb = Az + e. Assume thatd satisfiesisy-11 <
The proof of this Theorem is given in Appendix E. ASﬁ-ly and if we takek — k* ands — 1, then

shown in Theoren]3, the constant can be improved from ~ 2

|1fzhs| +tsu to max{|1 - St|, su}t, alnd aIS(; the fle_a%sm{ei%ange 120 — 2l < gt le* — 2O s + VE+1 AT el
(0} € Sslep size parametsrgets larger rrom =0 1tu 9 _ 2p

= @“6%*“ < 1. Particularly, whene = 0, it

to (1 — %,min{ﬁ, 1+ %}) . We list the coherence-basetherep
convergence conditions of several typical AIT algorithms ipggs
Table[Il. As shown in Tabl€lll, it can be observed that the 12® — 2*[|2 < ptlle* — 2@

recovery condition for Soft algorithm is the same as those of -

OMP [38] and BP[[38]. The proof of Theorerl4 is presented in Appendix F.



V. COMPARISON WITH PREVIOUS WORKS 2) On comparison with other algorithms:or better com-
parison, we list the state-of-the-art results on sufficmoridi-
This section discusses some related works of the AIT alens of some typical algorithms including BP, OMP, CoSaMP,
gorithm, and then compares its computational complexity aiard, Soft, Half and general AIT algorithms in Tablg] IV.
sufficient conditions for convergence with other algorithm

. . TABLE IV
1)_ On related YVO_I’kS of the AIT algor'thmn [34]' Male_k| SUFFICIENT CONDITIONS FORDIFFERENTALGORITHMS
provided some similar results for two special AIT algorithm
i.e., Hard and Soft algorithms witk = £* ands = 1 for Algorithm P (r, 6r)
the noiseless case. The sufficient conditions for convesgen
1 1 e BP 1 (39 (2k*,0.707) (A1)
are p < s andp < 445+ for Hard and Soft algorithms, 2!@*71([38]) ’ 5
respectively. In [[35], Zeng et al. improved and extended OMP ST (13k~, §)(Thm- 6.258D)
Maleki’s results to a wide class of the AIT algorithm withgte ~ CoSaMP 381 ¥ (4k*,0.384) (LD
size s = 1. The sufficient condition based on coherence was Hard ) (3k*+1,0.618)Tm 3
improved tou < ﬁ, where the boudedness parameter  Soft I (3k*+1, 2+12k*)(00r013)
c¢1 can be found in Tablg I. Compared with these two tightly —_— (3k*+1, 3 __)(Corold)
. ipe . . 3k*—1 ) B *
related works, several significant improvements are made- T . R YT
. Ceneral AT — L = (3k*+1, ——L—)( )
this paper. (B=ez)kr—1 ey

. .- .. *. a coherence based sufficient condition tor CoSaMP dert ®Tact that
(i) Weaker convergence conditionsThe conditions ob- s, . = 0.384 ands, < (r — 1)u. verh

tained in this paper is Weaker_than tho_s_e in both [34] and .0 Table[TY, in the perspective of coherence, the suffi-
[35]. _I\_/Iore specifically, we give a unified CONVErgeNCEiant conditions of AIT algorithms are slightly stricterath
condition based on the introduced gRIP. Particularly, 8§,se of BP and OMP algorithms except Soft algorithm.

shown in Theoreni]3, the coherence based Conditioﬁﬁwever, AIT algorithms are generally faster than both BP

for convergence arg < —jr—y, Which is much 5.4 ovp algorithms with lower computational complexities,
better than the condition < ;= obtained in[[35]. egpecially for large scale applications due to their linear
Moreover, except Hard algorithm, we firstly show theonyergence rates. As shown in the next section, the number
convergence of the other AIT algorithms based on RIB jterations required for the convergence of the AIT algori
(i) Better convergence rateThe asymptotic linear conver-is empirically of the same order of the original sparsityelev
gence rate was justified in both [34] and [35]. Howevey,« that is,O(k*). At each iteration of the AIT algorithm, only
in this paper, we show the global linear convergene®me simple matrix-vector multiplications and a projectim
rate of the AIT algorithm, which means it converges ghe vector need to be done, and thus the computational com-
a linear rate from the first iteration. plexity per iteration isO(mn). Therefore, the total computa-
(iii) More general model.In this paper, besides the noiselesgonal complexity of the AIT algorithm i€ (k*mn). While the
modelb = Az, we also consider the performance of thggtal computational complexities of BP and OMP algorithms
AIT algor|thr_n for_ the noisy r_nod_eb = Az +_e, vyh|ch are generally)(m?n) andmax{O(k*mn), O(W)}’
is very crucial since the noise is almost inevitable iRuspectively. It should be pointed out that the computaion
__ bractice. o complexity of OMP algorithm is related to the commonly used
(iv) More general algorithmic framework. In both [34] aiting rule of OMP algorithm, that is, the number of maximal
and [35], the AIT algorithm was only considered witherations is set to be the true sparsity leiel
unit step size{ = 1). While in this paper, we show that - Anqther important greedy algorithm, CoSaMP algorithm,
the AIT algorithm converges whenis in an appropriate jgentifies multicomponents (commorty*) at each iteration.
range. From Tabld1V, the RIP based sufficient condition of CoSaMP
Among these AIT algorithms, Hard algorithm has beeis d4x+ < 0.384 and a deduced coherence based sufficient
widely studied. In[[35], it was demonstrated thatAf has condition is < 2234 In the perspective of coherence, our
unit-norm columns and coherenge then A has the(r, 6,.)- conditions for AIT algorithms are better than CoSaMP, tHoug
RIP with this comparison is not very reasonable. On the other hand,
5o< (r—1 15 our conditions for AIT algorithms except Hard algorithm are
r < (r= 1. (15) generally worse than that of CoSaMP in the perspective of RIP
) o However, when the true signal is very sparse, the conditions
In terms of RIP, Blumensath and Davies [33] justified thge AT algorithms may be better than that of CoSaMP. At
performance of Hard algorithm When app_lie.d to signall I'&ach iteration of CoSaMP algorithm, some simple matrix-
covery problem. It was shown that il satisfies a certain yector multiplications and a least squares problem shoeld b
RIP with 63~ < &5, then Hard algorithm has globalqngigered. Thus, the computational complexity per itenat
convergence guarantee. Later, Foucart improved this tondi 4t cosamp algorithm is generallyiax{O(mn), O((3k*)*)},

