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Abstract—We consider stochastic approximations which arise ly, it is well-known that gradient descent methodynton-

from such applications as data communications andmage pro-
cessing. We demonstrate why constraints are needida stochas-
tic approximation and how a constrained approximaton can be
incorporated into a preconditioning technique to deve the pre-
conditioned stochastic gradient method (PSGM). We grform
convergence analysis to show that the PSGM convesgyéo the
theoretical best approximation under some simple asimptions
on the preconditioner and on the independence of sgles drawn
from a stochastic process. Simulation results arerpsented to
demonstrate the effectiveness of the constrained arprecondi-
tioned stochastic gradient method.

Index Terms— constrained approximation, preconditioning,
stochastic gradient method, convergence analysis

. INTRODUCTION

verge slowly, and some techniques are needed txiggethe
convergence.

A. Main contributions of this paper

In this paper, we exemplify the need for constraiséo-
chastic approximations and propose a few effeatorestraints
which are simple to implement. We also use a préitioning
technique [14] to speed up the convergence of SGW po-
pose the preconditioned stochastic gradient me{R&GM)
for stochastic approximations.

Furthermore, we establish a link between the caimsd
stochastic approximation and the preconditioning] ahow
that the constraints can be incorporated as partthef
preconditioner in PSGM.

TOCHASTIC approximations have many applications in Finally, we provide a theoretical analysis to shiat the

data communications and image processing, includifgSGM converges under some simple assumptions on

channel equalization, digital predistortion for tnigower am-
plifiers and approximation of camera response foncfl]-

[8]. They are also used in the fields of medicalides [9],

machine learning and data miming [10]. The stodébaap-
proximation of interest in this paper can be chi@rémed by 1)
the function to be approximated is not known; 2 itiput and
output of the function can be observed with samm@es the
input samples are drawn from a stochastic prockascertain
probability density function, and its distributiaman be ob-
served, but cannot be controlled or altered; anth&)e is an
unlimited supply of input and output samples foservations,
but there may be a limit on how many samples ome ata
serve at one time.

Stochastic approximations usually involve approinma
the unknown function by a linear combination of gobasis
functions. The coefficients of the basis functi@mshe linear
combination satisfy a system of linear equationscivtare
determined by the unknown function and the distidns of
the input and output signals.

Stochastic gradient descent method has been widsdy
for stochastic approximation [11]-[13]. In the dtastic gradi-
ent method (SGM), the approximation is computedrintera-
tive process in which each step is marched in thdignt de-
scent direction of a cost function evaluated atao§samples.

Two issues arise frequently in the process of SGiv&t, a
solution computed at a step with a particular gesaomples
may have an undesirable behavior, e.g., with vargd de-
rivative, or the linear system can even be ill-gbséth a sin-
gular matrix. Therefore, it may be preferred orewsary to
impose additional constraints on the solution oiVB&» that it
has a desirable behavior, e.g., smaller derivatiwethe linear
system becomes well-posed with an invertible ma8econd-
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preconditioner and the stochastic process. The exgewnce
can be proved with the simple assumption that émepte sets
are drawn identically and independent from ondsenother,
without any assumption about the distribution of tandom
samples.

B. Related work

Stochastic approximations have been analyzed awedyns
in [1]. Convergence analysis of stochastic conjegatdient
method were performed in [2][5], but the stochastiojugate
gradient method has more complexity than the PSGhhis
paper. In addition, the analysis of [2] also regdimore re-
strictive assumptions on the distribution of certaandom
variables derived from the random samples. AnalgiSGM
for linear adaptive filters was given in [15] artB], but the
results there were obtained for some known didtidbs of
the stochastic process. Preconditioning has aleo bsed in
combination with stochastic gradient descent ireottelds,
see for example, [9][10].

C. Organization of the paper

In section I, the stochastic approximation problehinter-
est of this paper is posed. This is followed bygwa £xamples
given in section lll to demonstrate the need fonstmined
approximations and to establish the link betweemstrained
approximation and the preconditioning. The prectoed
stochastic gradient method is formally introducadsection
IV, and it is analyzed in section V. Simulation uks are re-
ported in section VI.

Il. PROBLEM FORMULATION

A. Theoretical best approximation

the

Let X be a random variable or a stationary stochastie pr

cess, X = X(t), with the sample space an interval [6f and
the probability density functiono(x). Let f(x) be an un-



known deterministic function defined on the samgpace of

X. Function f(x), although unknown, may be observed

through the stochastic process
Y = f(X). (1)
The objective is to find an approximation é{x) by using a

linear combination of some basis functions, shawhig 1(a).
Let @(x) be arow vector of lengtM given by

®() =[a(¥, (X4 (X, @)

where g (x), j =1,...M , are linearly independent basis func-

tions [17] defined in the sample space Xf. Any function in
the subspace spanned #fx) can be written as
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Fig 1 (a) Approximation off (. (b) Stochastic approximation

B. Stochastic approximation

In (3), variableu is used to denote both a function and a col- Let X‘,k=1,2,.., be a sequence of sets of samples drawn

umn vector, but no confusion should arise becaugedlear
from the context whetheu refers to a function or a vector.
The approximation problem is then formulated adifig a
vector 0 such that the functiorb(x) i best approximates
f(X) . The best approximation is in the sense as meddyre
the expected value of the squares of the residdate pre-
cisely, for any functiong(x), let E(J!= E, ([} be the expecta-

tion function defined as

E(9(X) = [ A 3p( Y o> (4)
Then, the best approximatiah is defined by
G =argminE (@ (X )u- f(X)f). (5)

uooM
From (5), it can be easily shown that the best@apration
(4 is the solution to the linear equation

Au= Db, (6)
where matrixA and vectorb are given by
b=[h,..h, T, b=Eg 0, i=1..M, @

A=[alyw, 8 = E@g), i j=1...M.

The solution( to (6) provides the theoretical best approx-

imation functionl(X) which is given by

() =P(Y0=>" Yg (3. (8)

Finding the solution to (6) would otherwise be iflvif it
were not for the fact that the right hand sidle give in (7),
cannot be computed becau$éx) is not known explicitly. In
practice, (6) is approximated by a sequence of tans

which are computed by using samples from the s&ighpro-
cess X, hence giving rise to the stochastic approximation

from X as

X =[x, %100, k=1,2,..., 9)
That is, for eactk =1,2,..,, there areN samples drawn from
X, and they are given by, n=1,2,...,N. Then the values
of the function f (x) can be observed at the samples, and as-
suming no noise, they are given by

yi=f(x), n=1,...,N,k=12,.. (20)

The stochastic approximation is an iterative precas

which a new approximation/* is computed from previous

u“" and the new observatioy of (10). The new coefficient

u® is updated fromu*™" so that the functiond(x) 1 best

matchesf (x) when evaluated at the sample sét

D)W = f(X)=y, n=1,..,N. (11)
The new coefficient can be expressed as
u“ = Ut H AU (12)

