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 Abstract—We consider stochastic approximations which arise 
from such applications as data communications and image pro-
cessing. We demonstrate why constraints are needed in a stochas-
tic approximation and how a constrained approximation can be 
incorporated into a preconditioning technique to derive the pre-
conditioned stochastic gradient method (PSGM). We perform 
convergence analysis to show that the PSGM converges to the 
theoretical best approximation under some simple assumptions 
on the preconditioner and on the independence of samples drawn 
from a stochastic process. Simulation results are presented to 
demonstrate the effectiveness of the constrained and precondi-
tioned stochastic gradient method. 

Index Terms— constrained approximation, preconditioning, 
stochastic gradient method, convergence analysis  

I. INTRODUCTION 

TOCHASTIC approximations have many applications in 
data communications and image processing, including 

channel equalization, digital predistortion for high power am-
plifiers and approximation of camera response function [1]-
[8]. They are also used in the fields of medical devices [9], 
machine learning and data miming [10]. The stochastic ap-
proximation of interest in this paper can be characterized by 1) 
the function to be approximated is not known; 2) the input and 
output of the function can be observed with samples, and the 
input samples are drawn from a stochastic process of a certain 
probability density function, and its distribution can be ob-
served, but cannot be controlled or altered; and 3) there is an 
unlimited supply of input and output samples for observations, 
but there may be a limit on how many samples one can ob-
serve at one time.  

Stochastic approximations usually involve approximating 
the unknown function by a linear combination of some basis 
functions. The coefficients of the basis functions in the linear 
combination satisfy a system of linear equations which are 
determined by the unknown function and the distributions of 
the input and output signals.  
 Stochastic gradient descent method has been widely used 
for stochastic approximation [11]-[13]. In the stochastic gradi-
ent method (SGM), the approximation is computed in an itera-
tive process in which each step is marched in the gradient de-
scent direction of a cost function evaluated at a set of samples.  

Two issues arise frequently in the process of SGM. First, a 
solution computed at a step with a particular set of samples 
may have an undesirable behavior, e.g., with very large de-
rivative, or the linear system can even be ill-posed with a sin-
gular matrix. Therefore, it may be preferred or necessary to 
impose additional constraints on the solution of SGM so that it 
has a desirable behavior, e.g., smaller derivatives, or the linear 
system becomes well-posed with an invertible matrix. Second-
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ly, it is well-known that gradient descent method may con-
verge slowly, and some techniques are needed to speed up the 
convergence. 

A. Main contributions of this paper 

In this paper, we exemplify the need for constrained sto-
chastic approximations and propose a few effective constraints 
which are simple to implement. We also use a preconditioning 
technique [14] to speed up the convergence of SGM and pro-
pose the preconditioned stochastic gradient method (PSGM) 
for stochastic approximations. 

Furthermore, we establish a link between the constrained 
stochastic approximation and the preconditioning, and show 
that the constraints can be incorporated as part of the 
preconditioner in PSGM. 

Finally, we provide a theoretical analysis to show that the 
PSGM converges under some simple assumptions on the 
preconditioner and the stochastic process. The convergence 
can be proved with the simple assumption that the sample sets 
are drawn identically and independent from one set to another, 
without any assumption about the distribution of the random 
samples. 

B. Related work 

Stochastic approximations have been analyzed extensively 
in [1]. Convergence analysis of stochastic conjugate gradient 
method were performed in [2][5], but the stochastic conjugate 
gradient method has more complexity than the PSGM of this 
paper. In addition, the analysis of [2] also required more re-
strictive assumptions on the distribution of certain random 
variables derived from the random samples. Analysis of SGM 
for linear adaptive filters was given in [15] and [16], but the 
results there were obtained for some known distributions of 
the stochastic process. Preconditioning has also been used in 
combination with stochastic gradient descent in other fields, 
see for example, [9][10].  

C. Organization of the paper 

In section II, the stochastic approximation problem of inter-
est of this paper is posed. This is followed by a few examples 
given in section III to demonstrate the need for constrained 
approximations and to establish the link between constrained 
approximation and the preconditioning. The preconditioned 
stochastic gradient method is formally introduced in section 
IV, and it is analyzed in section V. Simulation results are re-
ported in section VI. 

II. PROBLEM FORMULATION 

A. Theoretical best approximation 

Let X  be a random variable or a stationary stochastic pro-
cess, ( )X X t= , with the sample space an interval of ℜ  and 

the probability density function ( )xρ . Let ( )f x  be an un-
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known deterministic function defined on the sample space of 
X . Function ( )f x , although unknown, may be observed 

through the stochastic process 
 ( )Y f X= . (1) 

The objective is to find an approximation of ( )f x  by using a 

linear combination of some basis functions, shown in Fig 1(a). 
Let ( )xΦ  be a row vector of length M  given by 

 1 2( ) [ ( ), ( ),..., ( )]Mx x x xφ φ φΦ = , (2) 

where ( ), 1,..., ,j x j Mφ =  are linearly independent basis func-

tions [17] defined in the sample space of X . Any function in 
the subspace spanned by ( )xΦ  can be written as 

  1 21
( ) ( ) ( ), [ , ,..., ]

M T M
j j Mj

u x x u u x u u u uφ
=

= Φ ⋅ = = ∈ℜ∑ . (3) 

In (3), variable u  is used to denote both a function and a col-
umn vector, but no confusion should arise because it is clear 
from the context whether u  refers to a function or a vector. 

The approximation problem is then formulated as finding a 
vector û  such that the function ˆ( )x uΦ ⋅  best approximates 

( )f x . The best approximation is in the sense as measured by 

the expected value of the squares of the residual. More pre-
cisely, for any function ( )g x , let ( ) ( )E Eρ⋅ = ⋅  be the expecta-

tion function defined as 

 ( ( )) ( ) ( )E g X g x x dxρ= ∫ . (4) 

Then, the best approximation û  is defined by 

 2ˆ arg min (( ( ) ( )) )
Mu

u E X u f X
∈ℜ

= Φ ⋅ − . (5) 

From (5), it can be easily shown that the best approximation 
û  is the solution to the linear equation  

 Au b= , (6) 
where matrix A  and vector b  are given by 

 1[ ,..., ] , ( ), 1,..., ,

[ ] , ( ), , 1,..., .

T
M i i

ij M M ij i j

b b b b E f i M

A a a E i j M

φ
φ φ×

= = =
= = =

 (7) 

The solution û  to (6) provides the theoretical best approx-

imation function ̂ ( )u x  which is given by 

 
1

ˆ ˆ ˆ( ) ( ) ( )
M

j jj
u x x u u xφ

=
= Φ ⋅ =∑ . (8) 

Finding the solution to (6) would otherwise be trivial if it 
were not for the fact that the right hand side b , give in  (7), 
cannot be computed because ( )f x  is not known explicitly. In 

practice, (6) is approximated by a sequence of equations 
which are computed by using samples from the stochastic pro-
cess X , hence giving rise to the stochastic approximation. 

 
Fig 1 (a) Approximation of ( )f ⋅ . (b) Stochastic approximation 

B. Stochastic approximation 

Let , 1,2,...kx k = , be a sequence of sets of samples drawn 
from X  as 

 1[ ,..., ] , 1,2,...,k k k T N
Nx x x k= ∈ℜ =  (9) 

That is, for each 1,2,...k = , there are N  samples drawn from 

X , and they are given by , 1,2,..., .k
nx n N=  Then the values 

of the function ( )f x  can be observed at the samples, and as-

suming no noise, they are given by 

 ( ), 1,..., , 1,2,...k k
n ny f x n N k= = =  (10) 

The stochastic approximation is an iterative process in 

which a new approximation ku  is computed from previous 
1ku −  and the new observation kny  of (10). The new coefficient 

ku  is updated from 1ku −  so that the function ( ) kx uΦ ⋅  best 

matches ( )f x  when evaluated at the sample set kx : 

 ( ) ( ) , 1,...,k k k k
n n nx u f x y n NΦ ⋅ = = = . (11) 

The new coefficient can be expressed as 

 1k k ku u u−= + ∆ . (12) 
If we define matrix kΦ  as ( )xΦ  evaluated at the samples, i.e.,  

 
1,..., , 1,...,

( )k N M
k j i i N j M

xφ ×

= =
 Φ = ∈ℜ  , (13) 

and substitute (12) into (11), the update ku∆  is given by 

               k k
k u rΦ ∆ = ,  where 1k k k

kr y u −= − Φ . (14) 

Equations (12) and (14) define the stochastic approximation 
as an iterative process. At step k  of the iteration, a set of N  

samples, kx , are drawn to compute residual kr  in (14). Then 

the update, ku∆ , is determined by requiring it to satisfy (14). 

The new coefficient ku  is computed from (12), and the itera-
tion then proceeds to the next step. This process is illustrated 
in Fig 1(b). 