1 1 H H
10 d3p- <2 o2k < 7 [4] and further improved it t0 \hich is higher than those of AIT algorithms, especially whe
Oz < Vel 0.5773 (Theorem 6.18,1[9]). Now we can .« g relatively large.

improve this condition tajsx-41 < \/52‘1 ~ 0.618 as shown  Besides BP and greedy algorithms, another class of tightly

by Theoren 4. related algorithms is the reweighted techniques that have




been also widely used for solutions £g regularization with
g € (0,1). Two well-known examples of such reweightec |
techniques are the iterative reweighted least squaresS)IRIE
method [[23] and the reweightedi minimization (IRL1)
method [20]. The convergence analysis conducted[in [28 o>
shows that the IRLS method converges with an asymptotica
superlinear convergence rate under the assumptionsAha i - e
possesses a certain null-space property (NSP). Howewen, fr Estimated Sparsity Parameter k Estimated Sparsity Parameter k
Theorem2, the rates of convergence of AIT algorithms are (a) Robust (Noiseless) (b) Detail (Noiseless)
globally linear. Furthermore, Lai et al. [42] applied theL&R ~ ©°
method to the unconstrainégdminimization problem and also
extended the corresponding convergence results to thexmag .
case. It was shown also in [43] that the IRL1 algorithm ca§
converge to a stationary point and the asymptotic convemye!é

speed is approximately linear when applied to the unco S
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strained!, minimization problem. _Both _in_ [é_l‘2] and [43], the ] e MAdarasarasassd
authors focused on the UnCOﬂStraIﬁ]@(hlnlmlzatlon problem Estimated Sparsity Parameter k Estimated Sparsity Parameter k

with a fixed regularization parametes while in this paper, (c) Robust (Noisy) (d) Detail (Noisy)

we focus on a different model with an adaptlve regl"I‘rju’lzmlq:ig. 3. On robustness of the specified sparsity level. (a) tféreds of the

parameter. recovery precision with different estimated sparsity Ievie noiseless case.
(b) The detailed trends of the recovery precision with difeé estimated

sparsity levels in noiseless case. (c) The trends of theveeggrecision with
VI. DiscussION different estimated sparsity levels in noiseless caseTi@)detailed trends of

In this section, we numerically discuss some practicaleissdhe recovery precision with different estimated spargiyels in noisy case.
on the implementation of AIT algorithms, especially, the TABLE V
effects of several algorithmic factors including the estiétl Ty recovery PRECISION OF DIFFERENAIT ALGORITHMS WITH OR

sparsity level parameter, the column-normalization of@ma WITHOUT COLUMN-NORMALIZATION (NOISELESS CASH
different step-size strategies as well as the formats it
thresholding operators on the performance of AIT algorghm  Algorithm Hard Soft Half SCAD

Moreover, we will further demonstrate the performance f se no normalizaton 5.719e-6  1.425e-8 5.062e-6  9.330e-9
eral typical AIT algorihtms including Hard, Half and SCAD normalization ~ 5.703e-5 1.437e-8 5.935e-5 8.505e-9
via comparing with many state-of-the-art algorithms sush a