If we define matrix®, as ®(x) evaluated at the samples, i.e.,
d, :[(pj ()gk)] oo™, (13)

i=1,..N ,j=1,.M
and substitute (12) into (11), the upddte’ is given by
®,Au* =¥, wherer* =y*-o, u*". (14)

Equations (12) and (14) define the stochastic appration
as an iterative process. At sté&pof the iteration, a set oN
samples,x*, are drawn to compute residudi in (14). Then
the update Au*, is determined by requiring it to satisfy (14).
The new coefficient® is computed from (12), and the itera-
tion then proceeds to the next step. This procedtustrated
in Fig 1(b).
C. Least squares solution

One implementation of the stochastic approximafii) is
to use the least squares solution in (14), whichars
overdetermined system if the number of sampleargel than
the number of basis functions, i.e., N >M . The least
squares solution to (14) is given by

AAUS = b= AU,

where A andb* are given by

(15)



—hTeh —rak K _ N examples. This also serves as a motivation forgomditioned
A= O = (3l 3 =1/ N2, @(NF(X), (16) meth(?d to be introduced later. e

b* = opy* =[h.. ji17 b=/ N)z:ﬂq( DY an A. Polynomial approximation

Note that for any set of samples, (16) and (17) can be  |n polynomial approximations, the basis functiohéx) are

considered as approximations &f and b in (7). It is always made of polynomials, or orthogonal polynomials [18) that
assumed that the sets of sampiés are chosen properly so @ (X) is a polynomial of degreq . For each set of samples
that matrix A is symmetric and positive definite, i.e., XK =1,..., we want to find coefficients* so that the poly-

T T
Ac = A X A x>0, forall x= 0. (18) nomial ®(x) " matches the observed output of the function

Therefore, the updatau* can be found from (15), and (12) y* when evaluated at the samples. By following toetsastic

's now equivalent to process of Fig 1(b) as described before, the awveffis may

k — A1
u = A’ 19 pe computed from (12) and (15), or equivalently)(19
D. Challenges As is We.II known, |(the coefficients thus computedults ir?
The following are a few issues with using (19) fe tsto- a polynomial ®(x)fur that may behave badly at the points
chastic approximation process of Fig 1(b). other than the sampleg‘ . For example, as will be shown in

1.Matrix A , although symmetric and positive definite, mayhe simulation section, if the interval of approxition is [0,1],
be ill-conditioned. That is, the condition numbesich is and if the largest sample is significantly lessntiia then the

. . k . .
defined as the ratio of the largest eigenvalue tiversmall- derivative of ®(x)[" may be very large in the interval be-

est eigenvalue, is very large tween the largest sample and 1, i.e.,

K(A) 2 A/ Ay > 1. (20) 19 o @) 1> 1 20(max(x},1]. 1)
A large condition makes solution of (15) or Y $@nsitive to dx o ] " )
noise and round-off errors. If iterative methoduied, the !N Such a case, it is desirable to place a canstom the

convergence may be slow due to large condition rumb approximating polynomial so that it has a smallidgive.
Such a constraint may be constructed as followsst,Five

) select a set of samples where the derivative litevaluated.
samplesx‘,n=1,...,N. At the points other than these sam- z O(max{x},], i=1,...,N.. (22)

2.Solution u* of (19) is only the best approximation ovisr

H k —
ples, the functionu®(x) = ®(Y LU may behave badly. For Then we impose the condition that the change invaive

example, at a poinz >max{X}, the value®(z)[if may from one sample set to another be zero at thetsdlpoints:
n

be unfavorably large. iqa(;) AU =0, or
3.The dimension ofA, may be large, i.e.M > 1, in which dx (23)

d X
case, computingA*b, may be too costly in both the num- DAU* =0, where Dza(fb ¢ )=[¢J’ @ j gogN™

N xM
ber of operations and memory requirement. ! ) L
. P K e . Now to find the constrained approximation, the updau®
4.Solutionsu® of (19) do not converge to the best approximayg required not only to match the observed functiatues as

tion G. In fact, if the sets of samples are drawn random- given in (14), but also to satisfy the zero deiiatondition

ly and independently for eack, then all solutions are sta- of (23). A new equation foAu* is obtained when constraint
tistically the same, and no matter how many sarsete are (23) is combined with the original equation (14 fallows
used, the solution will not get any better. [®, DI Ak =[r* 0]". (24)

5.Even if solutionsu“ of (19) are averaged, it is still not clearysing the least squares solution for (24), the npdated co-
whether the average converges diq because the limit efficients is given by

Lig(l/K)ZleAglbk may not equalA™b, or even exist, U =u+(A+ D' Db - AUT. (25)
More generally, we introduce a paramejer 0 to control

the extent of the constraint in (23), and a dagpisctor

Ill.  CONSTRAINED STOCHASTIC APPROXIMATION # >0 to control the rate of the update so that (25pbes

In many applications, the approximatiofi computed from u = U+ u(A +yDTD)(B - AUTY. (26)
a particular set of samples may exhibit undesiraeleaviors ~ Then a question arises: how are coefficientscomputed
and it is necessary to impose additional conssaintthe ap- from the constrained update (26) related to the approxi-
proximation in order to alleviate the problem. Faample, it mation G defined in (5)?
may be desirable to constrain the solution sottiethange in
derivatives from one sample set to anther is s(sak below).
In this section, we discuss how the constraints lmarintro-
duced into the stochastic approximation proces$ witfew

under reasonable assumptions.

B. Approximation by piece-wise constant

A Look-up-table (LUT) can be used to representrection.
To use LUT, the sample spaceis first discretized into small
disjoint intervals as



M .
r=U.r ri=aexli=t.m.

Then an LUT is an array =[u,,...,4, ' which can be used to
represent a piecewise constant functgitx) defined by
g,(¥ =u, if xOr,.

(27)

(28)

The basis functions for piecewise functions aregiky

1, xdr;
() =q (¥ ={ L i=1... M. (29)

0, x0Or,

When using an LUT, the number of basis functiokss, is
usually very large, e.g.M =1024 if a 10 bit LUT is used.
Similar to the polynomial approximation, for a giveet of
samplesx®, an LUT u" can be computed from (12) and (15)
However, even if the number of samplé$, is large, there is
no guarantee that the samples fall into each aerdyesubin-
terval I';, and therefore, for any sample s€t, there may
exist some subintervalg; into which none of the samples in

X falls. Consequently, the matrisp, in (14) may not have
the full rank. Indeed, if none of the samples bgto I,

then columnj of matrix ®, is zero. That is, coefficienﬁu;‘

is not involved in the equation (14) or (15), ahdrefore, (14)

or (15) is underdetermined. In order to find a 8ol addi-

tional constraints are needed. One constraint eaifob exam-

ple, the requirement that the update to the LU3ni®oth, so
that the difference im\u® is small, i.e.,

AuS =AU, =0,j=2,..M. (30)

Equation (30) suggests the following constrairbécused

-1 1

DAu* =0, whereD = ) (31)

11 (M -1jxM

Applying constraint (31) to (14) leads to (24), ahe up-

date (26) can be used for its least squares solttidind the
LUT u“ which exhibits smoothness.