C. Least squares solution 

One implementation of the stochastic approximation (12) is 
to use the least squares solution in (14), which is an 
overdetermined system if the number of samples is larger than 
the number of basis functions, i.e., if N M> . The least 
squares solution to (14) is given by 

 1k k k
k kA u b A u −∆ = − , (15) 

where kA   and kb  are given by 

ˆ( ) uΦ ⋅i

( )f i
X

Y

Ŷ

( )f i

X

Y

ˆ( ) uΦ ⋅i Ŷ

find ku

kx

1û A b−=

1( ) ku −Φ ⋅i kyɶ

( )k ky f x=

ku

(a) (b)
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1
[ ] , (1/ ) ( ) ( ),

NT k k k k
k k k ij M M ij i n j nn

A a a N x xφ φ× =
= Φ Φ = = ∑  (16) 

1 1
[ ,..., ] , (1/ ) ( ) .

Nk T k k k T k k k
k M i i n nn

b y b b b N x yφ
=

= Φ = = ∑  (17) 

Note that for any set of samples kx , (16) and (17) can be 
considered as approximations of A  and b  in (7). It is always 

assumed that the sets of samples kx  are chosen properly so 
that matrix kA  is symmetric and positive definite, i.e.,  

 , 0,  for all 0T T
k k kA A x A x x= > ≠ . (18) 

Therefore, the update ku∆  can be found from (15), and (12) 
is now equivalent to 
 1k k

ku A b−= . (19) 

D. Challenges 

The following are a few issues with using (19) in the sto-
chastic approximation process of Fig 1(b).  
1. Matrix kA , although symmetric and positive definite, may 

be ill-conditioned. That is, the condition number, which is 
defined as the ratio of the largest eigenvalue over the small-
est eigenvalue, is very large 

  max min( ) / 1kAκ λ λ≜ ≫ . (20) 

    A large condition makes solution of (15) or (19) sensitive to 
noise and round-off errors. If iterative method is used, the 
convergence may be slow due to large condition number. 

2. Solution ku  of (19) is only the best approximation over N  

samples , 1,...,k
nx n N= . At the points other than these sam-

ples, the function ( ) ( )k ku x x u= Φ ⋅  may behave badly. For 

example, at a point max{ }n
k

n
z x> , the value ( ) kz uΦ ⋅  may 

be unfavorably large. 
3. The dimension of kA  may be large, i.e., 1M ≫ , in which 

case, computing 1
k kA b−  may be too costly in both the num-

ber of operations and memory requirement. 

4. Solutions ku  of (19) do not converge to the best approxima-

tion û . In fact, if the sets of samples kx  are drawn random-
ly and independently for each k , then all solutions are sta-
tistically the same, and no matter how many sample sets are 
used, the solution will not get any better. 

5. Even if solutions ku  of (19) are averaged, it is still not clear 
whether the average converges to û , because the limit  

1

1
lim (1/ )

K k
kkK

K A b−
=→∞ ∑  may not equal 1A b− , or even exist, 

under reasonable assumptions. 

III.  CONSTRAINED STOCHASTIC APPROXIMATION 

In many applications, the approximation ku  computed from 
a particular set of samples may exhibit undesirable behaviors 
and it is necessary to impose additional constraints on the ap-
proximation in order to alleviate the problem. For example, it 
may be desirable to constrain the solution so that the change in 
derivatives from one sample set to anther is small (see below).  
In this section, we discuss how the constraints can be intro-
duced into the stochastic approximation process with a few 

examples. This also serves as a motivation for preconditioned 
method to be introduced later. 

A. Polynomial approximation 

 In polynomial approximations, the basis functions ( )xΦ  are 

made of polynomials, or orthogonal polynomials [18], so that 
( )j xφ  is a polynomial of degree j . For each set of samples 

kx , 1,...k = , we want to find coefficients ku  so that the poly-

nomial ( ) kx uΦ ⋅  matches the observed output of the function 
ky  when evaluated at the samples. By following the stochastic 

process of Fig 1(b) as described before, the coefficients may 
be computed from (12) and (15), or equivalently (19). 
 As is well known, the coefficients thus computed results in 
a polynomial ( ) kx uΦ ⋅  that may behave badly at the points 

other than the samples kx . For example, as will be shown in 
the simulation section, if the interval of approximation is [0,1], 
and if the largest sample is significantly less than 1, then the 
derivative of ( ) kx uΦ ⋅  may be very large in the interval be-

tween the largest sample and 1, i.e., 

 || ( ) || 1,kd
z u

dx
Φ ⋅ ≫ (max{ },1]k

n
n

z x∈ . (21) 

 In such a case, it is desirable to place a constraint on the 
approximating polynomial so that it has a small derivative. 
Such a constraint may be constructed as follows. First, we 
select a set of samples where the derivative is to be evaluated. 

  (max{ },1], 1,...,k
i n c

n
z x i N∈ = . (22) 

Then we impose the condition that the change in derivative 
from one sample set to another be zero at the selected points: 

( ) 0,  or

0,  where D ( ) ( ) .
c

k
i

k N M
i j i N M

d
z u

dx
d

D u z z
dx

φ ×

×

Φ ⋅ ∆ =

′ ∆ = = Φ = ∈ℜ 

(23) 

Now to find the constrained approximation, the update ku∆  
is required not only to match the observed function values as 
given in (14), but also to satisfy the zero derivative condition 
of (23). A new equation for ku∆  is obtained when constraint 
(23) is combined with the original equation (14), as follows 

 [ ] [ 0]T k k T
k D u rΦ ∆ = . (24) 

Using the least squares solution for (24), the new updated co-
efficients is given by 

 1 1 1( ) ( )k k T k k
k ku u A D D b A u− − −= + + − . (25) 

More generally, we introduce a parameter 0γ >  to control 

the extent of the constraint in  (23), and a damping factor 
0µ >  to control the rate of the update so that (25) becomes 

 1 1 1( ) ( )k k T k k
k ku u A D D b A uµ γ− − −= + + − . (26) 

Then a question arises: how are coefficients ku  computed 
from the constrained update (26) related to the best approxi-
mation û  defined in (5)? 

B. Approximation by piece-wise constant 

A Look-up-table (LUT) can be used to represent a function. 
To use LUT, the sample space Γ  is first discretized into small 
disjoint intervals as 
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 11
, [ , ], 1,...,

M

j j j jj
j Mχ χ−=

Γ = Γ Γ = =∪ . (27) 

Then an LUT is an array 1[ ,..., ]TMu u u=  which can be used to 

represent a piecewise constant function ( )ug x  defined by 

 ( ) ,  if u j jg x u x= ∈ Γ . (28) 

The basis functions for piecewise functions are given by 

 
1,

( ) ( ) , 1,...,
0,j

j

j
j

x
x x j M

x
φ φΓ

∈Γ= = = ∉Γ
. (29)  

When using an LUT, the number of basis functions, M , is 
usually very large, e.g., 1024M =  if a 10 bit LUT is used. 
Similar to the polynomial approximation, for a given set of 
samples kx , an LUT nu  can be computed from (12) and (15). 
However, even if the number of samples, N , is large, there is 
no guarantee that the samples fall into each and every subin-
terval jΓ , and therefore, for any sample set kx , there may 

exist some subintervals jΓ  into which none of the samples in 
kx  falls. Consequently, the matrix kΦ  in (14) may not have 

the full rank. Indeed, if none of the samples belongs to jΓ , 

then column j  of matrix kΦ  is zero. That is, coefficient k
ju∆  

is not involved in the equation (14) or (15), and therefore, (14) 
or (15) is underdetermined. In order to find a solution, addi-
tional constraints are needed. One constraint can be, for exam-
ple, the requirement that the update to the LUT is smooth, so 
that the difference in ku∆  is small, i.e., 

 1 0, 2,...,k k
j ju u j M−∆ − ∆ ≈ = . (30) 

Equation (30) suggests the following constraint to be used 

 

( 1)

1 1

0,  where 

1 1

k

M M

D u D

− ×

− 
 ∆ = =  
 − 

⋱ ⋱ . (31) 

Applying constraint (31) to (14) leads to (24), and the up-
date (26) can be used for its least squares solution to find the 
LUT ku  which exhibits smoothness. 

C. Functions with memory 

Some functions exhibit memory effect. This happens often 
in communication systems in which the random variable mod-
els a time-varying signal through a channel with memory, and 
the set of samples are the signal sampled at time instances of 
equal interval. As an example, we consider a function ( )f x  

that has a memory of two time intervals, although the analysis 
applies to cases with any memory delays.  In this example,  

( )nf x  may be best approximated by a function of the form  

            1 2( ) ( ) ( )n n nu x v x w x− −+ + . (32) 

Each of the functions ( ), ( ), ( )u x v x w x  is a linear combination 

of the same basis functions ( )xΦ , i.e., 

 ( ) ( ) , ( ) ( ) , ( ) ( )u x x u v x x v w x x w= Φ ⋅ = Φ ⋅ = Φ ⋅ , (33) 

for some vectors , ,u v w. The basis functions may be either 
polynomials or piecewise constant functions, but in the fol-
lowing discussion, the piecewise constant functions are used 
because the resulting linear equation has a large dimension 
worthy paying more attention. 