CGIHT [&Q], CoSaMP[[14], 0-ALPS(4) [6] in the perspective

of the 50% phase transition curvés [47],[[49]. B. With vs Without Normalization

) ) As shown in Algorithm 1, the column-normalization on the
A. Robustness of the estimated sparsity level measurement matrix is required in consideration of a clearer
In the preceding proposed algorithms, the specified sparditefinition of the introduced gRIP and more importantly, éett
level parametek is taken exactly as the true sparsity lek&] theoretical analyses. However, in this subsection, we will
which is generally unknown in practice. Instead, we canmofteonduct a series of simulations to show that such requiremen
obtain a rough estimate of the true sparsity level. Theegfior is generally not necessary in practice. The experimenpsstu
this experiment, we will explore the performance of the AlBimilar to Section VI.A. More specifically, we set = 250,
algorithm with a variety of specified sparsity levels. Weiedr n = 400 and k* = 15. The nonzero components af*
k from 1 to 150 while kepk* = 15. The experiment setup is were generated randomly according to the standard Gaussian
the same with Section VI. A. distribution. The matrix4A was generated from i.i.d Gaussian
From Fig.[3, we can observe that these AIT algorithndistribution A/(0,1/250) without normalization. In order to
are efficient for a wide range of. Interestingly, the point adopt Algorithm 1, we letA be the corresponding column-
k = k* is a break point of the performance of all these AlTiormalized factor matrix ofd (i.e., A is a diagonal matrix
algorithms. Wherk < k*, all AIT algorithms fail to recover and its diagonal element is tlig-norm of the corresponding
the original sparse signal, while whén> k*, a wide interval column of A), and A = AA~! be the corresponding column-
of k is allowed for small recovery errors, as shown in [Eip. Bormalized measurement matrix. Assume thas a recov-
(b) and (d). In the noise free case,|[if(!) — 2*|, < 10710, ery via Algorithm 1 corresponding tol, thenz = A~'2
the feasible intervals of the specified sparsity lekelare is the corresponding recovery of*. For each algorithm,
[15,109] for SCAD and Soft][15, 81] for Half and[15,65] for we conducted 10 times experiments independently in both
Hard, respectively. This observation is very importantrieal noiseless and noise (signal-to-noise ratio (SNR): 60dBgsa
applications of AIT algorithms becausé is usually unknown. and recorded the average recovery precision. The recovery
In the noisy case, ifz(*) —2*||, < 1072, the feasible intervals precision is defined aﬁf%[z”z, whereZ and z* represent
of sparsity levelk are [15,105] for SCAD, [15,40] for Soft, the recovery and original signal, respectively. The expernit
[15,37] for Half and [15, 26] for Hard, respectively. results are shown in Tablel V aad]VI.




TABLE VI

THE RECOVERY PRECISION OF DIFFERENAIT ALGORITHMS wiTHOR ~ —1 OF 1 With an equal probability. For any givefk, m,n),
WITHOUT COLUMN-NORMALIZATION (WITH 60DB NOISE) the measurement matrid € R™*" is generated from the
Gaussian distributionh'(0, 1), and the nonzero components
Algorithm Hard Soft Half SCAD of the originalk-sparse signat* are generated independently
no normalization  1.217e-3  5.739e-3  1.206e-3  1.282e-3 and identically distribution (i.i.d.) according to the Gaian
normalization ~ 1.214e-3  5.498e-3 1.205e-3  1.264e-3 or binary distributions. For any experiment, we consideasit

a successful recovery if
From Table[¥ andMI, we can see that the column- Iz = 2"l <1073,
normalization operator has almost no effect on the perfor- 1z oo
mance of the AIT algorithm in both noiseless and noisgherex* is the original sparse signal aads the correspond-
cases. Therefore, in the following experiments, we wilhg recovery signal. We set = 512, m = 50, 100, ..., 500. To
adopt the more practical AIT algorithm without the columneleterminef(m/n), we exploit a bisection search scheme as
normalization for better comparison with the other aldoris. the same as the experiment setting[in| [47]. We compare the
50% phase transition curves of Hard, Soft, Half and SCAD
algorithms with their adaptive step-size versions, i.édaid,
, , NSoft, NHalf, NSCAD in Fig[4.

) From Algorithm 1, we only consider t_he constant s_tgp— From Fig.[4 (a) and (c), we can see that the performances
size. However, according to many previous and empiricgt 5 AT algorithms except Soft algorithm adopting the
stud|es_ [6], [413],_We have known that certain adaptive sﬂgp- adaptive step-size strategy [16) are significantly betiant
strategies may improve the performance of AT algorithmg, e of the corresponding AIT algorithms with a constant
Ir! this subsectllon, we wil compare the performange of tWg)tep size in the Guassian case. In this case, NSCAD has the
different step_-S|ze schgmes, 1€, th_e constant_stepsmgy best performance, then NHalf and NHard, while NSoft is the
and an adaptive step-S|z_e_ strategy introduced in [46_] _\ﬂa;m worst. The performance of NSCAD is slightly better than thos
called 50% phase transition curve [49]. More specificali t o¢ Naif and NHard, and much better than NSoft. While for
adaptz\t/)e lstep-5|ze spheme can be described as follpwsm@ss%e binary case, as shown in Fig. 4 (b) and (d), NSCAD breaks
that s the t,'th iteration, then att + 1)-th iteration, the down with the curve fluctuating around 0.1 while NHalf and
step sizes(“t1) is set as NHard still perf I -