C. Functions with memory

Some functions exhibit memory effect. This happeften
in communication systems in which the random vaeiahod-
els a time-varying signal through a channel wittmrogy, and
the set of samples are the signal sampled at tistances of
equal interval. As an example, we consider a famctf (x)
that has a memory of two time intervals, although analysis
applies to cases with any memory delays. In thmele,
f(x,) may be best approximated by a function of the form

u(x,) + V0% ) + W) - (32)
Each of the functionsi(x), (X, W ¥ is a linear combination
of the same basis functiorg(x) , i.e.,

u(>) =P (3=P( 30y W x=>( X\, (33)

for some vectorsu,v,w. The basis functions may be either

polynomials or piecewise constant functions, butha fol-
lowing discussion, the piecewise constant functiars used
because the resulting linear equation has a langergion
worthy paying more attention.

In the stochastic process of Fig 1(b), for giveeftioients
K1V W, the new coefficients are found by

[k, v, WA T =[ U, v WS THA WA VA W T, (34)
where the updatdAu®, AV¢,AwW]" is computed so that the
new approximating function matches the obserddd) . As
before, the update is to satisfy

DAU + DLAV + DPAW = ¥,
where®! = p & ).y yjon 0O ,p=10,1,2

[u

(39)

A constraint may be imposed on each/f, AV¢, AW, so
equation (35) combined with the constraints becomes
o, P DY
D
W (36)
JyD AW

JyD

In (36), \/;_/D represents the operator for constraint, such as
that given in (31). Note that the paramejeris introduced in

(36) to control the extent of the constraint. Sitbshg the
least squares solution of (36) into (34), the neefficients
are given by

[uk Vk V\)(] T :[ ukfl Vlﬁl v\)ﬁﬂ T (37)
+H(A+yC) o rF dre o
In (37), A, andC are given by
D'D
— iT j —_ \T
A= [q)k q)Jk:|i:0,1,2,j=0,1,2' C= D' D -(38)
D'D

As noted before, for piecewise constant basis fanst ma-
trix A may be singular if the sampled are not drawn from

all subintervalsl™;. On the other hand, for any>0, the

matrix A +yC becomes nonsingular iD is the difference

operator defined in (31). That is, adding the c@ist makes
an ill-posed problem well-posed.

Note that each ofp{"®P, p=0,1,2, is a diagonal matrix of
dimension M xM , because®(x) is given by the piecewise
constant basis functions of (29). Howevéy, of (38) is not a
diagonal matrix. Also the dimension &, is very large; it is
3M x3M , having more than nine million entries if 10 bit
LUTs are used. On the other hand, the matéx is a
tridiagonal matrix if the smoothness constrain(3f) is used.

Therefore, it is not desirable to havg, involved in (37)
because computing the last term in (37) may belycsstce
A is large and non-sparse. Instead Af, we want to use a
simpler matrix B, which approximatesA, , in (37) to com-
pute the update as
[uk W V\}<]T = Ul et v\)eJ] T

4 (39)
+(B+yC) [@®) " oTr* ofTrT



For example,B can be the diagonal matrix ok given in
(7), i.e., B=diag( A). Note thatA of (7) is computable be-

cause it does not involve the unknown functib(x) .

D. Canonical form for constrained approximation

The above three examples show that in a constrasted
chastic approximation process of Fig 1(b), the apjpnation
can be computed by the iterative process given by

Uk = U+ p(B+y QT - AUTY). (40)
In (40), 4 >0,y >0 are some positive constantB, is a ma-
trix that is an approximation oy and C is a symmetric
positive semi-definite matrix related to the coastt. Alt-
hough B depends ork in some previous examples, we re

quire B to be independent df in the canonical form (40) for
the reasons to become clear in the next section.

In the rest of the paper, we will analyze haiv is related
to the theoretical best approximatign of (5), and in particu-

lar, under what condition converges tai.
We note that in (40), the matri® is introduced to replace

A in computing Au®, in order to reduce the complexity in-

volved in operating onA . The motivation for matrix
yC= \/T/DT D is to impose a constraint

JyDAuk =0, (41)

on the updateAu®. Although the constraint (41) does affect

the intermediate solutioru® by, for example, introducing

canonical form of the constrained approximatior4dr) with
B=1,y=0. (44)
We will show in a later section that, under certaondi-
tions, the approximation* computed from (43) converges to
(. However, the rate of convergence depends on dhelic
tion numberkx(A) of A in (7); the larger the condition num-
ber is, the slower the convergence is. This iseidf A is
replaced byA in (43), which becomes the well studied classic
gradient method. The convergence rate can be iredrdoy
the technique of preconditioning.
B. Preconditioned stochastic gradient method (PSGM)

We now apply preconditioning to the quadratic fimrctin
(42). Let B,C be two symmetricM xM matrices. If B is

positive semi-definite, an€ is positive definite, then for any
y>0, B+yC is positive definite. Define new variable
Y=(B+yC)™". (45)
Then minimizing (42) is equivalent to minimizingetfiollow-
ing quadratic form
HY (w) = (@, ¥"°w- y)T(® W2 w- ), w= W 2L, (46)
The stochastic gradient method applied to (46)Ygiel

W= W g WY - AWTRWEY, g >0, (47)
Multiplying W2 from the left, (47) becomes
U =uT g (BHyQ (B - AUT), 4 >0, (48)

Equation (48) is the preconditioned stochastic igrad

method, and the matrixB+yC is said to be the

as we will show,u* converges tol regardless of the con-
straint. Because the constraint (41) does not taffex final
limit, it is called soft constraint.

IV. PRECONDITIONEDSTOCHASTIC GRADIENT METHOD

A. Stochastic gradient method

The coefficient given in (19) is the solution whigtinimiz-
es the following quadratic form

He(U) = (@, u- y)(@,u- ¥), (42)
where ®, is the matrix defined in (13), ang is the observa-
tion given in (10).

The stochastic gradient method [1] is an iterathethod in
which for a given approximation*™, the new approximation
is obtained by marching in the opposite directibmthe gradi-
ent of the quadratic fornd, (u) in (42). More precisely, giv-

en a step sizey, >0, u“ is computed from
U = U g (B - AU, g, > 0. (43)
Equation (43) is said to be stochastic gradienthoetbe-
cause it is not the classic gradient method formating (19).
A classic gradient method for (19) is an iteratimethod in
which each step is defined by the same ma#jx In the sto-
chastic gradient method of (43), however, the matA

changes with each step, as shown in Fig 1(b).
The stochastic gradient method (43) is a specisg cd the

constrained approximation (40) is equivalent to pinecondi-
tioned gradient method (48), B, C do not depend ok .

It is important to point out that although, appears in (40)

and (48), it needs not be explicitly computed oretl. All that
is needed is a means for computiAgu for a given vectowu .