In the stochastic process of Fig 1(b), for given coefficients 
1 1 1[ , , ]k k k Tu v w− − − , the new coefficients are found by 

  1 1 1[ , , ] [ , , ] [ , , ]k k k T k k k T k k k Tu v w u v w u v w− − −= + ∆ ∆ ∆ , (34) 

where the update [ , , ]k k k Tu v w∆ ∆ ∆  is computed so that the 

new approximating function matches the observed ( )f x . As 

before, the update is to satisfy  

   
0 1 2

1,..., , 1,...,

,

where [ ( )] , 0,1,2.

k k k k
k k k

p k N M
k j i p i N j M

u v w r

x pφ ×
− = =

Φ ∆ + Φ ∆ + Φ ∆ =

Φ = ∈ℜ =
 (35) 

A constraint may be imposed on each of , ,k k ku v w∆ ∆ ∆ , so 
equation (35) combined with the constraints becomes 

 

0 1 2

0

0

0

k
k k k k

k

k

r
u

D
v

D
w

D

γ
γ

γ

 Φ Φ Φ  
   ∆  
     ∆ =     
   ∆        

. (36) 

In (36), Dγ  represents the operator for constraint, such as 

that given in (31). Note that the parameter γ  is introduced in 

(36) to control the extent of the constraint. Substituting the 
least squares solution of (36) into (34), the new coefficients 
are given by 

( )

1 1 1

1 0 1 2

[ ] [ ]

[ ] .

k k k T k k k T

T k T k T k T
k k k k

u v w u v w

A C r r rγ

− − −

−

=

+ + Φ Φ Φ
 (37) 

In (37), kA  and C  are given by 

 
0,1,2, 0,1,2

,

T

iT j T
k k k i j

T

D D

A C D D

D D
= =

 
 

 = Φ Φ =   
 
 

. (38) 

As noted before, for piecewise constant basis functions, ma-
trix kA  may be singular if the samples kx  are not drawn from 

all subintervals jΓ . On the other hand, for any 0γ > , the 

matrix kA Cγ+  becomes nonsingular if D  is the difference 

operator defined in (31). That is, adding the constraint makes 
an ill-posed problem well-posed.  

Note that each of , 0,1,2pT p
k k pΦ Φ = , is a diagonal matrix of 

dimension M M× , because ( )xΦ  is given by the piecewise 

constant basis functions of (29). However, kA  of (38) is not a 

diagonal matrix. Also the dimension of kA  is very large; it is 

3 3M M× , having more than nine million entries if 10 bit 
LUTs are used. On the other hand, the matrix C  is a 
tridiagonal matrix if the smoothness constraint of (31) is used. 

Therefore, it is not desirable to have kA  involved in (37) 

because computing the last term in (37) may be costly since 

kA  is large and non-sparse. Instead of kA , we want to use a 

simpler matrix B , which approximates kA , in (37) to com-

pute the update as 

( )

1 1 1

1 0 1 2

[ ] [ ]

[ ] .

k k k T k k k T

T k T k T k T
k k k

u v w u v w

B C r r rγ

− − −

−

=

+ + Φ Φ Φ
 (39) 
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For example, B  can be the diagonal matrix of A  given in  
(7), i.e., ( )B diag A= . Note that A  of (7) is computable be-

cause it does not involve the unknown function ( )f x .  

D. Canonical form for constrained approximation 

The above three examples show that in a constrained sto-
chastic approximation process of Fig 1(b), the approximation 
can be computed by the iterative process given by 

 1 1 1( ) ( )k k k k
ku u B C b A uµ γ− − −= + + − . (40) 

In (40), 0, 0µ γ> >  are some positive constants, B  is a ma-

trix that is an approximation of kA  and C  is a symmetric 

positive semi-definite matrix related to the constraint. Alt-
hough B  depends on k  in some previous examples, we re-
quire B  to be independent of k  in the canonical form (40) for 
the reasons to become clear in the next section. 

In the rest of the paper, we will analyze how ku  is related 
to the theoretical best approximation û  of (5), and in particu-

lar, under what condition ku  converges to ̂u .  
 We note that in (40), the matrix B  is introduced to replace 

kA  in computing ku∆ , in order to reduce the complexity in-

volved in operating on kA . The motivation for matrix 
TC D Dγ γ=  is to impose a constraint 

 0kD uγ ∆ = , (41) 

on the update ku∆ .  Although the constraint (41) does affect 

the intermediate solution ku  by, for example, introducing 

smoothness in ku∆ , it does not affect the final limit, because 
as we will show, ku  converges to ̂u  regardless of the con-
straint. Because the constraint (41) does not affect the final 
limit, it is called soft constraint.  

IV.  PRECONDITIONED STOCHASTIC GRADIENT METHOD 

A. Stochastic gradient method 

The coefficient given in (19) is the solution which minimiz-
es the following quadratic form 

 ( ) ( )( )k k T
k k kH u u y u y= Φ − Φ − , (42) 

where kΦ  is the matrix defined in (13), and ky  is the observa-

tion given in (10). 
The stochastic gradient method [1] is an iterative method in 

which for a given approximation 1ku − , the new approximation 
is obtained by marching in the opposite direction of the gradi-
ent of the quadratic form ( )kH u  in (42). More precisely, giv-

en a step size, 0kµ > , ku  is computed from  

 1 1( ), 0k k k k
k k ku u b A uµ µ− −= + − > . (43) 

Equation (43) is said to be stochastic gradient method be-
cause it is not the classic gradient method for computing (19). 
A classic gradient method for (19) is an iterative method in 
which each step is defined by the same matrix kA . In the sto-

chastic gradient method of (43), however, the matrix kA  

changes with each step, as shown in Fig 1(b).  
The stochastic gradient method (43) is a special case of the 

canonical form of the constrained approximation of (40) with 
 , 0B I γ= = . (44) 

 We will show in a later section that, under certain condi-
tions, the approximation ku  computed from (43) converges to 
û . However, the rate of convergence depends on the condi-
tion number ( )Aκ  of A  in (7); the larger the condition num-

ber is, the slower the convergence is. This is evident if kA  is 

replaced by A  in (43), which becomes the well studied classic 
gradient method. The convergence rate can be improved by 
the technique of preconditioning.  

B. Preconditioned stochastic gradient method (PSGM) 

We now apply preconditioning to the quadratic function in 
(42). Let ,B C  be two symmetric M M×  matrices. If B  is 

positive semi-definite, and C  is positive definite, then for any 
0γ > , B Cγ+  is positive definite. Define new variable 

 1( )B Cγ −Ψ = + . (45) 

Then minimizing (42) is equivalent to minimizing the follow-
ing quadratic form 

1/ 2 1/ 2 1/ 2( ) ( ) ( ),k T k
k k kH w w y w y w uΨ −= Φ Ψ − Φ Ψ − = Ψ . (46) 

The stochastic gradient method applied to (46) yields 
 1 1/ 2 1/ 2 1( ), 0k k k k

k k kw w b A wµ µ− −= + Ψ − Ψ > . (47) 

Multiplying 1/ 2Ψ  from the left, (47) becomes 
  1 1 1( ) ( ), 0k k k k

k k ku u B C b A uµ γ µ− − −= + + − > . (48) 

Equation (48) is the preconditioned stochastic gradient 
method, and the matrix B Cγ+  is said to be the 

preconditioner. It is now clear that the canonical form of soft 
constrained approximation (40) is equivalent to the precondi-
tioned gradient method (48), if ,B C  do not depend on k . 

It is important to point out that although kA  appears in (40) 

and (48), it needs not be explicitly computed or stored. All that 
is needed is a means for computing kA u  for a given vector u . 

On the other hand, the matrices ,B C  are needed explicitly, 
but they are normally chosen to be sparse matrices which can 
be efficiently manipulated. Furthermore, since ,B C  are inde-

pendent of k , the computation of 1( ) kB C rγ −+  can be im-

plemented efficiently by, e.g., performing an LU factorization 
of B Cγ+  once for all k , and then for each k , the forward 

and backward substitutions are performed on kr . 
Next, let || ||F⋅  be the Frobenius norm of a matrix. Define 

 1|| ( ) ||Fd B Cγ −= + . (49) 

C. Requirement on preconditioning matrix B  

 It is easy to see that ku  from (48) does not converge to 
û  even for the seemingly best choices of , , ,B Cµ γ : 

 1, 0, kB Aµ γ= = = . (50) 

Indeed, substitution of (50) into (48) results in (19). If sample 
sets kx  are drawn independently and identically, and since the 
solution in (19) only depends on the currently drawn samples, 
all ku  are expected to have the same statistics, and therefore, 

it is not expected that ku  would get closer to ̂u  as k  increas-
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es. Furthermore, it is not known what the expected value 
1( ) ( )k

k kE u E A b−=  is without explicitly knowing the distribu-

tion of the random samples kx . This observation provides a 
heuristic for B  to be a constant matrix independent of itera-
tion k , which will be assumed in the rest of this paper. 