perform well. In the binary case, Soft as well
(t41) (AT (b — Az®)) |2 as NSoft perform the worst. In addition, we can see that
= T(h_ A0 27 (16)  the performances of Soft and NSoft are almost the same in
[(AAT (b — Az™)) 1| . : ;
all cases, which means that such adaptive step-size strateg
where!" is the support set of(*), A is the measurement ma-(Tg) may not bring the improvement on the performance of
trix and b is the measurement vector. Similar to[[46], we wilsoft algorithm. Moreover, some interesting phenomena can
call the AIT algorithm with such adaptive step-size strategalso be observed in Fidl 4, that is, the performance of the
the normalised AIT (NAIT) algorithm, and correspondinglyAIT algorithm depends to some extent on the choice of the
several typical AIT algorithms such as Hard, Soft, Half anghresholding operator, and for different prior distrilouts of
SCAD algorithms with such adaptive step-size strategy MHarthe original sparse signal, the AIT algorithm may performyve
NSoft, NHalf and NSCAD for short, respectively. Note thagifferent. For these phenomena, we will study in the future
NHard algorithm studied here is actually the same witlyork.
the normalised iterative hard thresholding (NIHT) algwomit
proposed in([46]. . . _
50% phase transition curve was first introduced [in [4é:])' Comparison with the State-of-the-art Algorithms
and has been widely used to compare the recovery abilityWe also compare the performance of several AIT algorithms
for different algorithms in compressed sensing [47]] [49)r including NHard, NSCAD and NHalf with some typical state-
a fixed n, any given problem settingk, m,n) can depict a of-the-art algorithms such as conjugate gradient itegatiard
point in the spacém /n,k/m) € (0,1]%. For any algorithm, thresholding (CGIHT)[[50], CoSaMP [14], 0-ALPS(4) [6] in
its 50% phase transition curve is actually a functjoon the terms of their 50% phase transition curves. For more other

(k/m,m/n) space. More specifically, if the poitit:/n, k/m) algorithms like MP [[8], HTP[[F], OMP[[10], CSMPSP _[51],
lies below the curve of the algorithm, i.&/m < f(m/n), CompMP [52], OLS [[53] etc., their 50% phase transition
then it means the algorithm could recover the sparse sigiakves can be found in_[49], and we omit them here. For all
from the given(k, m,n)-problem with high probability, oth- considered algorithms, the estimated sparsity level perars
erwise the successful recovery probability is very low] [48hre set to be the true sparsity level:of. The result is shown
Moreover, the 50% phase transition curve usually dependsionFig 5.
the prior distribution ofz* as depicted in many researches From Fig.[5, we can see that almost all algorithms have
[27], [47], [49]. better performances for the Gaussian distribution case tha

In these experiments, we consider two common distributiofe the binary distribution case, especially NSCAD alduarit
of z*, the first one is the standard Gaussian distributioMore specifically, as shown in Fid] 5(a), for the Gaussian
and the second one is a binary distribution, which takesstribution, NSCAD has the best performance among alehes

C. Constant vs Adaptive Step Size




Gaussian Binary

08 08
07 —+— NHard
NSoft
06 —+— NHalf
—+— NSCAD

05

£ 04 € o4 B
03 03
02 02

0.1 = - 0.1 i i |

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(@) NAIT for Gaussian case (b) NAIT for Binary case
o8 Gaussian o Binary
—+— Hard —t— Hard
0.7 Soft 0.7 Soft
—+— Half —t— Half
0.6 =——+— SCAD 0.6 =—t— SCAD
05 0.5
£ 04 £ 04
0.3 0.3
0.2 + 0.2
0.1 e 0.1 h_ﬁ;:ﬁﬁzﬁa
T

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(c) AIT for Gaussian case (d) AIT for Binary case

Fig. 4. 50% phase transition curves of different AIT aldamt with two
different step-size schemes. (a) AIT algorithms with anpéida step size
for Gaussian case. (a) AIT algorithms with an adaptive siep ®r Binary
case. (c) AIT algorithms with a constant step size for Gaussase. (d) AIT
algorithms with a constant step size for Binary case.
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Fig. 5.
distribution case. (b) Binary distribution case.

50% phase transition curves of different algorithif@ Gaussian

case. As two special cases of gRIP, the coherence and RIP
based conditions can be directly derived for the AIT aldonit
Moreover, the tightness of our analyses can be demonstrated
by two specific cases, that is, the coherence-based comditio
for Soft algorithm is the same as those of OMP and BP, and
the RIP based condition for Hard algorithm is better than the
recent resulbsg < % ~ 0.5773 obtained in Theorem 6.18

) 3 - )

in [9]. Furthermore, the efficiency of the algorithm and the
correctness of the theoretical results are also verifiedavia
series of numerical experiments.

In section VII, we have numerically discussed many prac-
tical issues on the implementation of AIT algorithms, in-
cluding the specified sparsity level parametertthe column-
normalization requirement as well as different step-setérgy
schemes. We can observe the following several interesting
phenomena:

(i) The AIT algorithm is robust to the specified sparsity
level parametek, that is, the parametdr can be spec-
ified in a large range to guarantee the well performance
of the AIT algorithm.

(i) The column-normalization of the measurement matrix
A is not necessary for the use of AIT algorithms in the
perspective of the recovery performance.