On the other hand, the matricés C are needed explicitly,
but they are normally chosen to be sparse matvitesh can
be efficiently manipulated. Furthermore, sinBeC are inde-

pendent ofk, the computation ofB+ yC)™r* can be im-
plemented efficiently by, e.g., performing an Littfarization
of B+yC once for allk, and then for eactk, the forward
and backward substitutions are performedrbn

Next, let||} be the Frobenius norm of a matrix. Define

d=[I(B+yC)" k. (49)

C. Requirement on preconditioning matrix

It is easy to see that“ from (48) does not converge to
U even for the seemingly best choicesgf/,B,C:
“=ly=0B=A. (50)
Indeed, substitution of (50) into (48) results 19). If sample
setsx* are drawn independently and identically, and sthee
solution in (19) only depends on the currently dissamples,
all u* are expected to have the same statistics, andftmer
it is not expected that* would get closer tai as k increas-



es. Furthermore, it is not known what the expectatle For completeness, we give below an example of symene
E(u*) = E(A*R) is without explicitly knowing the distribu- positive definite matriceA and B which do not meet condi-
tion (54) (i.e., not evenB is a good approximation oA ):

tion of the random samples*. This observation provides a
L . _ 1 2 21 L1
heuristic for B to be a constant matrix independent of itera- A= 5 & ,B= [1 q B =-1< 0. (55)

tion k, which will be assumed in the rest of this paper.

A purpose of using the preconditioner is such thatitera-
tion in (48) has faster convergence. Intuitivefy A, in (48) is V. CONVERGENCEANALYSIS
replaced byA of (7), the convergence rate is determined by In this section, we make formal assumptions on oand
the condition number of the preconditioned systamg to Variables, and analyze convergence of PSGM. We shitiw

achieve fast convergence, the condition numbedsi¢e be that under some simple assumptions, PSGM conveogtse
small, i.e., theoretical best approximation.

k((B+yC)' A=1. (51)  A. Markov process
Equation (51) implies, since we can control theapaater of
constrainty, making it as small as desired, titneeds to be ) .
nty . I g I ! . , Markov process defined by stochastic procedsesand A ,

a good approximation ofA. However, what does it precisely

mean by a good approximation, and perhaps moreafaed- which are in turn defined by random samples drasemfthe
tally, what is the most general condition &n so that PSGM Stochastic procesX(t) .

converges? ) o Let sample sek* be drawn at time instancé$,n=1,...,N
It turns ouF that a rather general requirementBois given . We assume that two different sets of samplesdeaan at
by the following . L :
two different time intervals, i.e.,

BX)" Ax>0, for all x with :
(BX)" Ax or all xwith | x| - (52) t“O[t5,t¢], n=1,..,N, andt{ <t for allk > 0. (56)
Equation (52) can be interpreted as: if for anyt uactor x

, the angle between the directiods and Bx is less than 90 Then b and A are formally defined as

The approximationu® in (48) can be considered to be a

de rees, therB is a good approximation oA. Another in- - -
tergretation of (52) isgthat mngtriB is positive definite rela- (T = N)Zi:l%)( XD 1O, 57
tive to matrix A. Indeed, requirement (52) is equivalentBo A =[qf]MXM, g =@ N)ZnNzlq)( XN g (X 1).
being positive definite in the inner product deirtey From definition (57) and (7), it is easy to verifyat

<X y>,= Yy Ax (53) E(D)=b E(A)= A (58)

It can be shown that (52) is equivalent to theofslhg With the definition of random time sampling in (58)e can

TR1 H .

x B Ax>0, forall xwith [[x][F . (54)  assume that each di* and A is an independent and identi-
Requirement (54) is met for at least two matricEer cally distributed (i.i.d.) random process
=1, the identity matrix, (54) becomeg Ax>0, which is Next, we introduce new random variables which heede-

satisfied becausé\ is positive definite. This choice, however

y - . k .
does not provide an improved convergence rate Hersto- viations ofb™ and A, from their means as

chastic gradient method, but it can be an impleatémt for 6“=b“-b Q, = A-A (59)

imposing a soft constraint represented gy . With W defined by (45), the Markov process (48) can now
For B= A, (54) becomes<" x>0, which is trivially satis- be written in terms o#* and Q, as

fied for unit vectorx. This would be the ideal choice for the U“ = UL+ 4, W(b- AU + WO -Q, UY . (60)

preconditioner if A has favorable properties such as being

sparse. Note that using preconditior®2= A in the precondi- B. Assumptions
tioned stochastic method of (48) is different frgpiving the
theoretical equation (6). Iteration (48) witB= A can be
computed if the probability density function is kmm but from those onb“ and A . Additionally, we assume that the

vector b of (6) cannot be computed as previously stated- Fugoyariances of* and Q, exist. Write matrixQ, in columns
thermore, the solution from (48) is also different from (19) and concatenate all columns into a long vectorefing

which is the result of usin@ = A and y=0. veq(Q) = ™ - T ,wj is columnj of, . (61)
In practice, A may be such that it is costly to compute _ . _ T
(A+yC)™u, henceB = A may be a poor choice in terms of | € covariance of), is defined asE(vec(Q, ) vedQ,)

complexity. Even if orthogonal basis functions ased, as we ~ We now summarize the assumptions and propertie§*of
discussed in a previous sectioA, is not a diagonal matrix if and Q, in the following:

the memory effect is included in the approximatibnsuch a

case, the diagonal oA may be used for preconditioning as

B=diag( A.

Most of the assumptions 08" and Q, may be derived



1.6 arei.i.d. withE @ ¥ 0;
2.Q, are symmetric, i.i.d. witk X, 3 O0;
3. Following covariances exist
0% = E €67 )N
O50 21E (vefQ,) ve@,)" I
T5e = |E (vefQ, )87 )l ;

4.u*" and its products are pair-wise indepemni

(62)

of 8 andQ, and their products.

In (62), ||d} denotes the Frobenius norm of a matrix. Equa-

tion (62) represents the only assumptions we vaédon the

random processe8‘ and Q, .

Note that covariancesy,, 02, ,04

of k because the variable8 and Q, are i.i.d. However,

each covariance is a function of the sample site,as shown
in (57). Thanks to the law of large numbers, (5#plies that
each covariance can be made arbitrarily smalldfrtmber of
samplesN is large enough.