A purpose of using the preconditioner is such that the itera-
tion in (48) has faster convergence. Intuitively, if kA  in (48) is 

replaced by A  of (7), the convergence rate is determined by 
the condition number of the preconditioned system, and to 
achieve fast convergence,  the condition number needs to be 
small, i.e., 

 1(( ) ) 1B C Aκ γ −+ ≈ . (51) 

Equation (51) implies, since we can control the parameter of 
constraint γ , making it as small as desired, that B  needs to be 

a good approximation of A . However, what does it precisely 
mean by a good approximation, and perhaps more fundamen-
tally, what is the most general condition on B  so that PSGM 
converges? 

It turns out that a rather general requirement for B  is given 
by the following 

 ( ) 0,  for all  with || || 1TBx Ax x x> = . (52) 

Equation (52) can be interpreted as: if for any unit vector x
, the angle between the directions Ax and Bx  is less than 90 
degrees, then B  is a good approximation of A . Another in-
terpretation of (52) is that matrix B  is positive definite rela-
tive to matrix A . Indeed, requirement (52) is equivalent to B  
being positive definite in the inner product defined by 

 , T
Ax y y Ax< > = . (53) 

It can be shown that (52) is equivalent to the following  
 1 0,  for all  with || || 1Tx B Ax x x− > = . (54) 

 Requirement (54) is met for at least two matrices. For 
B I= , the identity matrix, (54) becomes 0Tx Ax> , which is 
satisfied because A  is positive definite. This choice, however, 
does not provide an improved convergence rate for the sto-
chastic gradient method, but it can be an implementation for 
imposing a soft constraint represented by Cγ . 

For B A= , (54) becomes 0Tx x > , which is trivially satis-
fied for unit vector x . This would be the ideal choice for the 
preconditioner if A  has favorable properties such as being 
sparse. Note that using preconditioner B A=  in the precondi-
tioned stochastic method of (48) is different from solving the 
theoretical equation (6). Iteration (48) with B A=  can be 
computed if the probability density function is known, but 
vector b  of (6) cannot be computed as previously stated. Fur-

thermore, the solution ku  from (48) is also different from (19) 
which is the result of using kB A=  and 0γ = . 

In practice, A  may be such that it is costly to compute
1( )A C uγ −+ , hence B A=  may be a poor choice in terms of 

complexity. Even if orthogonal basis functions are used, as we 
discussed in a previous section, A  is not a diagonal matrix if 
the memory effect is included in the approximation. In such a 
case, the diagonal of A  may be used for preconditioning as 

( )B diag A= .  

For completeness, we give below an example of symmetric 
positive definite matrices A  and B  which do not meet condi-
tion (54) (i.e., not every B  is a good approximation of A ): 

[ ] 11 2 2 1 1
, , 1 0 1 0

2 5 1 1 0
A B B A−     

= = = − <     
     

.   (55) 

V. CONVERGENCE ANALYSIS 

In this section, we make formal assumptions on random 
variables, and analyze convergence of PSGM. We will show 
that under some simple assumptions, PSGM converges to the 
theoretical best approximation. 

A. Markov process 

The approximation ku  in (48) can be considered to be a 

Markov process defined by stochastic processes kb  and kA , 

which are in turn defined by random samples drawn from the 
stochastic process ( )X t .  

Let sample set kx  be drawn at time instances , 1,...,k
nt n N=

. We assume that two different sets of samples are drawn at 
two different time intervals, i.e.,  

 1[ , ], 1,...,k k k
n Nt t t n N∈ = , and 1

1 ,  for all 0k k
Nt t k+< > . (56) 

Then kb  and kA  are formally defined as 

 
1 1

1

[ ] , (1/ ) ( ( )) ( ( )),

[ ] , (1/ ) ( ( )) ( ( )).

Nk k k k k
i M i i n ni

Nk k k k
k ij M M ij i n j nn

b b b N X t f X t

A a a N X t X t

φ

φ φ

× =

× =

= =

= =

∑

∑
 (57) 

From definition (57) and (7), it is easy to verify that 
 ( ) , ( )k

kE b b E A A= = . (58) 

With the definition of random time sampling in (56), we can 

assume that each of  kb  and kA   is an independent and identi-

cally distributed (i.i.d.) random process. 
Next, we introduce new random variables which are the de-

viations of kb  and kA  from their means as 

 ,  k k
k kb b A Aθ = − Ω = − . (59) 

With Ψ  defined by (45), the Markov process (48) can now 
be written in terms of kθ  and kΩ  as  

 1 1 1( ) ( )k k k k k
k k ku u b Au uµ µ θ− − −= + Ψ − + Ψ − Ω . (60) 

B. Assumptions 

Most of the assumptions on kθ  and kΩ  may be derived 

from those on kb  and kA . Additionally, we assume that the 

covariances of kθ  and kΩ  exist. Write matrix kΩ  in columns 

and concatenate all columns into a long vector to define 
 ( ) 1vec [ ] ,  is column  of kT kT T k

k M j kjω ω ωΩ = Ω⋯ . (61) 

The covariance of kΩ  is defined as ( ) ( )(vec vec )
T

k kE Ω Ω . 

We now summarize the assumptions and properties of kθ  
and kΩ  in the following: 
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       ( ) ( )
( )

2

2

2

1.  are i.i.d. with ( ) 0;

2.  are symmetric, i.i.d. with ( ) 0;

3. Following covariances exist

          || ( ) || ,

          || (vec vec ) || ,

          || (vec ) || ;

4. 

k k

k k

k kT
F

T

k k F

kT
k F

E

E

E

E

E

θθ

θ

θ θ

σ θ θ

σ

σ θ
ΩΩ

Ω

=
Ω Ω =

Ω Ω

Ω

≜

≜

≜

1  and its products are pair-wise independent

    of  and  and their products.

k

k
k

u

θ

−

Ω

    (62) 

In (62), || ||F⋅  denotes the Frobenius norm of a matrix. Equa-

tion (62) represents the only assumptions we will need on the 
random processes kθ  and kΩ . 

Note that covariances 2 2 2, ,θθ θσ σ σΩΩ Ω  in (62) are independent 

of k  because the variables kθ  and kΩ  are i.i.d. However, 

each covariance is a function of the sample size, N , as shown 
in (57). Thanks to the law of large numbers, (57) implies that 
each covariance can be made arbitrarily small if the number of 
samples N  is large enough. 

In (62), assumptions 1-3 are self-explanatory, but assump-

tion 4, regarding the independence of 1ku −  with the random 

variables kθ  and kΩ , and their products, warrants some dis-

cussion. Referring to Fig 1(b), vector  1ku −  is computed by 

using samples 1kx −  drawn in the previous step 1k − . The out-

come of 1ku −  will not influence in any way how the current set 

of samples kx  is drawn. The variables kθ  and kΩ  are solely 

dependent on the current sample set kx , the unknown function 
f  and the basis functions Φ , and therefore the outcome of 

kθ  and kΩ , and their products, will not be affected by the 

outcome of previously computed 1ku − , which justifies the as-
sumption. 

All the results in the rest of this section will be based on the 

assumptions (54) on B , and (62) on kθ  and kΩ . Further-

more, we will use 2|| ||⋅  to denote the matrix norm that is in-

duced by the 2ℓ -norm of vectors [14]. If || ||⋅  is used for a 

matrix, it is meant to be the Frobenius norm by default. For 
vectors, 2ℓ -norm is always used throughout this paper. 

The proofs for all lemmas and theorems of this section are 
postponed to Appendix.  

C. Mean analysis 

The error in ku  is defined in terms of ̂u  of (5) as 

 ˆk ke u u= − . (63) 
Substituting (60) into (63), it is easy to show that  

 ( ) 1 ˆ( ) ( )k k k
k k k ke I A e uµ µ θ−= − Ψ + Ω + Ψ − Ω . (64) 

Taking the mean of (64), and noting that 1ke −  and kΩ  are 

independent and that ( ) ( ) 0k
kE Eθ = Ω = , we have 

 1( ) (1 ) ( )k k
kE e A E eµ −= − Ψ , (65) 

which leads to following estimate for the norm of the mean 

 1
2|| ( ) || ||1 || || ( ) ||k k

kE e A E eµ −≤ − Ψ . (66) 

An estimate for the first factor can be found as follows. 
Lemma 1. 

1) There exists a 0 0γ >  such that  

 
0

1
min 0 || || 1

min min ( ) 0T

x
x B C Ax

γ γ
λ γ −

≤ ≤ =
+ >≜ . (67) 

2) Define 

 

0

1
max 2 max min

0

2
max

max

maxmin
0 2 2

maxmax

max || ( ) || , / ,

(1 1 ) ,  1
,

/ 2,

1/( ),  1
2 .

