arXiv:1604.08738v3 [cs.DS] 14 Jun 2017

[/O-FEfficient Generation of Massive Graphs
Following the LFR Benchmark*

Michael Hamann', Ulrich Meyer?, Manuel Penschuck?, Hung Tran*, and
Dorothea Wagner!

fInstitute of Theoretical Informatics, Karlsruhe Institute of Technology,
Am Fasanengarten 5, 76131 Karlsruhe, Germany

{michael.hamann, dorothea.wagner } @kit.edu

Hnstitute for Computer Science, Goethe-University Frankfurt,
Robert-Mayer-Strale 11-15, 60325 Frankfurt am Main, Germany

{umeyer, htran, mpenschuck }@ae.cs.uni-frankfurt.de

June 15, 2017

Abstract

LFR is a popular benchmark graph generator used to evaluate community detection
algorithms. We present EM-LFR, the first external memory algorithm able to generate
massive complex networks following the LFR benchmark. Its most expensive component
is the generation of random graphs with prescribed degree sequences which can be divided
into two steps: the graphs are first materialized deterministically using the Havel-Hakimi
algorithm, and then randomized. Our main contributions are EM-HH and EM-ES, two 1/0O-
efficient external memory algorithms for these two steps. We also propose EM-CM/ES, an
alternative sampling scheme using the Configuration Model and rewiring steps to obtain a
random simple graph. In an experimental evaluation we demonstrate their performance; our
implementation is able to handle graphs with more than 37 billion edges on a single machine,
is competitive with a massive parallel distributed algorithm, and is faster than a state-of-the-
art internal memory implementation even on instances fitting in main memory. EM-LFR’s
implementation is capable of generating large graph instances orders of magnitude faster than
the original implementation. We give evidence that both implementations yield graphs with
matching properties by applying clustering algorithms to generated instances. Similarly, we
analyse the evolution of graph properties as EM-ES is executed on networks obtained with
EM-CM/ES and find that the alternative approach can accelerate the sampling process.

*This work was partially supported by the DFG under grants ME 2088/3-2, WA 654/22-2. Parts of this paper
were published as [21].

1 Introduction

Complex networks, such as web graphs or social networks, are usually composed of commu-
nities, also called clusters, that are internally dense but externally sparsely connected. Finding
these clusters, which can be disjoint or overlapping, is a common task in network analysis. A
large number of algorithms trying to find meaningful clusters have been proposed (see [16} 22, [17]
for an overview). Commonly synthetic benchmarks are used to evaluate and compare these
clustering algorithms, since for most real-world networks it is unknown which communities they
contain and which of them are actually detectable through structure [4, [I7]. In the last years,
the LFR benchmark [28 27] has become a standard benchmark for such experimental studies,
both for disjoint and for overlapping communities [14].

With the emergence of massive networks that cannot be handled in the main memory of
a single computer, new clustering schemes have been proposed for advanced models of compu-
tation [9, 49]. Since such algorithms typically use hierarchical input representations, quality
results of small benchmarks may not be generalizable to larger instances. To produce such large
instances exceeding main memory, we propose a generator in the external memory (EM) model
of computation that follows the LFR benchmark.

The distributed CKB benchmark [11] is a step in a similar direction, however, it considers
only overlapping clusters and uses a different model of communities. In contrast, our approach is
a direct realization of the established LFR benchmark and supports both disjoint and overlapping
clusters.

1.1 Random Graphs from a prescribed Degree Sequence

In preliminary experiments, we identified the generation of random graphs with prescribed
degree sequence as the main issue when transferring the LFR benchmark into an EM setting
— both in terms of algorithmic complexity and runtime. To do so, the LFR benchmark uses
the fized degree sequence model (FDSM), also known as edge-switching Markov-chain algorithm
(e.g. [35]). It consists of a) generating a deterministic graph from a prescribed degree sequence
and b) randomizing this graph using random edge switches. For each edge switch, two edges
are chosen uniformly at random and two of the endpoints are swapped if the resulting graph
is still simple (for details, see section . Each edge switch can be seen as a transition in a
Markov chain. This Markov chain is irreducible [I3], symmetric and aperiodic [I8] and therefore
converges to the uniform distribution. It also has been shown to converge in polynomial time
if the maximum degree is not too large compared to the number of edges [19]. However, the
analytical bound of the mixing time is impractically high even for comparably small graphs as
it contains the sum of all degrees to the power of nine.

Experimental results on the occurrence of certain motifs in networks [35] suggest that 100m
steps should be more than enough where m is the number of edges. Further results for random
connected graphs [18] suggest that the average and maximum path length and link load converge
between 2m and 8m swaps. More recently, further theoretical arguments and experiments
showed that 10m to 30m steps are enough [39].

A faster way to realize a given degree sequence is the Configuration Model. The problem
here is that multi-edges and loops may be generated. In the Erased Configuration Model these
illegal edges are deleted. However, doing so alters the graph properties since skewed degree
distributions, necessary for the LFR benchmark, are not properly realized [43]. In this context
the question arises whether edge switches starting from the Configuration Model can be used to
uniformly sample simple graphs at random.