In (62), assumptions 1-3 are self-explanatory, dggump-

tion 4, regarding the independence wf* with the random

IEE) s I1Eu WA IE € ).
An estimate for the first factor can be found dkofes.
Lemma 1.
1) There exists g, >0 such that

Awn = Min minx" (B+yC)™ Ax> 0.
Osysyo IKIFL
2) Define
/]maxé max ”B+VC)1A Izl z-é/]max Amin '

osy<y,

o {/\max(l—\/l— royr, if r21

Avax! 2, otherwise
A /]min - _{

(66)

(67)

(68)

1(ih,.,.), if 721
8(2-1)/(3A,,,), otherwise

SRR

in (62) are independent Then the following holds for ab < y< , and 0<y, < 4,:

1= B+yCY Al | A | (69)

The key result of Lemma 1 is the existenceypf 1, and

A for (69) to hold. The variables defined in (68 &aome

specific choices to make (69) true, but other diédins are
possible too. In particular, it is always possitiehoose these
parameters such thdt< gy A <1. For example, in (68) when

r>1, we haveyd < yA=1-(1-r?)?< 1.

variables 6 and Q, , and their products, warrants some dis- 1 follows from (66) and (69) that

cussion. Referring to Fig 1(b), vectou*™ is computed by

using samples™ drawn in the previous step—1. The out-

IEE@) I IE@)IM], T4 .

which leads to the following result.

(70)

come of u“™* will not influence in any way how the current setTheorem 1.
of samplesx* is drawn. The variable§* and Q, are solely There existy, >0 and 4, >0 such that if the sequence

dependent on the current sample sef the unknown function < U < My SatiSﬁeSZ:-lﬂk = o0, then

f and the basis function® , and therefore the outcome of .

lim E(e) =0, forall 0<y<y,.
) . S Theorem 1 shows that the mean of preconditionechats
outcome of previously computed™, which justifies the as- ¢ gradient iteration converges to the theoretimzdt approx-
sumption. imation. The convergence rate is determined byfahtors in

All the results in the rest of this section will based on the (70), i.e., |1- 14 A |k =1,2,... The smaller the factors are the

assumptions (54) orB, and (62) ond“ and Q, . Further- fast the convergence is. Lemma 1 provides somglitsinto
more, we will use||]} to denote the matrix norm that is in-the size of these factors. In most practical proisiee.g., if

(71)
6" and Q,, and their products, will not be affected by the

duced by the’,-norm of vectors [14]. If||[]| is used for a

matrix, it is meant to be the Frobenius norm byad#&f For
vectors, /, -norm is always used throughout this paper.

The proofs for all lemmas and theorems of thisisecire
postponed to Appendix.

C. Mean analysis
The error inu® is defined in terms ofi of (5) as

e =u-1. (63)
Substituting (60) into (63), it is easy to showttha
& =(1-pW(A+Q ) e +uW(E -Q, 0. (64)

Taking the mean of (64), and noting thelt® and Q, are
independent and th&(6*) = E(Q,) =0, we have
E(e) =(1-#YAEE), (65)

which leads to following estimate for the norm loé tmean

matrix (B+yC)™ A is symmetric positive definite, we have
r21 in (68). Whenr 21 and if y4 =4, in Lemma 1, the
factors in (70) are given by

L- A =1-pA =1- -V 17172 )=V k17 (72)

In the following, we will illustrate the size of ZY by a few
examples. In each of the following examplgs,is a fixed
parameter, and Lemma 1 still holds whdp,, and A _,, are
defined for the fixedy, i.e., whenA_,, and A, are defined

without Omin in (67) andomax in (68), respectively, which is
<V<ho <V<ho

what we will assume in the examples. In all exampte>1.
First consider the case witB = A y=0. Note that this so-

lution is different from (19) which can be consigéras the

solution by settingB=A,, y=0. It follows from (67) and

(68), Ay =Arax =T =L ,=1, and thus, the value in (72) is



0. This implies the mean at each step of the itrat zero

when 4 =, =1. Therefore, this provides fastest conver-

gence of the mean.

Next, considerB=1, y=0. In this case,,, and A_,,
are the smallest and the largest eigenvalueé pfespective-
ly, and 7=« =cond(A), the condition number ofA. The

value of (72) is(1—« )", which shows that the convergence

rate is related to the condition numberof A. The largerx
is, the slower the convergence is.

Another case is the method of diagonal loading [it9]
which B=A C =1, y>0. In this case, the value of (72) is

Jl‘ (L+ P, (A))*
L+ P ()
If y is small, this is similar to the case Bf= A y=0, i.e.,
the factors of (72) are close to zero Jffis large, this is simi-
lar to the case oB=1, y=0, i.e., the factors of (72) are

A(A) = eigenvalue oA.

close to(1-«2)"2.

D. Mean-square analysis

Next, we consider the variance of the error, whgtde-
fined as the autocorrelation of the errB(e &) . By using

€ in (64) , the variance can be found as follows.
Lemma 2.

E(eeT)=(1-uWA R & E)( Fy W)
+PWE((B - Q ) (8" - QD) )W
+HPWE(Q, &7 TQ )W
+2WE(Q, 79T )W
~1PWE(Q, 71U Q)W
HEWE(E (67T Q)W
~HRVEQ, U6 Q).

We now need to find a bound for the norm of the RHS

(73) in terms of the norm oE(e) or E(&€™). The first

term on the RHS is already an expressionggg* &), and

(73)

the second term does not invole . The remaining five
terms need work and they can be estimated usingpttosv-
ing result.
Lemma 3.
Let P,Q be two random matrices andw be two random
vectors. Ifv and w and their products are independent Pf
and Q and their products, then

IE(PYW QL= [[EW )|l |IE (vecP )vecQ) ).  (74)

Now each of the last five terms on the RHS of (@&) be
written in the form of (74). For example, for theufth term
on the RHS of (73)

Q, e =Q, W Q where

w=[1,0,..,0f OO" ,Q=[6,0,.. .0 OO™M,
Therefore, since™ andw are independent o2, andQ in
(75), Lemma 3 leads to

(75)

IEQE7E) IFIEQ W QY
Be'wW M B (ve( ex(Q)Ik (76)
B )IE (v 6y Al

<05, B ).
Similarly, applying (74) to the third term on thédR of (73),
we find

IN

IN

|IEQ e eMQ, ) kaZ, IEEE ). (77)
In (76) and (77), the variableg,, and og,, are defined in
(62). For the last term on the RHS of (73)
IEQ Q) k< og, IEQE™T )Y
<05 Al IAIET 1D

Working out all the terms in (73), we have the daling re-
sult.

Lemma 4.

If the condition of Lemma 1 is met, then

IEEET) [k (-4 § + 1o, ) IIEEETT )]
+uid® G+ a5, W Hodo U °II)
+ pd® 5 B Hol, VB I
In above,d is given by (49). By applying Lemma 4, we
can show the following result.

Lemma 5.
There exisy, >0,4, > 0,4, > 0,0 > Csuch that if

0<y, < i, and 0< y<y, then for alk >0,
IEEET) k< IE@ ENU] . Eah )

Finally, the convergence of the variance is givelot.
Theorem 2.