(i) Some adaptive step-size strategies may significaintly
prove the performance of AIT algorithms.

(iv) The performance of AIT algorithm depends to some ex-
tent on the prior distribution of the original sparse signal
Compared with the binary distribution, AIT algorithms
are more appropriate for the recovery of the sparse signal
generated by the Gaussian distribution.

The performance of the AIT algorithm depends on the
specific thresholding operator.

All of these phenomena are of interest, and we will study them
in our future work.
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that almost all of the existing iterative thresholding altfons

like Hard, Soft, Half and SCAD are included in such class
of algorithms. The main contribution of this paper is the
establishment of the convergence analyses of the AIT al
rithm. In summary, we have shown when the measurem
matrix satisfies a certain gRIP condition, the AIT algorith
can converge to the original sparse signal at a linear rate in”(I — AT Ag)a||, =
the noiseless case, and approach to the original sparsal sign 151 Shdal
at a linear rate until achieving an error bound in the noisy

APPENDIXA: PROOF OFPROPOSITION]]
Proof: For any index setS C {1,...,n} with |S| < k

%hd a vector: € RIS, sincel + 1 — 1, then¢, and(, norms

r%{?g dual to each other, Whl}éh implies that

" (15| — A§As)z|
||y||p

sup
yeRISI\{0}
(17)
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By Definition[d, then Let S = {io,jo} ande = (0,1)T. Then

T _ AT
Brp.g = SUp sup " (Ig AsAs)x" (18) Boioco > ||(Io— ALAg)e|w
|S|<k z,ycRISI\{0} Hxanpr _ He—AgAjolloo
It is obvious that = U (22)
T T
Brpq > SUp sup |27 (L5 — A5 As)z| Then we prove the fact (b). For any vectorce R* and a
T S1<k werISh\{o} |2 subsetS C {1,2,...,n} with |S| =k, let B = I;, — AL Ag
|27 (I, — AT A)z| andz = Bz. Then
T Ler\ [0} ok 12113 ’ k k
z zllos
2] = 1Y Bijayl <> [Biai| < pll)a,

which implies the right-hand side dfl(9).

j=1 j=1
On the other hand, by (18), we can also observe that

forany: =1,..., k. It implies that

Bepg=sup  sup |yTz—y"AFAsx|,  (19)
1SI<k llzllp lyllp <1 Bzl < pllzls
and for anyz,y € R/, By the definition of;, 1. o, it implies
vz — y" A Asal Bhree < 1 23
1
= ‘§(H~’C||§ +llylz = llz—yl3) According to [22) and[(23), for alt < k < n, it holds
1
— 5l 4sal3 + [ Asyll} - | Asz — Asyll3)| Brteo =
1 1 i i i i
< §‘Hff||§ _ IIAstg‘ I §‘||y||§ _ ||Asy||§‘ (i) From the inequality[{P) and the equality {12), we know
1 Ok < Bryp,g- (24)
+ 5|l = yll3 — 45— y) 3] (20)
Furth it can be noted that To prove
urthermaore, It can be note a
5k Z Bk.,p.,qa (25)
swpllu— vl — [ As(u - v)l3] -
RISy, [oll, <1 note that equality (19) leads to
<4  sup }||w|\§ - |\Asw||§}, (21) Brpa<  sup  |Lg— A§Agla,  (26)

weRIS|, |Jwl|,<1 Sc{l,...n}|8I<k

since ||u — v||, < 2 for |jull, < 1 and|jv||, < 1. Plugging @and further

(20) and into[(19), it yields
-) m]-) [II ) y seq Sul:; ‘S‘<kHI|S| —AgAng (27)
Bilpq <3 sup  sup ||lz]}— [l Ase] Clhonplols
P sk fall<t B 2T (15 — AL Ag)z|
2 |l A2l3 R EE
=3 sup “|ZH2 - ||Az|\2‘ IS|<k zeRISI\{0} Zl2
lzllo<k, Izl <1 B 127 (L, — AT A)z|
_ [T (ATA— L,)z| ~ Lerm {0}, HE
=3 sup 5 : €RM\{0}, 120 <k 2
2ERM\{0}]12l0 <k 12115 — 5

Whlc.h |mpI|es_t.he I_eft—hand side of](9). Therefore, the Fjroc\)/vhere the last equality holds by the equivalent definition of
of this proposition is completed.

RIP (this can be also referred to Definition 1 [n [4]). From

- , we can conclude that
APPENDIX B: PROOF OFPROPOSITIONZ] @2)-n

Proof: (i) The definition of gRIP induces, 1 oo > 521,00 Ok = Brp.q-
for all & > 2. Therefore, if we can claim the following two

facts: (a)52,1,00 > p, and (b)Bx1,00 < p for all k > 2, then -
Propositior 2 (i) follows.