8(2 ) /(3 ),

B C A

if

otherwise

if

otherwise

γ γ
λ γ τ λ λ

λ τ τ τλ
λ

τλ τλ λµ
τ τλλ λ

−

≤ ≤

−

+

 − − ≥



≥−
=  −− 

≜ ≜

≜

≜

 (68) 

Then the following holds for all 00 γ γ≤ ≤  and 00< kµ µ≤ : 

                         1
2|| ( ) || |1 | .k kI B C Aµ γ µ λ−− + ≤ −  (69) 

The key result of Lemma 1 is the existence of 0γ , 0µ  and 

λ  for (69) to hold. The variables defined in (68) are some 
specific choices to make (69) true, but other definitions are 
possible too. In particular, it is always possible to choose these 
parameters such that 0 1kµ λ< ≤ . For example, in (68) when 

1τ ≥ , we have 2 1/ 2
0 1 (1 ) 1kµ λ µ λ τ −≤ = − − ≤ .  

It follows from (66) and (69) that  

  0

1
|| ( ) || || ( ) || |1 |

kk
jj

E e E e µ λ
=

≤ −∏ , (70) 

which leads to the following result. 
Theorem 1.  
There exist 0 0γ >  and 0 0µ >  such that if the sequence 

00 kµ µ< ≤  satisfies
1 kk
µ∞

=
= ∞∑ , then 

 lim ( ) 0k

k
E e

→+∞
= , 0  0for all γ γ≤ ≤ . (71) 

Theorem 1 shows that the mean of preconditioned stochas-
tic gradient iteration converges to the theoretical best approx-
imation. The convergence rate is determined by the factors in 
(70), i.e., |1 |, 1,2,...k kµ λ− = . The smaller the factors are the 

fast the convergence is. Lemma 1 provides some insights into 
the size of these factors. In most practical problems, e.g., if 
matrix 1( )B C Aγ −+  is symmetric positive definite, we have 

1τ ≥  in (68). When 1τ ≥  and if 0kµ µ=  in Lemma 1, the 

factors in (70)  are given by 
2 2

01 1 1 (1 1 ) 1 .kµ λ µ λ τ τ− −− = − = − − − = −   (72) 

In the following, we will illustrate the size of (72) by a few 
examples. In each of the following examples, γ  is a fixed 

parameter, and Lemma 1 still holds when minλ  and maxλ  are 

defined for the fixed γ , i.e., when minλ  and maxλ  are defined 

without 
00

min
γ γ≤ ≤

in (67) and 
00

max
γ γ≤ ≤

in (68), respectively, which is 

what we will assume in the examples. In all examples, 1τ ≥ . 
First consider the case with ,B A= 0γ = . Note that this so-

lution is different from (19) which can be considered as the 
solution by setting ,kB A= 0γ = . It follows from (67) and 

(68), min max 01, 1λ λ τ µ= = = = , and thus, the value in (72) is 



 8

0. This implies the mean at each step of the iteration is zero 
when 0 1kµ µ= = . Therefore, this provides fastest conver-

gence of the mean.   
Next, consider ,B I= 0γ = . In this case, minλ  and maxλ  

are the smallest and the largest eigenvalues of A , respective-
ly, and cond( )Aτ κ= = , the condition number of A . The 

value of (72) is 2 1/ 2(1 )κ −− , which shows that the convergence 

rate is related to the condition number κ  of A . The larger κ  
is, the slower the convergence is. 

Another case is the method of diagonal loading [19] in 
which ,B A= ,C I= 0γ > . In this case, the value of (72) is 

1 2
max

1 2
min

(1 ( ))
1 , ( ) eigenvalue of 

(1 ( ))

A
A A

A

γλ λ
γλ

−

−

+
− =

+
. 

If γ  is small, this is similar to the case of ,B A= 0γ = , i.e., 

the factors of (72) are close to zero. If γ  is large, this is simi-

lar to the case of ,B I= 0γ = , i.e., the factors of (72) are 

close to 2 1/ 2(1 )κ −− . 

D. Mean-square analysis 

Next, we consider the variance of the error, which is de-
fined as the autocorrelation of the error ( )k kTE e e . By using 

ke  in (64) , the variance can be found as follows. 
Lemma 2. 

   

( )

( )

11

2

12 1

2 1

2 1

2 1

2 1

( ) ( ) ( )( )

ˆ ˆ(( )( ) )

( )

( )

ˆ( )

( ( ) )

ˆ( ( ) ) .

kk kT k T
k k

k k k k T
k

kk T
k k k

k kT
k k

k T
k k k

k k T
k k

k T
k k k

E e e I A E e e I A

E u u

E e e

E e

E e u

E e

E u e

µ µ
µ θ θ

µ
µ θ
µ
µ θ
µ

−−

−−

−

−

−

−

= − Ψ − Ψ

+ Ψ − Ω − Ω Ψ

+ Ψ Ω Ω Ψ

+ Ψ Ω Ψ

− Ψ Ω Ω Ψ

+ Ψ Ω Ψ

− Ψ Ω Ω Ψ

 (73) 

We now need to find a bound for the norm of the RHS of 
(73) in terms of the norm of ( )kE e  or ( )k kTE e e . The first 

term on the RHS is already an expression of ( )k kTE e e , and 

the second term does not involve ke . The remaining five 
terms need work and they can be estimated using the follow-
ing result. 
Lemma 3. 
Let ,P Q be two random matrices and ,v w  be two random 

vectors. If v  and w  and their products are independent of P
and Q and their products, then  

|| ( ) || || ( ) || || (vec( )vec( ) ) ||T T T
F F FE Pvw Q E vw E P Q≤ . (74) 

Now each of the last five terms on the RHS of (73) can be 
written in the form of (74). For example, for the fourth term 
on the RHS of (73) 

1 1 ,  where

[1,0, ,0] , [ ,0, ,0] .

k kT k T
k k

T M k T M M

e e w Q

w Q

θ
θ

− −

×

Ω = Ω

= ∈ ℜ = ∈ ℜ
	 	

… …
   (75) 

Therefore, since 1ke −  and w  are independent of kΩ  and Q  in  

(75), Lemma 3 leads to 

    

1 1

1

1

2 1

|| ( ) || || ( ) ||

                         || ( ) || || (vec( )vec( ) ) ||

                         || ( ) || || (vec( ) ) ||

                         || ( ) || .

k kT k T
k k F

k T T
F k F

k kT
k F

k

E e E e w Q

E e w E Q

E e E

E eθ

θ

θ
σ

− −

−

−

−
Ω

Ω = Ω

≤ Ω

≤ Ω

≤

(76) 

Similarly, applying (74) to the third term on the RHS of (73), 
we find 
 1 ( 1) 2 1 ( 1)|| ( ) || || ( ) ||k k T k k T

k k FE e e E e eσ− − − −
ΩΩΩ Ω ≤ . (77) 

In (76) and (77), the variables θσΩ  and σΩΩ  are defined in 

(62).  For the last term on the RHS of (73) 

 
( ) ( )1 12

2 1

ˆ ˆ|| ( ) || || ( ) ||

ˆ                                || || || ( )|| .

k kT T
k k F F

k

E ue E ue

u E e

σ
σ

− −
ΩΩ

−
ΩΩ

Ω Ω ≤

≤
 (78) 

Working out all the terms in (73), we have the following re-
sult. 
Lemma 4. 
If the condition of Lemma 1 is met, then 

  

( )12 2 2 2 1

2 2 2 2 2 2

2 2 2 2 0

|| ( ) || ((1 ) ) || ( ) ||

ˆ ˆ                   ( 2 || || || || )

ˆ                   2 ( || || ) || ( ) || .

kk kT k T
k k

k

k

E e e d E e e

d u u

d u E e

θθ θ

θ

µ λ µ σ
µ σ σ σ

µ σ σ

−−
ΩΩ

Ω ΩΩ

ΩΩ Ω

≤ − +

+ + +

+ +

 (79) 

 In above, d  is given by (49). By applying Lemma 4, we 
can show the following result. 
Lemma 5. 
There exist 0 0 0ˆ0, 0, 0, 0γ λ µ δ> > > >  such that if 

0ˆ 0< kµ µ≤  and 00 γ γ≤ ≤  then for all 0k > , 

 

0 0 2
01

2 2 2 2
2 0 11 2

|| ( ) || || ( ) || (1 )

                    (1 ) .

kk kT T
F F jj

jk

k i k jj i

E e e E e e

d

µ λ

δ µ λ µ
=

− + − += =

≤ −

+ −

∏
∑ ∏

 (80) 

Finally, the convergence of the variance is given below. 
Theorem 2. 
There exist 0 0γ >  and 0ˆ 0µ >  such that if the sequence 

0ˆ0 kµ µ< ≤  satisfies
1 kk
µ∞

=
= ∞∑ , and 2

1 kk
µ∞

=
< ∞∑ ,  then 

  lim ( ) 0k kT

k
E e e

→+∞
= , 0  0for all γ γ≤ ≤ . (81) 

There exists at least one sequence kµ  for which the condi-

tion of Theorem 2 is satisfied. Indeed, the sequence can be 
defined by 

 1
0 0

1
, 1,2,...