There exisy, >0 and [, >0 such that if the sequence

0< 4 < fi, satisfiesy’”_ p4, =co,and > " 4 <o, then
lim E(¢e”) =0, forall 0O<y<y,. (81)

(78)

(79)

(80)

There exists at least one sequengefor which the condi-
tion of Theorem 2 is satisfied. Indeed, the seqeeren be
defined by
_ 1
(k=1 + 5
By using the sequence (82), both Theorem 1 an Ened

hold, and therefore, the mean of converges tdi, and the
mean of error squared converges to zero. In thisesewe

conclude thau® converges tdi.
The rate of convergence of mean squB(e& €") depends

on the two terms on the RHS of (80). The first tésreame as
the convergence rate of the mean. The second terrthe

RHS of (80) depends op, and covariancew,,o;

m k=12,.. (82)

00 90q !ngn .
Small values for these variables make the iteraflioctuates
less. Note that the covariances,,d’,,02 can be made ar-
bitrarily small by using large sample siZ¢ in (57). This



leads to the conclusion that the larger sample Bizehe less
fluctuation is in the iteration.

VI. SIMULATION

In this section, we present results from two siriafacas-
es, one for estimating the camera response fun¢G&F) in
image processing and the other for adaptive chasunedhliza-
tion in data communications. These simulations ooty
demonstrate the effects of using constraints in 3@t also
support the analysis of the previous sections.

A. Approximation of camera response function

In image processing, camera response functionaarkn-
ear functions which introduce artifacts such asrbig in im-
ages, and in order to remove or reduce such asjfads of-
ten necessary to estimate CRF [6][7]. In this satiah, we
use a gamma correction to model the CRF and estiinby a
polynomial. The random process is modeled by a §ans
mixture model which is a common model for pixelsrofges.
More specifically, the CRF is assumed to be given b

f(x)=x,y=1/55. (83)

Image pixels are normalized to inter@,1], and they are

modeled by two component Gaussian mixture with pbdty
density function (PDF) given by

p(x) = (,\2m) e 19 4 (g [yt gk 1ot .
# =.3,0,= .01y, = .6g,= .007.

the update be smooth, resulting in the followingapaeters
used in the simulation.

M =10,N =1000B=1 C=D'D y= .02, = .01 (©5)

U, = 1, if k<1000,4, = (k-1000)" ,ifk > 1000.

In (85), D is the difference operator of (31). At each step
1000 random samples are created from (84), and (483esl
to computeu® . A total of 500,000 steps are performed and
the resultingu® is shown in Fig 2. As is evident, the con-
strainedu® has smaller deviation from the CRF close to the
right end of the interval. This demonstrates theafof the
constrained approximation.

The iteration is performed with a large number tefps to
show the convergence history of PSMG, as presentE) 3,
which show the relative errofju* -G |} |[0 | as a function of
the iteration number. As is evident, the mean eféfror de-
creases in the iteration, although there are fatatns in the
errors themselves. This is consistent with the ya@mslof the
previous section.

Note that in Fig 2, the computad still differs noticeably

from the theoreticall, especially at the right end of the inter-
val (near 1). This is due to the following two reas. First, the
errors in our analysis are measured by the expedéges,

E(€) and E(¢ &), both are weighted by the density func-
tion p of (84), which is very small near 1. Consequertithg,
seemingly large error in Fig 2 is actually very #mahen

The basis functionsP(x) are chosen to be orthogonal pol-measured by the expected values, as is evidengig.FSec-

ynomials of degree less than 10, with respect t& BDden in
(84). No noise is explicitly introduced in the silation.

The theoretical best approximatianis computed from (6)
by using a large number, 50 million, of samples,, iabout 5
images of 10 megapixels each, and it is shown egltited
curve in Fig 2. As is expected, the theoreticak lapproxima-
tion derivates from the CRF significantly at thght end of
the interval, because there are very few samplas the end
of the interval. Constrained approximation can beduto alle-
viate this problem.

— function f(z) = 755

theoretic &

———constrained u¥

o UI1 U‘2 D.‘3 DIA Ug.;S El.‘Ev Dli’ UIB D.‘B 1
Fig 2 Constrained approximation of CRF. Magentédsalrve is the
assumed model for CRF, which is to be approximaféa: black
dotted curve is the theoretical best approximatenobtained by
using 5 million samples. Blue dashed curve is thpreximation
computed from PSGM.

In the simulation, constraint is implemented by REGf
(48). The constraint is the requirement that thevdéve of

ondly, due to round-off errors in simulation, theoes E(€")

and E(& €7) will be bounded below by a nonzero value de-
termined by the machine epsilon of floating poipermations,
and consequentially* may never be the same @so matter
how many iterations are performed.

-B5.2402

-B5.2402

-B5.2403

(dB)

-69.2403

-69.2403

uP i
]

-69.2403

-69.2403

-68.2403

relative error

-68.2403

-68.2403

"o 1000 2000 4.98 AIBB 5

(a) (b) x10°
Fig 3 Errors in the iteration. (a) Steps 1 to 2,000e update factor
M, is constant before step 1000, and it is decreasfieg step 1000.

Although the relative error appears to be consiftet step 1000, it is
actually decreasing. (b) Steps 498,000 to 500,06%&M

Finally, we point out that errou*(x)— f(X) may not be a

good indication of how wellu* converges tol because the
error of the theoretical best approximation itséifx) — f(X),
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may be large becausk(x) may not be well approximated by unknown. Therefore, the total number of unknowns tfos

any combination of the basis functiof®,} .

B. Channel equalization in data communication

In data communication using twisted pair cablesada
transmitted through a channel which introducesodisin into
the transmitted data. In this simulation, data framexperi-
mental data transmission system with an RF amplifieised
[20]. The simulation setup is shown in Fig 4.

simulation is M =5120. These unknowns are the entries of
the vectoru as discussed in the previous sections, and they
will be computed by the PSGM of (48).

Transmitted and received data samples

The transmitted and received data are sampleccatte of
1GHz [20]. The samples are real valued. A largeosetam-

ples is captured for transmitted and received dettaand y°.

In Fig 4, function f represents the channel of the twistedEach of them containdl, = 26000C samples. The transmitted

pair cable and RF amplifier. The receiver equalizeto per-

and received samples are synchronized. The sangrkes

form an inversion of the channdl. In the adaptive equaliza- scaled to the interveh-1,1].

tion, the PSGM is used to approximate the inverkehe
channel. Note that while the equalizer (the bloaknad “RX

EQ” in Fig 4) itself must be operating in real-time, the adapt

tion algorithm (the block named “find* ") does not need to
be performed real-time, although fast speed isepred. A
small amount, infrequently captured transmittecadand the
corresponding synchronized received data are dlaila the
adaptation algorithm.

In this simulation, since the transmitted and reeeidata
are captured experimentally, the functidn representing the

channel is unknown. Furthermore, the system isigeto that
there is a fairly large amount of noise and digortin the
channel.

The channel is nonlinear and has a memory of a ey
time duration covering hundreds to a thousand sasnflhe
memory effect may be largely taken care of by admfilter,
and therefore, the strategy used in this simulatdo perform
an adaptive linear filter followed by a nonlineangpensation.
Although the PSGM is also used for the linear ffjlthe adap-
tive linear filter techniques are well studied sd@sinot of the
interest of this paper. In this rest of this papex,describe the
details of nonlinear compensation which follows theear
filter.