We first justify the fact (a). Suppose the maximal element APPENDIX C: PROOF OFTHEOREMI(I]
of I, — AT A in magnitude appears at thig-th row and the Proof: We prove this theorem by contradiction. Assume

Jo-th column. Because for any the j-th diagonal elements of ;** satisfiesAz** = b and||z**|o < k. Then
I, — AT A equals tol — || A;]|*> = 0, we knowig # jo. Without .

loss of generality, we assume that< jo. Let A;, and 4, A" —a™) =0,

be 'Fh_e_z'o-th ar_ldjo-th column vector of4, respectively, then | 1, implies
Definition[2 gives

p=|AL Al (I, — ATA)(2* — 2**) = 2* — ™.
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Letz = a* —x**, S be the support of andzg be a subvector Case (i). If I* = I, then
of = with the components restricted f It follows () ()

t *
T ™ =2yl = |2k — T
(Iis — As As)zs = zs, < max |zi(t) -z (33)
iel}

and further
| Case (ii). IfI* # I*, then there existg € I* such that

io & I*.
for any g € [1,00]. Sinceljz*|lo < k and ||z**||o < k, then _ . _ _
S| < 2k. For anyp € [1,00), and by the definition of gRIP, Otherwisel* C I* and " # I* which contradicts with ‘| >

(Lis) — AsT Ag)aslq = [|zs]lq, (28)

we have k* and|I*| = k*. Thus,zj = 0 and
—1,® &) _1.® %
|(Ts) = AsT As)zslly < Borpallzslp: 0 = |yl < 15y = ) - 3|
(t) *
By Lemma[1, there holds < IZ_TGH}MZZ- — 7] (34)
+
sy < (2k)™2GE 0 zg] . Combining [38) and{34) give§ (B2). ™

Proof of Theorerl]2:In order to prove this theorem, we
only need to justify the following two inequalities, i.eqrfany

(X5 — AsT Ag)wsllg < Bok pg(2k) ™G5 zg),  tEN

1 * *
< sl 28 — 2 lly < vslle® — 2*[|, + s ATell;,  (35)

By the assumption of this theorem, then

which contradicts with [(28). Therefore;* is the unique and for anyt > 1,

sparsest solution. [ ] . .
P |2 — 2|l < L=y — 2o (36)
APPENDIXD: PROOF OFTHEOREMZ] Then combining[(35) and_(86), it holds
Before justifying the convergence of the AIT algorithm 2+ — 2*|, < L)|25Y — 2%,
based on gRIP, we first introduce two lemmas. < pS”I(t) — |, + SL”ATE”q.
Lemma 2. For anyz,y € R", andp € [1, c0), then Since0 < p, < 1 under the assumption of this theorem, then
e +yl|p < 2p—1(||$|‘5 +lylIB). (29) by induction for anyt > 1, we have
L
Moreover, ifz; - y; > 0 fori=1,...,n, then [2® —2*]|, < (ps)t||a* — O], + 1 i 5 A €| q-
lz +ylly = llz[p + lyll- (30)  First, we turn to prove the inequality (35). By tiSeep 1 of

Algorithm 1, for anyt € N,

t+1) — () _ g AT (Ax® —
The proof of Lemma&l2 is obvious singé&z) = 27 is convex * v sA™(Ax b),
for p > 1 and anyz > 0, and||z||, < ||z||, for anyz € R". and we note that = Az* + ¢, then
We will omit it due to the limitation of the length of the paper
9 pap 2 gt = (1, — sATA)(z® — 2*) + sATe

Lemma 3. For anyt > 1 andq € [1,00], if & > £k, the ~ _ (1= 8)(2® — 27) + s(I, — ATA)@® — 27) + sATe.

following inequality holds for the AIT algorithm:
. . For anyt € N andq € [1,00], let St = ‘It Jr.
7 < (Z |20 =yt = ||Zfrtt+) = 7t [lg, (31)  Noting thatI*, I* c S, it follows ’

iely
_ _ Az —2) = Agi () — a%0).
wherel’ is the index set of the largest+ 1 components of

2® in magnitude. Then we have
Proof: Wheng = oo, we need to show 2 g = (- s)(ay) — %)
7® < max |29 — 22|, (32) Folls — Agids (st — ) + sAGie
e Therefore,
then Lemmdll shows thdi(31) holds for alE [1, co]. Hz(st:rl) bl < 1l Hx(stz — s

Let I be the index set of the largest components of . ) .
z® in magnitude, then!. = I* U {[k + 1]}, where[k + 1] + 8l|(Lst) — Age Ase)(gi — x5e)llq + sl| Ageellq- (37)
represents the index of thg + 1)-th largest component of si 0 * - -

. . . . X nce <k=Fk"and = k* then
2®) in magnitude. We will prove[(32) in the following two incelzlo < 2o
cases. 1Y) < k5, |15 < K"+ 1,17 = k7,



and hencdS?| < 3k* + 1. For anyp € [1,00), by (I4) and
the definition of gRIP[{8), it holds

lz® — 2* ||, < (265G 2O —2¥||,,  (38)
and

®

”(I\S‘I - AgtAS*)(Ist xgt)”q
—25illp = ﬁSk*+17p7q|‘x(t) — 2" [|-(39)