ˆ( 1)k k
k

µ
λ µ −= =

− +
 (82) 

By using the sequence (82), both Theorem 1 an Theorem 2 
hold, and therefore, the mean of ku  converges to ̂u , and the 
mean of error squared converges to zero. In this sense, we 
conclude that ku  converges to ̂u . 
 The rate of convergence of mean square ( )k kTE e e  depends 

on the two terms on the RHS of (80). The first term is same as 
the convergence rate of the mean. The second term on the 
RHS of (80) depends on kµ  and covariances 2 2 2, ,θθ θσ σ σΩΩ Ω . 

Small values for these variables make the iteration fluctuates 
less. Note that the covariances 2 2 2, ,θθ θσ σ σΩΩ Ω  can be made ar-

bitrarily small by using large sample size N  in (57). This 
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leads to the conclusion that the larger sample size N , the less 
fluctuation is in the iteration. 

VI.  SIMULATION  

In this section, we present results from two simulation cas-
es, one for estimating the camera response function (CRF) in 
image processing and the other for adaptive channel equaliza-
tion in data communications. These simulations not only 
demonstrate the effects of using constraints in PSGM but also 
support the analysis of the previous sections. 

A. Approximation of camera response function 

In image processing, camera response functions are nonlin-
ear functions which introduce artifacts such as blurring in im-
ages, and in order to remove or reduce such artifacts, it is of-
ten necessary to estimate CRF [6][7]. In this simulation, we 
use a gamma correction to model the CRF and estimate it by a 
polynomial. The random process is modeled by a Gaussian 
mixture model which is a common model for pixels of images. 
More specifically, the CRF is assumed to be given by 

 ( ) , 1/ 5.5f x xγ γ= = . (83) 

Image pixels are normalized to interval [0,1] , and they are 

modeled by two component Gaussian mixture with probability 
density function (PDF) given by 

 
( ) ( )2 22 2

1 1 2 2/ /1 1
1 2

1 1 2 2

( ) ( 2 ) ( 2 ) ,

.3, .01, .6, .007.

x xx e eµ σ µ σρ σ π σ π
µ σ µ σ

− − − −− −= +
= = = =

 (84) 

The basis functions ( )xΦ  are chosen to be orthogonal pol-

ynomials of degree less than 10, with respect to PDF given in 
(84).  No noise is explicitly introduced in the simulation. 

The theoretical best approximation û  is computed from (6) 
by using a large number, 50 million, of samples, i.e., about 5 
images of 10 megapixels each, and it is shown as the dotted 
curve in Fig 2. As is expected, the theoretical best approxima-
tion derivates from the CRF significantly at the right end of 
the interval, because there are very few samples near the end 
of the interval. Constrained approximation can be used to alle-
viate this problem. 

 
Fig 2 Constrained approximation of CRF. Magenta solid curve is the 
assumed model for CRF, which is to be approximated. The black 
dotted curve is the theoretical best approximation as obtained by 
using 5 million samples. Blue dashed curve is the approximation 
computed from PSGM. 
 

In the simulation, constraint is implemented by PSGM of 
(48). The constraint is the requirement that the derivative of 

the update be smooth, resulting in the following parameters 
used in the simulation. 

     0

1
0

10, 1000, , , .02, .01,

 if 1000, ( 1000) , if 1000.

T

k k

M N B I C D D

k k k

γ µ
µ µ µ −

= = = = = =

= < = − >
 (85) 

In (85), D  is the difference operator of  (31).  At each step, 
1000 random samples are created from (84), and (48) is used 

to compute ku . A total of 500,000 steps are performed and 

the resulting ku  is shown in Fig 2. As is evident, the con-
strained ku  has smaller deviation from the CRF close to the 
right end of the interval. This demonstrates the effect of the 
constrained approximation. 

The iteration is performed with a large number of steps to 
show the convergence history of PSMG, as presented in Fig 3, 
which show the relative error, ˆ ˆ|| || || ||ku u u−  as a function of 

the iteration number. As is evident, the mean of the error de-
creases in the iteration, although there are fluctuations in the 
errors themselves. This is consistent with the analysis of the 
previous section.  

Note that in Fig 2, the computed ku  still differs noticeably 
from the theoretical ̂u , especially at the right end of the inter-
val (near 1). This is due to the following two reasons. First, the 
errors in our analysis are measured by the expected values, 

( )kE e  and ( )k kTE e e , both are weighted by the density func-

tion ρ  of (84), which is very small near 1. Consequently, the 

seemingly large error in Fig 2 is actually very small when 
measured by the expected values, as is evident in Fig 3. Sec-
ondly, due to round-off errors in simulation, the errors ( )kE e  

and ( )k kTE e e  will be bounded below by a nonzero value de-

termined by the machine epsilon of floating point operations, 
and consequentially ku  may never be the same as û  no matter 
how many iterations are performed. 

 
Fig 3 Errors in the iteration. (a) Steps 1 to 2,000. The update factor 

kµ  is constant before step 1000, and it is decreasing after step 1000. 

Although the relative error appears to be constant after step 1000, it is 
actually decreasing. (b) Steps 498,000 to 500,000 of PSGM 
 

Finally, we point out that error ( ) ( )ku x f x−  may not be a 

good indication of how well ku  converges to ̂u  because the 
error of the theoretical best approximation itself, ˆ( ) ( )u x f x− , 
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may be large because ( )f x  may not be well approximated by 

any combination of the basis functions { }kΦ . 

B. Channel equalization in data communication 

In data communication using twisted pair cables, data is 
transmitted through a channel which introduces distortion into 
the transmitted data. In this simulation, data from an experi-
mental data transmission system with an RF amplifier is used 
[20]. The simulation setup is shown in Fig 4. 

In Fig 4, function f  represents the channel of the twisted 

pair cable and RF amplifier. The receiver equalizer is to per-
form an inversion of the channel f . In the adaptive equaliza-

tion, the PSGM is used to approximate the inverse of the 
channel. Note that while the equalizer (the block named “RX 
EQ” in Fig 4) itself must be operating in real-time, the adapta-
tion algorithm (the block named “find ku ”) does not need to 
be performed real-time, although fast speed is preferred. A 
small amount, infrequently captured transmitted data, and the 
corresponding synchronized received data are available to the 
adaptation algorithm.  

In this simulation, since the transmitted and received data 
are captured experimentally, the function f  representing the 

channel is unknown. Furthermore, the system is set up so that 
there is a fairly large amount of noise and distortion in the 
channel. 

The channel is nonlinear and has a memory of a very long 
time duration covering hundreds to a thousand samples. The 
memory effect may be largely taken care of by a linear filter, 
and therefore, the strategy used in this simulation is to perform 
an adaptive linear filter followed by a nonlinear compensation. 
Although the PSGM is also used for the linear filter, the adap-
tive linear filter techniques are well studied so it is not of the 
interest of this paper. In this rest of this paper, we describe the 
details of nonlinear compensation which follows the linear 
filter. 

 
Fig 4 Adaptive channel equalization in data communication. The 
receiver equalizer is implemented by the PSGM. 

Basis functions 

After the linear filter, the memory effect may be handled by 
using a small number of taps. In this simulation, the basis 
functions are based on 5-tap piecewise constant functions. The 
nonlinear equalizer is implemented by the function given by 

 ( ) ( )2

2

t
n n t n tt

x x x− −=−
Φ = Φ∑ . (86) 

Each of ( ) , 2,...,2t x tΦ = − , is a piecewise constant function 

represented by a look-up-table (LUT) of 10 bits. That is, there 

are 1024 constants in each of  ( )t xΦ , and each constant is an 

unknown. Therefore, the total number of unknowns for this 
simulation is 5120M = . These unknowns are the entries of 
the vector u  as discussed in the previous sections, and they 
will be computed by the PSGM of (48). 

Transmitted and received data samples 

The transmitted and received data are sampled at the rate of 
1GHz [20]. The samples are real valued. A large set of sam-
ples is captured for transmitted and received data, 0x  and 0y . 

Each of them contains 0 260000N =  samples. The transmitted 

and received samples are synchronized. The samples are 
scaled to the interval [ 1,1]− . 

At each step 0k >  of the iteration, a set of transmitted 

samples kx  and a set of received samples ky  are selected 

from 0x  and 0y , respectively. Each set of kx  and ky  con-

tains consecutive time domain samples, but starts from a ran-
dom location in 0x  and 0y . The total number of samples in 

each of  kx  and ky  is 1000N = . 