1.2 Ouwur Contribution

Our main contributions are the first external memory versions of the LFR benchmark and the
FDSM. After defining our notation, we introduce the LFR benchmark in more detail and then
focus on the FDSM. We describe the realization of the two steps of the classic FDSM, namely
a) generating a deterministic graph from a prescribed degree sequence [EM-HH, section |4] and
b) randomizing this graph using random edge switches [EM-ES, section . These steps form a
pipeline moving data from one algorithm to the next. In section [6], we describe the alternative
approach EM-CM/ES generating uniform random simple graphs using the Configuration Model
and edge rewiring.

Sections and [9] describe algorithms for the remaining steps of the external memory
LFR benchmark, EM-LFR. We conclude with an experimental evaluation of our algorithms
and demonstrate that our EM version of the FDSM is faster than an existing internal memory
implementation, scales well to large instances, and can compete with a distributed parallel
algorithm. Further, we compare EM-LFR to the original LFR implementation and show that
EM-LFR is significantly faster while producing equivalent networks in terms of community
detection algorithm performance and graph properties. We also investigate the mixing time
of EM-ES and EM-CM/ES, give evidence that our alternative sampling scheme quickly yields
uniform samples and that the number of swaps suggested by the original LFR implementation
can be kept for EM-LFR.

2 Preliminaries and Notation

Define [k] := {1,...,k} for k € Nyg. A graph G = (V, E) has n = |V sequentially numbered
nodes V = {vy,...,v,} and m = |E| edges. Unless stated differently, graphs are assumed to be
undirected and unweighted. It is called simple if it contains neither multi-edges nor self-loops.
To obtain a unique representation of an undirected edge {u,v} € E, we write [u,v] € E where
u < v; in contrast to a directed edge, the ordering shall be used algorithmically but does not
carry any meaning for the application. D = (dy,...,d,) is a degree sequence of graph G iff
Vo { €}V : deg(v;) = d;.

We denote an integer powerlaw distribution with exponent —vy € R for v > 1 and values
between the limits a,b € N5 with a < b as PLD ([a,b),7). Let X be an integer random variable
drawn from PLD ([a,b),7) then P[X=Fk| o< k=7 (proportional to) if a < k < b and P[X=k] =0
otherwise. A statement depending on some number = > 0 is said to hold with high probability if
it is satisfied with probability at least 1 — 1/x for some constant ¢ > 1.

Also refer to Table[2 (Appendix) which contains a summary of commonly used definitions.

2.1 External-Memory Model

We use the commonly accepted external memory model by Aggarwal and Vitter [I]. It
features a two-level memory hierarchy with fast internal memory (IM) which may hold up to
M data items, and a slow disk of unbounded size. The input and output of an algorithm are
stored in EM while computation is only possible on values in IM. The measure of an algorithm’s
performance is the number of 1/Os required. Each I/O transfers a block of B consecutive items
between memory levels. Reading or writing n contiguous items from or to disk requires scan(n) =
©(n/B) 1/0s. Sorting n consecutive items triggers sort(n) = O((n/B) - logy;/p(n/B)) 1/0s.
For all realistic values of n, B and M, scan(n) < sort(n) < n. Sorting complexity constitutes a
lower bound for most intuitively non-trivial EM tasks [1} 34].

Degrees, community sizes and memberships Sample intra- and inter-community edges Remove (rewire) illegal edges

SR A
" /ﬂ ‘\/% !
R
O ¥
Intra-community edge Inter-community edge Community

Figure 1: Left: Sample node degrees and community sizes from two powerlaw distributions. The mizing
parameter p determines the fraction of the inter-community edges. Then, assign each node to sufficiently
large communities. Center: Sample intra-community graphs and inter-community edges. Right: Lastly,
remove illegal inter-community edges respective to the global graph.

2.2 Time Forward Processing

Let A be an algorithm performing discrete events over time (e.g., iterations of a loop) that
produce values which are reused by following events. The data dependencies of A can be modeled
using a directed acyclic graph G=(V, E) where every node v € V corresponds to an event [31].
The edge (u,v) € E indicates that the value produced by w will be required by v. When
computing a solution, the algorithm traverses G in some topological order. For simplicity, we
assume G to be already ordered, i.e. V(u,v) € E: u < v. Then, the Time Forward Processing
(TFP) technique uses a minimum priority queue (PQ) to provide the means to transport data
as implied by G: iterate over the events in increasing order and receive for each u the messages
sent to it by claiming and removing all items with priority v from the PQ. Inductively, these
messages have minimal priority amongst all items stored in the PQ. The event then computes
its result x,, and sends it to every successor v by inserting x, into the PQ with priority v. Using
a suited EM PQ [3, [42], TFP incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 The LFR Benchmark

The LFR benchmark [28] describes a generator for random graphs featuring a planted com-
munity structure, a powerlaw degree distribution, and a powerlaw community size distribution.
A revised version [27] also introduces weighted and directed graphs with overlapping commu-
nities. We consider the most commonly used versions with unweighted, undirected graphs and
possibly overlapping communities. All its parameters are listed in Table [I] and are fully sup-
ported by EM-LFR.