Plugging [38) and[(39) intd (37), then

(t+1)

t
< Bae 41p.qll2t

lz5e " = 250l

< (11 = slE@F )™ G50 4 5By s ) [0© = 27,
+ sl Ageellg
< '75||$(t) — || + SHATEHq'
Thus, we have obtained the inequality](35).
Then we turn to the proof of (36). We will prove it in two

steps.
Step a): For anyp € [1, c0),

124 — 2% |5 = ||2$) — a7 |5 + |25 . 5. (40)
By Lemmal2,
t
||$I* —ap|h = ||$I - zf,*) + 25*) —x7 D
<27z — 2|+ 2 1Hz1‘i’—xz*l\£- (41)

Moreover, by theStep 3 of Algorithm 1 and Assumption 1,
for anyi € I*:

sgn(z") = sgn(z{") and|z{"| < |2")].
Thus, for anyi € I* \ I*, it holds

) (2 =) > 0. (42)
With @2) and by Lemma&]2, we have
Wl = [28 e + (0 = 2 )l
O N [ [E A v R )
Plugging [41) and[{43) intd_(40), it becomes
|\x<t>—x*||p<2p-1<||z<” x?J + 128 — a3 |2)
S [E7 20 R A N A Y

Furthermore, by th&tep 2 of Algorithm 1, Assumption 1 and
Lemmal3, for anyt > 1, we have:

@) ifielt, cor® < |2 — 2| < 70 < 70
(b) if i g 1", |20 — @] = |20] < 70,
© 0 < 1) 7, |,

By the above facts (a) (c), it holds

lof? =22l < k" max | =2l < KPP (49)
and
I = e 2 1T min 160 = o)
> |[IP\ I*|(c2)P |7 P, (46)

12

where| I\ I*| represents the cardinality of the index £t 7*.
Plugging [45), [(46) into[(44), it follows

O —a*|lp < 27 2f?

+ (2P —

[

\1*

(62) IIt\I*I)IT”IP- (47)

Furthermore, we note that
(t)

||Zzt\1* p= HZ]f\I* x?t\]*”g
ST e |2 - aip

= 1"\ |- |l2g2 e — ey ge 1B
<IN 122 = eI,

where the first equality holds becausg,, ;. = 0, and the
second inequality holds because of Lenﬁfha 1. Therefare, (47)

becomes
lz® — 2*|
< 2P~ 1”,21* —x1*||1’_|_|]t\[*| Hzl,\l* x}\l*Hfl’
+ (277 = ()P [T\ ) 7O
<272 — a1
+ @ = (P [N+ [T\ I - a1
= L e R B
+ (277 = (e + DR J2f) —
< Lnllz§)s — e l?, (48)

where the second inequality holds by the fact (c), i€, <
1289 — 23, ll4» the third inequality holds by Lemnid 1 and

+
|It\ I*| < k* and the last inequality holds because™! =
IL U=t uI*. Thus, it implies

l2® —a*|l, < /Lall25)

Step b): By Lemmal2,
lz® — 2|12 = (|2 — &fel|2 + [lafo o 12
<P Y120 e 4 2p 120 — 20

t
+ 20724 el

(49)

—xEHIIq-
(5%

I\ It I?*\zt||§+2p 1”"5

=2 lHZpUJ* x?ful*”g

+ 2071|125 = 2SN + 11232 ). (50)

Moreover, by Lemmal1, it holds

Hzltul* Tregrs 2
< (|It U I*Dmax{l—B,O}”Z
< (2k*)max{l

(®)
Itur~

— Tqeurs Zq)

20
}||z,tu,* Thur-lIE, (51)

where the last inequality holds fof* U I*| < 2k*. We also
have
t T t b < k* (t) p
”ZI 551 H Ilrgﬁdz -z |

<k (D) <k (cr)? Hzp — a7 |If. (52)
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Since|It| = |I*| = k*, then for anyi # j. As a consequence, it holds

* t) t *
[EAT = AT max }|Bz-j| < max{|1 — s|,su} = vs.

Thus, it holds P
I\Zﬁ)\,tl\ﬁ < |1\ I ’Hlla\XI |Zi(t)|p <\ 1| - |7_(t)|p Furthermore, forany =1,...,n,
iel* t
= I\ I*| - [7OP < |I'\ I*| min |27 n
AT OF < || min =) gt 2 7 B9 ) 4 0T
t t * =
<122 M8 = 1123 e = 2oy re 112 =1
x\max{1—2,0} () * n
< (k} ) a q HZI‘\I* _xlf\I*HIq)' (53) < ZBW(I?) —:Z?j) +5||AT€||00
Plugging [51), [(BR) and[((53) intd_(b0), and further since j=1
STt =Tl uI'"' UI*, and thusl{ C S*"HI' C I} C < ellz® — 2% |1 + 5| AT oo
St rturs c St IP\ 1 C St it becomes
||117(t) _ I*Hg Th|S Imp|IeS
x\ymax{1l—2 — * *
< (2P TR0 4 20 e k)26 — wheallf 1257 = 2 lloo < Yalla® = 2*[|1 + 5] ATel| oo
= Loflzgl s — a%i |1 (54) | |
Therefore, we obtain thd {57). According to the proof of
Thus, we have Theorenl2, we have that the inequalify](36) still holds when
2 =2l < ¢/Lall® — "]l (55) P =1 andy=co. thatis,
From [49) and[(35), for any > 1, it holds 12® — 2%y < L2821 || oo. (58)
(t) _ x in{ ¢/ ¢/ ) _ *
Il = 2™, < min{ /Ly, &L} —27g Similar to the rest of the proof of Theordrh 2, combinifgl (57)
= L)z —z*|, and [58), we can conclude the proof of this theorem. ®
= L)|20 = i |lg, (56)
where the last equality holds f&~* = 1. UT*~tUTI*. Thus, APPENDIX F: PROOF OFTHEOREMA]
we have obtained (36).
Therefore, we end the proof of this theorem. [ Proof: The proof of this theorem is also very similar to
that of Theoreni12. According to the proof of Theoréin 2,
APPENDIX E: PROOF OFTHEOREMMB \gve hlave known thaﬂBS_) holds for all pairs ¢f,q) with
Proof: The proof is similar to that of Theorelm 2. Accord-z "~ @ — 1, and thus obviously holds fop = 2 andg = 2,