Autocorrelation matrix A  

 The set of the received samples is used to compute the auto-
correlation matrix A  of (7). Note that the matrix is not needed 
in the PSGM process, but it is used for discussion purposes. 
Although the definition of A  requires the probability density 
function, for the purpose of this simulation, it is approximated 
by (16) by using the large set of samples, 0y . As previously 

pointed out, even though the basis functions for each of 

( ) , 2,...,2t x tΦ = −  are orthogonal, matrix A  is not a diagonal 

matrix because of memory taps. In fact, with the samples cap-
tured, A  has the sparsity structure, which shows the locations 
of the nonzero entries of the matrix, as shown in Fig 5. 

 
Fig 5 Sparsity of the autocorrelation matrix A . Each dot indicates a 
nonzero entry in the matrix. The matrix is computed from (16) by 
using 260000 received samples with the 5-tap piecewise constant 
functions of 10 bits. The dimension of the matrix is 5120 5120× . 

Preconditioning matrix B  

 The main diagonal of A  is used as the preconditioner in 
PSGM, i.e., ( )B diag A= . The use of the preconditioner helps 

to speed up the convergence by reducing the effective condi-
tion number of PSGM. As the condition number of A  is very 
large, Matlab has difficulty to compute it accurately for 

80M >  (corresponding to 5-tap 4bit LUTs). To demonstrate 
the effectiveness of the diagonal preconditioner, 4bit LUTs are 

used to compute the eigenvalues of A  and 1B A− , and the re-

( )f i 1( ) ku −Φ ⋅i

find ku

kx

ku

ky

ke

++ -

kyɶ

channel

RX EQ
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sults are given below: 

 
1

5 3max 80 80 max 80 80
1

min 80 80 min 80 80

( ) ( )
5.6 10 , 7.2 10

( ) ( )

A B A

A B A

λ λ
λ λ

−
× ×

−
× ×

= × = × . (87) 

As shown in (87), the preconditioning reduces the condition 
number of the system by two orders of magnitude. 

Constraint C  

 Without using constraints, the computed LUTs ( )t xΦ  may 

be very jittery. This may be the case even when the number of 
samples is large. For example, when (19) is solved by using 

0 260000N =  samples of 0x  and 0y , the result is shown in 

Fig 6 (a). As is evident, the LUTs are discontinuous, and 
therefore, merely using a large number of samples does not 
necessarily provide smoothness in the LUTs. 

This issue can be resolved by using the smoothness con-
straint given by matrix D , the difference operator of (31). The 
constraint is incorporated into the preconditioner of the PSGM 
(48). As a summary, the parameters used in the PSGM simula-
tion is given by 
 0.1, ( ) , 0.02.T

k B C diag A D Dµ γ γ γ= + = + =  (88) 

Note that the preconditioner B Cγ+  of (88) is positive defi-

nite and tri-diagonal and hence easy to invert. 
The LUTs computed from PSGM (48) are shown in Fig 6 

(b). As is evident, the constrained PSGM results in smooth 
LUTs. 

 
Fig 6 Computed look-up-tables (LUTs). (a) the LUTs are computed 
from (19) by using 260,000 samples. (b) the LUTs are computed by 
using constrained PSGM. 

Convergence 

 To measure the accuracy of the PSGM, the error is defined 
as the difference between the transmitted signal and the signal 
after the receiver equalizer. Referring to Fig 4, at each step k  
of the iteration, the computed LUTs are used in the RX EQ, 
with the large set of samples 0y  as equalizer input, and the 

output kxɶ  is compared with large set of the transmitted sam-

ples 0x . More precisely, the error vector ke  is defined as 

 
0

20 0
1 2

[ ] , ( ), 1,...k k k t
n N n n n tt

e e e x x k× −=−
= = − Φ =∑ . (89) 

 The size of error as a function of the iteration number is 
shown in Fig 7. As is consistent with the analysis, the mean of 
the error decreases, but the errors themselves fluctuate. Note 

that in this simulation, the update factor .1kµ =  is a constant 

through the simulation.  
At the last step, 10000k = , the computed LUTs are shown 

in of Fig 6 (b) and the resulting relative error is -41.2dB. As a 
comparison, when the solution of (19) is computed with all 
samples of 0x  and 0y , the LUTs are shown in Fig 6 (a), and 

the resulting relative error is -41.5dB. Even though the LUTs 
in Fig 6 (a) is specifically tuned to the data sets 0x  and 0y , 

the resulting error is only about 0.3dB better than that from the 
constrained stochastic process with LUTs of Fig 6 (b), which 
has much better properties. 

Next, the sample plots are shown in Fig 8; they are results 
before EQ, after linear EQ, and after nonlinear EQ. The after 
nonlinear EQ result is obtained by using the PSGM. It is evi-
dent from Fig 8 that the RX EQ has significantly reduced the 
channel distortion. It is worth noting that these results were 
obtained purely based on the samples of the signal waveform, 
no modulation information is used in the processing. The same 
technique works for either single carrier QAM signals, or mul-
ti-carrier OFDM signals.  

 
Fig 7 Convergence history of the error computed from PSGM.  

 
Fig 8 Sample plots. Received samples are plotted against the trans-
mitted samples. Red dots are the sets with received samples before 

compensated by equalizer, i.e., 0x  and 0y . Green dots are the sets 

with received samples after linear EQ. Black dots are the sets with 

received samples after the linear and nonlinear equalizer, i.e., 0x  and 
kyɶ . The blue line represents the ideal channel in which the received 

samples equal the transmitted samples. The after nonlinear EQ result 
is obtained from PSGM. 
 

Finally, we note the reasons why we use a constant update 
factor .1kµ = , which meets the requirement of Theorem 1, 
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but not that of Theorem 2. Data used in this simulation is from 
a real time prototype system in which the channel is non-
stationary. The channel varies with time, often slowly com-
pared to the sample duration, due to such factors as tempera-
ture change, clock drifting and component aging etc. Conse-
quently, the stochastic process is not stationary as we assumed 
at the very beginning of the Section II. However, since the 
change is slow, it can be regarded as stationary in a short time 
interval, and the analysis of this paper can be applied within 
the interval. By using a constant update factor, Theorem 1 
implies that the mean of error will approach to zero, so that the 
channel change can be tracked by the RX EQ. Furthermore, 
the discussion following Theorem 1 shows that a very small 

kµ  leads to slow convergence of the mean, and hence poor 

tracking of the channel. Therefore, in practical time varying 
problems, factor kµ  cannot be set to a too small value since 

that would lead to the loss of tracking capability. The update 
factor is often set to a constant because, though the channel 
varies with time, the signal statistics from one time interval to 
another are expected to be similar. On the other hand, a con-
stant kµ  violates Theorem 2, so that the variance of error is no 

long expected to converge, which is a side effect of the non-
stationary stochastic process. This exemplifies the classic 
trade-off between the speed of tracking (the convergence rate 
of the mean of the error) and the fluctuation in the result (the 
variance of the error).  

VII.  CONCLUSION 

 The constrained and preconditioned stochastic gradient 
method (PSGM) is investigated. Constraints of the iterative 
updates can be incorporated into the preconditioner. Both con-
straining and preconditioning are desirable in stochastic ap-
proximations.  
 Theoretical analysis of the PSGM is performed. Conver-
gence is proved under rather general assumption that the sam-
ple sets are drawn identically and independent from one set to 
another, namely, the assumptions in (62). 
 Simulations are performed to demonstrate the effect of con-
straints and to support the results of the theoretical analysis. 

APPENDIX 

Proof of Lemma 1. 
Let 1

1
( ) min ( )T

x
G x B C Axγ γ −

=
= + . Then ( )G γ  is a continuous 

function of γ . From (54), there exists ' 0ε >  so that 

(0) 'G ε≥ . By continuity, there exists 0 0γ >  such that for all 

00 γ γ≤ ≤ , ( ) '/ 2G γ ε ε≥ ≜ . Therefore, 

0 0

1
min

0 0 1
min ( ) min min ( ) 0T

x
G x B C Ax

γ γ γ γ
λ γ γ ε−

≤ ≤ ≤ ≤ =
= = + ≥ > ,  

which proves part 1) of the Lemma 1. Next we show part 2). 
By definition of minλ  and maxλ , we have 

1
min( )Tx B C Axγ λ−− + ≤ −  and  2 2

max( )Tx A B C Axγ λ−+ ≤ . It 

can be shown that λ  of (68) satisfies min maxmin{ , }λ λ λ< . If 

min
0 2 2

max

2k

λ λµ µ
λ λ

−
≤

−
≜ , then 2 2

min max2 2k kλ µ λ λ µ λ− + ≤ − + . 