RXEQ

() !

f()

channel

Fig 4 Adaptive channel equalization in data comroation. The
receiver equalizer is implemented by the PSGM.

Basis functions

After the linear filter, the memory effect may benldled by
using a small number of taps. In this simulatidme basis
functions are based on 5-tap piecewise constawtifins. The
nonlinear equalizer is implemented by the functioren by

2
D(%) =2 %@ (%) (86)
Each of @' (x),t=
represented by a look-up-table (LUT) of 10 bitsafis, there

At each stepk >0 of the iteration, a set of transmitted
samplesx* and a set of received samplg$ are selected

%rom x° and y®, respectively. Each set of and y* con-

tains consecutive time domain samples, but steots & ran-
dom location inx° and y°. The total number of samples in

each of x* and y* is N =1000.

Autocorrelation matrixA

The set of the received samples is used to contpatauto-
correlation matrixA of (7). Note that the matrix is not needed
in the PSGM process, but it is used for discusgiorposes.
Although the definition ofA requires the probability density
function, for the purpose of this simulation, itagproximated
by (16) by using the large set of samplgs$,. As previously
pointed out, even though the basis functions focheaf
@' (x),t=-2,...,2 are orthogonal, matrix\ is not a diagonal
matrix because of memory taps. In fact, with thegas cap-

tured, A has the sparsity structure, which shows the lonati
of the nonzero entries of the matrix, as shownigng=

500

@/ eN
® S/0
/e @/
ML VE BN |
e/

0 000 2000 3000
columm number

Fig 5 Sparsity of the autocorrelation mati. Each dot indicates a
nonzero entry in the matrix. The matrix is compufezin (16) by
using 260000 received samples with the 5-tap pimsgewonstant
functions of 10 bits. The dimension of the mat&»5i120x 512(.
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"
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B 2000
S 2500
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4000 5000

Preconditioning matrixs
The main diagonal ofA is used as the preconditioner in
PSGM, i.e.,B=diag( A . The use of the preconditioner helps

to speed up the convergence by reducing the efeectondi-
tion number of PSGM. As the condition number f&fis very

—2,...,2, is a piecewise constant functionjarge, Matlab has difficulty to compute it accutatdor

M >80 (corresponding to 5-tap 4bit LUTS). To demonstrate

used to compute the eigenvaluesAfand B™A, and the re-



sults are given below:
-1
Amax(A80<8C) =5.6x 1@ ,/1 ma)( B_l A8@ 83 -
Amin (A80< 80) /1 min( B AB@ 8()
As shown in (87), the preconditioning reduces thadition
number of the system by two orders of magnitude.

7.% 10, (87)

ConstraintC

Without using constraints, the computed LUDS(x) may
be very jittery. This may be the case even whemthaber of
samples is large. For example, when (19) is solwedising
N, =26000C samples ofx’ and y°, the result is shown in
Fig 6 (a). As is evident, the LUTs are discontinsjoand
therefore, merely using a large number of samptess chot
necessarily provide smoothness in the LUTSs.

This issue can be resolved by using the smoothoess

11

that in this simulation, the update factpy =.1 is a constant
through the simulation.

At the last stepk =1000C, the computed LUTs are shown
in of Fig 6 (b) and the resulting relative errord44..2dB. As a
comparison, when the solution of (19) is computath vall
samples ofx’ and y°, the LUTs are shown in Fig 6 (a), and
the resulting relative error is -41.5dB. Even thodge LUTs
in Fig 6 (a) is specifically tuned to the data sefsand y°,
the resulting error is only about 0.3dB better ttizat from the
constrained stochastic process with LUTs of Fid) Which
has much better properties.

Next, the sample plots are shown in Fig 8; theyrasellts
before EQ, after linear EQ, and after nonlinear EQe after
nonlinear EQ result is obtained by using the PSGN& evi-
dent from Fig 8 that the RX EQ has significantidueed the

straint given by matrixD , the difference operator of (31). Thechannel distortion. It is worth noting that thessults were

constraint is incorporated into the preconditiooethe PSGM
(48). As a summary, the parameters used in the PSi@Mla-
tion is given by

4, =0.1,B+yC=diag(A+y D D,y=0.02 (88)
Note that the preconditioneB + yC of (88) is positive defi-
nite and tri-diagonal and hence easy to invert.

The LUTs computed from PSGM (48) are shown in Fig 6

(b). As is evident, the constrained PSGM resultsrimoth
LUTs.

(a) (b)
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Fig 6 Computed look-up-tables (LUTS). (a) the LUAre computed
from (19) by using 260,000 samples. (b) the LUTes @@mputed by
using constrained PSGM.

Convergence

To measure the accuracy of the PSGM, the errdefined
as the difference between the transmitted signélthe signal
after the receiver equalizer. Referring to Ejgt each stefk
of the iteration, the computed LUTs are used inRhe EQ,

obtained purely based on the samples of the sigaaéform,
no modulation information is used in the processiritge same
technique works for either single carrier QAM sitgna@r mul-
ti-carrier OFDM signals.

3745
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Fig 7 Convergence history of the error computethfRSGM.

+ red: before EQ
+ pgreen: after lin EQ
+ bladc after nonlin EQ ||
iF rx=tx line
08 s 04 02 0 02 04 06 08 1
tx

Fig 8 Sample plots. Received samples are plott@thsgthe trans-
mitted samples. Red dots are the sets with recedaaaples before

compensated by equalizer, i.e¢ and y°. Green dots are the sets

. . . with received samples after linear EQ. Black dots the sets with
output X is compared with large set of the transmitted samMz eived samples after the linear and nonlineaaléey, i.e.,x° and
ples x°. More precisely, the error vectef is defined as

& =[]y €= £-D. O ]), kl... (89)
The size of error as a function of the iteraticsmber is

shown in Fig 7. As is consistent with the analydis, mean of
the error decreases, but the errors themselvetudliec Note

with the large set of sampleg® as equalizer input, and the

§* . The blue line represents the ideal channel irciviiie received

samples equal the transmitted samples. The aftdinear EQ result
is obtained from PSGM.

Finally, we note the reasons why we use a consipdéate
factor 4, =.1, which meets the requirement of Theorem 1,



but not that of Theorem 2. Data used in this sittais from
a real time prototype system in which the chansehaon-
stationary. The channel varies with time, ofterméyocom-
pared to the sample duration, due to such factetempera-
ture change, clock drifting and component aging €mnse-
quently, the stochastic process is not stationanye@assumed
at the very beginning of the Section Il. Howevédnce the
change is slow, it can be regarded as stationaaysinort time
interval, and the analysis of this paper can bdieghpvithin
the interval. By using a constant update factoredrbm 1
implies that the mean of error will approach toozeso that the
channel change can be tracked by the RX EQ. Fumiber,
the discussion following Theorem 1 shows that ayvamall

12

/]zmin_/]2 ,
Therefore, for anyx:|| X |E 1, we have
10— B+yC)" A)X|f

=X (1= B+yC) A) (I- 4, (B+yC)" Ax
=1~ 24X B+yC)' Ax+t i X ABry O A
<1- ZukAmin +#I§Anzlax = :H_luk 6 21min+lukA2max)
sty c2 +:uk/12 ):(1_,uk/])2 )

which proves (69) by definition of induced norm mftrix.