_|_
ing to the proof of Theorerml 2, we have known tHafl ((395316lt 1S,
hold for all pairs of(p, ¢) with %+% =1, and thus obviously
hold for p = 1 and ¢ = oo. In the following, instead of

the inequality [[(3b), we will derive a tighter upper bound of

t41)

26 = 5ella < dapesa2® —a7ll2 + [ ATell2,  (59)

(t+1) . whereS? = I'T1urturs, 1! is the index set of the largest
Izt — % || 0o, that is + +

St Stilee ’ k 4+ 1 components ot (**1) T* and I* represent the support

||Zgj1> — 2%t loo sets ofz(® andz*, respectively. In the following, instead of

the inequality [(3B), we will derive a tighter upper bound of
lz®) — 2* ||, that is,
Now we turn to prove the inequality (67). According o (4),

< max{us, [1 - s} 2® = 2*||s + s|AT el (57)

it can be observed that « Vb +1 y
[o® — |l < == llzgh s — sl (60)
24D — &%l <
(1= $)L, + s(T, — ATA)) (29 = 27)[|oo + 5] ATe]| o ) Now we turn to prove the inequality (60). It can be noted
that
Let B = (1 — s)I, + s(I, — AT A) and B;; be the(i, j)-th
element of B. Since||4,[s =1 forall j =1,...,n, then 2® — 2*(|3 = |2\ — 27512 + HCC(I?\p — 2|3 (61)
Bii =1—s,
_ o On one hand, since!” =z for anyi € I, then
for all & = 1,...,n. Moreover, by the definition of the
coherenceu, the absolutes of all the off-diagonal elements " x
7 J l2f? = @7.013 = =17 — 2313 (62)

of I, — AT A are no bigger tham. Thus,

|Bij| < sp, On the other hand, we can also observe bl"féftz 0 for any



i€ I*\ I, and thus [4]

1252 0 = 25 ol = oo el = Y (= 20+ 200)2
i€I*\It [5]
V543 (t)\2 V541 (t)\2
< I 2 (e
< X [ A @) o
i€I*\It
1
<y VG e » “ET*@“)?
i€I*\It i€Tt\I* [7]
_ Y530 a2 f“n 12 )
- 2 I*\It iz + Zraa-l2
V5 +3 . f+1 .
= 2 HZ]*\]r x]*\ﬁ”%"’ 2 HZ]r\]* CCI*\I*”%- [9]

(63) [10]
The first inequality holds by the following relation

(a+b)* =a? +b2—|—2ab<(1—|—\/_+1) (1+\/52

for any a,b € R. The second inequality holds due to thg12]
following facts:

(a) foranyi e I*\ It,|zf] < 7,

e

(b) foranyie I*\ I* |2t > ), [13]
© [\I'| = 1"\ I*],
and hence [14]
max |zl-(t)| < min zl-(t)|.
iel*\It ieIt\I*

[15]
The last equality holds far; = 0,Vi € I' \ I*. Plugging [(62)
and [63) into[(6l1), we have

[16]
X t X V5 +1
2 — "3 < ||z — 2713 5 NI p\;* IOV P
\/54-3 () [18]
+ ———l2; A — T pell3
2 I*\I I\I \j— 9]
t 5+3
= |25n e = 2 B+ SN2 e — 2o 13 ”
20
V5+3 i
+— 2 ||Z] *\ It xl*\[*”%
[21]
\/——1-3 . e

H St 1 ISt—l”Q,

22
WhereS‘f‘1 = I UI*~'UI*. The last inequality holds because[
the sets/* N 1*, I*\ I* andI* \ I'* do not intersect with each [23]
other and

(I'NIHUIN T UI\IY) = (I'uI*) c (ILur) c s, 4

and @ > 1. Therefore, the above inequality implids160).[25)
Similar to the rest of the proof of Theordnh 2, combining

(59) and [(6D), we can conclude the proof of this theoremn. [26]
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