Therefore, for any : || || 1x x = , we have 

( )

1 2
2

1 1

1 2 2

2 2 2
min max min max

22

|| ( ( ) ) ||

      ( ( ) ) ( ( ) )

      1 2 ( ) ( )

      1 2 1 ( 2 )

      1 ( 2 ) 1 ,

k

T T
k k

T T
k k

k k k k

k k k

I B C A x

x I B C A I B C A x

x B C Ax x A B C Ax

µ γ
µ γ µ γ

µ γ µ γ
µ λ µ λ µ λ µ λ

µ λ µ λ µ λ

−

− −

− −

− +

= − + − +

= − + + +

≤ − + = + − +

≤ + − + = −

 (90) 

which proves (69) by definition of induced norm of matrix. 
The value minimizing line 4 of (90) is 2

min max/kµ λ λ=  which 

is exactly 0µ  of (68) when 1τ ≥ . 

Proof of Theorem 1. 

Since λ  is a positive constant, condition 
1 kk
µ∞

=
= ∞∑  im-

plies 
1 kk
µ λ∞

=
= ∞∑ , leading to 

1
(1 ) 0jj

µ λ∞

=
− =∏ . 

Proof of Lemma 2. 
The error ke  in (64) can be written as 
   1 1 ˆ( ( )) ( )k k k

k k k k k kI A e e uµ µ µ θ− −− Ψ + Ω − ΨΩ + Ψ − Ω , (91) 

which is rewritten as, with superscript removed, to save space 

 ke e eα µβ µη= + + , where (92) 

 ˆ( ), , ( )k
k k k kI A uα µ β η θ= − Ψ + Ω = ΨΩ = Ψ − Ω . (93) 

Then 

 
2

( )( )

(...) (...).

k kT T T T T T

T T

e e e e e e

ee

α µβ µη α µ β µη
α α µ µ

= + + + +
= + +

 (94) 

All the terms of (94) linear in µ  can be arranged to have only 

zero mean variables such as kΩ  or kθ , or an additional factor 

with 1ke −  which is independent of the zero mean variables. 
Therefore, after taking the expected value, all the terms linear 
in µ  disappear and (94) is left with only the first term and the 

terms that are quadratic in µ , and (94) becomes 
( )

( )

( )

11

2

12 1

2 1

12

( ) (( ) ( ))

ˆ ˆ(( )( ) )

( )

ˆ( ( ) )

ˆ(( ) ) .

kk kT k T
k k

k k T
k k k

kk T
k k k

k k T
k k

kk T
k k

E e e E I A e e I A

E u u

E e e

E e u

E u e

µ µ
µ θ θ

µ
µ θ

µ θ

−−

−−

−

−

= − Ψ − Ψ

+ Ψ − Ω − Ω Ψ

+ Ψ Ω Ω Ψ

+ Ψ − Ω Ψ

+ Ψ − Ω Ψ

 (95) 

Equation (95) can be further expanded to (73), which proves 
Lemma 2. 
Proof of Lemma 3. 
Let jp  be the columns of P  and T

iq   the rows of Q . Then  

 
,

T T
j i j ii j

Pvw Q v w p q=∑ . (96) 

The ,α β  entry of (96) is given by 

                          
,

( )T
j i j ii j

Pvw Q v w p qαβ α β=∑ . (97) 

Since the products of v  andw  are independent of those of P  
and Q , taking the mean of (97) yields         

 
,

( ) ( ) ( )T
j i j ii j

E Pvw Q E v w E p qαβ α β=∑ . (98) 
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Applying Cauchy-Schwarz inequality to (98) leads to 

  

2 2 2

, ,

2 2

,

( ) ( ) ( )

|| ( ) || ( ) .

T
j i j ii j i j

T
F j ii j

E Pvw Q E v w E p q

E vw E p q

αβ α β

α β

≤

≤

∑ ∑
∑

 (99) 

By definition of Frobenius norm, we have 
2 2

,

2 2

, , ,

2 2

|| ( ) || ( )

                       || ( ) || ( )

                       || ( ) || || (vec( )vec( ) ) || ,

T T
F

T
F j ii j

T T
F F

E Pvw Q E Pvw Q

E vw E p q

E vw E P Q

αβα β

α βα β

=

≤

≤

∑
∑  (100) 

which concludes the proof.  
Proof of Lemma 4. 
We already have the estimates for the last five terms on the 
RHS of (73). For the first term, we need to show that for any 
two M M× matrices, the following holds 

 2|| || || || || ||F FPQ P Q≤  and 2|| || || || || ||F FPQ P Q≤ . (101) 

Indeed, let the columns of Q  be , 1,...,jq j M= , then 

    

2 2 2
1 2

2 2 2 2 2 2
2 2 2 2 2

|| || || [ ,..., ] || || ||

|| || || || || || || || || || || || .

F M F jj

j j Fj j

PQ P q q Pq

P q P q P Q

= =

≤ = =

∑
∑ ∑

 (102) 

From (102), the first term on the RHS of (73) can be found as 

 
2
2

2

|| ( ) ( ) || || || || ||

                                            ( ) || || ,

k k F k F

k F

I A I A I A

I

µ τ µ µ
µ λ

− Ψ − Ψ ≤ − Ψ Λ

≤ − Λ
 (103) 

where ( )11( )kk TE e e −−Λ = . In (103), the result of (69) is used. 

The second term on the RHS of (73) has the bound 
 2 2 2 2 2 2ˆ ˆ( 2 || || || || )k d u uθθ θµ σ σ σΩ ΩΩ+ + , (104) 

where d  is defined in (49). Collecting all the terms, we have  

  

( )12 2 2 2 1

2 2 2 2 2 2

2 2 2 2 1

|| ( ) || ((1 ) ) || ( ) ||

ˆ ˆ                   ( 2 || || || || )

ˆ                   2 ( || || ) || ( ) || .

kk kT k T
k k F

k

k
k

E e e d E e e

d u u

d u E e

θθ θ

θ

µ λ µ σ
µ σ σ σ

µ σ σ

−−
ΩΩ

Ω ΩΩ

−
ΩΩ Ω

≤ − +

+ + +

+ +
 (105) 

Finally, if the condition of Lemma 1 is met, it can be derived 
from (70) that 

 1 0|| ( ) || || ( ) ||kE e E e− ≤ . (106) 

Substituting (106) into (105), we have proved Lemma 4. 
Proof of Lemma 5. 
It can be easily shown that 

 
( ) ( )

2 2 2

2 22 2 2

if /(3 / 4 ),

then 1 1 / 2 .

k

k k k

d

d

µ λ λ σ

µ λ µ σ µ λ
ΩΩ

ΩΩ

≤ +

− + ≤ −
 (107) 

Therefore, let  

    

{ }2 2 2 2
0 min max

2 2 2 2 2

2 2 0
0

ˆ min 4 /(3 4 ),2( ) /( ) ,

ˆ ˆ2 || || || ||

ˆ    2( || || ) || ( ) ||,       / 2.

u u

u E e

θθ θ

θ

µ λ λ σ λ λ λ λ

δ σ σ σ
σ σ λ λ

ΩΩ

Ω ΩΩ

ΩΩ Ω

= + − −

= + +

+ + =

 (108) 

We have from (79),  

    

( )

2 2 2 2 1 ( 1)

2 2 2 2 2 2

2 2 2 2

2 1 ( 1) 2 2
0

|| ( ) || ((1 ) ) || ( ) ||

ˆ ˆ                   ( 2 || || || || )

ˆ                   2 ( || || )

                   1 || ( ) ||

k kT k k T
k k

k

k

k k T
k k

E e e d E e e

d u u

d u

E e e

θθ θ

θ

µ λ µ σ
µ σ σ σ

µ σ σ

µ λ µ δ

− −
ΩΩ

Ω ΩΩ

ΩΩ Ω

− −

≤ − +

+ + +

+ +

≤ − + 2

0

,

ˆfor all 0,  if .k

d

k µ µ> ≤

 (109) 

Now applying (109) recursively, we have proved Lemma 5. 

Proof of Theorem 2. 

Let 2 2 2

1 1 1
, , , (1 ) 1

k

k k k i i ik k i
R S S lµ µ µ µ λ∞ ∞

= = =
− <∑ ∑ ∑≜ ≜ ≜ ≜ , 

2 2
2 11 2

(1 )
jk

k k i k jj i
T µ λ µ− + − += =

−∑ ∏≜ . We show that if R = ∞  

and S < ∞ , then lim 0k
k

T
→∞

= . Indeed, for any K k< , we have 

 

2 2 2 2
1 11 2

2 2 2 2
1 1

1 1

... ...

... ( ... )

.

k k k

k k i K i K ii K i K i

k

k K K ii K

k

k K K ii K

T l l l

l

S S S l

µ µ µ µ

µ µ µ µ

−= + = =

− =

− − =

= + + + + +

≤ + + + + +

= − +

∏ ∏ ∏
∏

∏
 (110) 

Now 0ii K
l

∞

=
=∏  for any fixed K  because R = ∞ . Taking 

limit in (110) leads to 1lim k K
k

T S S −→∞
≤ −  for any fixed K . 

Therefore, 1lim lim( ) 0k K
k K

T S S −→∞ →∞
≤ − = . 
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