The value minimizing line 4 of (90) ig, = A, /A%, which

U Sy 22 then -2, + (A%, <24+ A°.

(90)

K, leads to slow convergence of the mean, and heooe pis exactly 4, of (68) whenr >1.

tracking of the channel. Therefore, in practicahdivarying

Proof of Theorem 1.

problems, factorz cannot be set to a too small value sinc&jnce 4 is a positive constant conditioEm 4 =0 im-
! k=1

that would lead to the loss of tracking capabilithe update
factor is often set to a constant because, thobghchannel
varies with time, the signal statistics from omadiinterval to
another are expected to be similar. On the othadha con-
stant 4, violates Theorem 2, so that the variance of ésroo

long expected to converge, which is a side efféd¢he non-
stationary stochastic process. This exemplifies thessic
trade-off between the speed of tracking (the cayaece rate
of the mean of the error) and the fluctuation ia tasult (the
variance of the error).

VIl. CONCLUSION

The constrained and preconditioned stochastic igmnad
method (PSGM) is investigated. Constraints of tieeative
updates can be incorporated into the preconditiddeth con-
straining and preconditioning are desirable in Isastic ap-
proximations.

Theoretical analysis of the PSGM is performed. v@on
gence is proved under rather general assumptidrihbasam-
ple sets are drawn identically and independent foom set to
another, namely, the assumptions in (62).

Simulations are performed to demonstrate the effecon-
straints and to support the results of the thezak#inalysis.

APPENDIX

Proof of Lemma 1.
Let G(y) =min X (B+yC)™ Ax. Then G(y) is a continuous

x||=1
function ofH Hy. From (54), there existse'>0 so that
G(0)= £'. By continuity, there existy, >0 such that for all
0<y<y,,G(y)=€=¢e'2. Therefore,
Awn = Min G(y) = min minx" (B+yC)* Axz ¢ > 0,

0<y<yy 0<y<y, |X=1
which proves part 1) of the Lemma 1. Next we shat R).
By definiton of A, and A, we have

X' (B+yC)* Ax< -4, and X AB+yQ=? Ax<AZ . It
can be shown tha# of (68) satisfiesd <min{A,, A, - If

plies '~ A =0, leading to[] T:l(l—,uj/l) =0.
Proof of Lemma 2.
The errore® in (64) can be written as
(I - WA+Q))E - WQ e+ WE -Q, 0, (91)
which is rewritten as, with superscript removedsawe space
e =ae+pyBerun, where (92)
a=1-puYA+Q),L=¥Q, n=WE -Qu0). (93)
Then
e =(aerpuBeun)( &a’+u 8T+un"
=aeda’ +u(.)+ 1A (..).
All the terms of (94) linear iz can be arranged to have only

(94)

zero mean variables such & or 8, or an additional factor

with €' which is independent of the zero mean variables.
Therefore, after taking the expected value, alltérens linear
in u disappear and (94) is left with only the firstneand the

terms that are quadratic i, and (94) becomes
E(ee") = B( 1-uWAE EVT( by m)
HEWE((6* -Q,0(6 - Q, "W
+PWE(Q, &7 )W
+IPWE(ENG -Q, DWW
+IPWE((6° - Q,0) ).

Equation (95) can be further expanded to (73), igimoves
Lemma 2.
Proof of Lemma 3.

Let p, be the columns oP and g’ the rows ofQ. Then

(95)

PWQ=> vwpg. (96)
The a, S entry of (96) is given by
(PVW Qs =20 Y WR G- 97)

Since the products of andw are independent of those &f
and Q, taking the mean of (97) yields

E(PW Q=2 EyW &R g). (98)



Applying Cauchy-Schwarz inequality to (98) leads to
E(PW Q, <> BEywW?D, Ep @’

(99)
<||EMW)IED, E(R; % -
By definition of Frobenius norm, we have
IE(PW Q[E=2, , E(PWV G,
< EwW RX,, E# ¢ (100
< Ew FIl B (veR( NeQ)IE,

which concludes the proof.

Proof of Lemma 4.

We already have the estimates for the last fivenseon the
RHS of (73). For the first term, we need to shoat tfor any
two M xM matrices, the following holds

IPQIL= [P J IR dland||PQIL< [P | R J. (101)
Indeed, let the columns @ beq;, j =1,...M , then

IPQIE=IIP@ ... 10=2, IPg il
<> NPl B=1PI>, t 2 RZNQS|
From (102), the first term on the RHS of (73) canfdund as
10— WPAY (1 = WA k< (I - WA | (103)
<A =H4AY NN
where A = E(¢7*d“YT) . In (103), the result of (69) is used.

The second term on the RHS of (73) has the bound
Hed* (04 +205, |0 [Fog, 10 fl

(102)

(104)
where d is defined in (49). Collecting all the terms, waevh
IE@ &M lIs (& pA T+ ptioi, ) IEEETT )
+ i G+ @5 W Hog U
+ 2d* @G, W oHog, VB )

Finally, if the condition of Lemma 1 is met, it che derived
from (70) that

(105)

IEE ) K IEE)I- (106)

Substituting (106) into (105), we have proved Lendma
Proof of Lemma 5.
It can be easily shown that

if 14 < AI(3A%14+02,d?),

) ) (107)
then (I A)" + piogd? < (FpA 12
Therefore, let
flo =min{ 41 (30 + 402, ), 20, — A ) 102, = A7) |
0° =05 +205, |10 o5, 10 Al (108)
+ 205 |10 Fog, JIE €)1, A =4 /2.
We have from (79),
IEEET) IS (@ pA f+uios, €)IEE €T
+d? G+ 25, N Hodo U CII)
+ A dao B Hog, ) (109)

<(2uA) [ ATET )R,
forallk >0, if 4 < [,.
Now applying (109) recursively, we have proved Learfin
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Proof of Theorem 2.
Let REDT 4, SEY i, §2 LML 12 W-pAY <1,
T2 2 [0 @ HhieaAV i We show that ifR = oo
and S< o, then Li['lTk =0. Indeed, for an)K <k, we have
T = +..+ M ik:mli,uﬁ + |—|ik=K gl +..+ |—|ik:2|i/112
G + g+ (A )
=S -S.,+ §_1|_| ik:K A

Now |_|i°°:KIi
limit in (110) leads tolkimTI< < S- §_, for any fixed K .

Therefore,lkim T < Lim(S— S.) =0.

(110)

=0 for any fixed K becauseR =« . Taking
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