The revised generator [27] changes the original algorithm [28] even for the initial scenario
of unweighted, undirected graphs and non-overlapping communities. Here, we describe the
more recent approach which is also used in the author’s implementation: initially, the degrees
D=(di,...,dy), the number of memberships (v1,...,,) of each node, and community sizes
S = (s1,...,8¢) with 25021 s¢ = >, v; are randomly sampled according to the supplied
parameters. Observe that the number of communities C' follows endogenously. For our analysis,
we assume that nodes are members in ¥=0(1) communities which implies C:(’)(n)ﬂ

Depending on the mixing parameter 0 < u < 1, every node v; € V features d&*' = ud; inter-
community edges and di* = (1—pu)-d; edges within its communities. The algorithm assigns every
node v; to either ;=1 or v; = v communities at random such that the requested community
sizes and number of communities per node are realized. Further, the desired internal degree d%“
has to be strictly smaller than the size s¢ of its community §.

In the case of overlapping communities, the internal degree is evenly split among all commu-
nities the node is part of. Both the computation of d;n and the splitting into several communities
use non-deterministic rounding to avoid biases.

'Tf the maximal community size grows with ©(n¢) for € > 0, the number of communities is governed by C=o(n).

Parameter Definition

n Number of nodes to be produced

PLD ([dmin, dmax),) Degree distribution of nodes, typically v = 2

0<0<n, v>1 O random nodes belong to ¥ communities; remainder has one membership

PLD ([Smin, Smax)s 58) Size distribution of communities, typically =1

O<p<l1 Mixing parameter: fraction of neighbors of every node u that shall not share
a community with u

Table 1: Parameters of overlapping LFR. The typical values follow suggestions by [27].

As illustrated in Fig. [1} the LFR benchmark then generates the inter-community graph using
FDSM on the degree sequence (d$*', ..., dS*"). In order not to violate the mixing parameter p,
rewiring steps are applied to the global inter-community graph to replace edges between two
nodes sharing a community. Analogously, an intra-community network is sampled for each
community. In the overlapping case, rewiring steps are used to remove edges that exist in
multiple communities and would result in duplicate edges in the final graph.

While for realistic parameters most intra-community graphs fit into main memory, we cannot
assume the same for the global graph. For the global graph and large communities, an EM
variant of the FDSM is applicable, which we implement using EM-HH and EM-ES described in
sections [and [Bl

4 EM-HH: Deterministic Edges from a Degree Sequence

In this section, we introduce an EM-variant of the well-known Havel-Hakimi scheme that
takes a positive non-decreasing degree sequenceﬂ D=(ds,...,dy) and, if possible, outputs a graph
Gp which realizes these degrees. A sequence D is called graphical if a matching simple graph Gp
exists. Havel [23] and Hakimi [20] gave inductive characterizations of graphical sequences which
directly lead to a graph generator: given D, connect the first node v; with degree d; (minimal
among all nodes) to di-many high-degree vertices by emitting edges to nodes vy, _ (q,—1);- - - , Un.
Then remove d; from D and decrement the remaining degree of every new neighbor which yields
an updated sequence D’ E] Subsequently, remove zero-entries and sort D’ while keeping track of
the original positions to be able to output the correct node indices. Finally, recurse until no
positive entries remain. After every iteration, the size of D is reduced by at least one resulting
in O(n) rounds.

For an implementation, it is non-trivial to keep the sequence ordered after decrementing the
neighbors’ degrees. Internal memory solutions typically employ priority queues optimized for
integer keys, e.g., bucket-lists [44) [47]. This approach incurs ©(sort(n + m)) I/Os using a naive
EM PQ since every edge triggers an update to the pending degree of at least one endpoint.

We propose the Havel-Hakimi variant EM-HH which emits a stream of edges in lexicograph-
ical order. It can be fed to any single-pass streaming algorithm without a round-trip to disk.
Additionally, EM-HH may be used in time O(n) to test whether a degree sequence D is graphical
or to drop problematic edges yielding a graphical sequence (cf. section @ Thus, we consider
only internal I/Os and emphasize that storing the output — if necessary by the application —
requires O(m) time and O(scan(m)) I/Os where m is the number of edges produced.

2Within our pipeline, we generate a monotonic degree sequence by first sampling a monotonic uniform sequence
online based on the ideas of [6, 48]. Applying the inverse sampling technique (carrying over the monotonicity)
yields the required distribution. Thus, no additional sorting steps are necessary for the inter-community graph.
3This variant is due to [20]; in [23], the node of maximal degree is picked and connected.

4.1 Data structure

Instead of maintaining the degree of every node in D individually, EM-HH compacts nodes
with equal degrees into a group, yielding Dp := }{dZ : 1§i§n}‘ groups. Since D is monotonic,
such nodes have consecutive ids and the compaction can be performed in a streaming fashiodﬂ

The sequence is then stored as a doubly linked list L = [gj]i<j<p, Where group g; =
(bj,n;,0;) assigns degree 0; to nodes Ubjs -+ Vb4 (n;—1)- Lhe algorithm is built around the
following invariants holding at the begin of every iteration:

(I1) §; < 0j41 V1 <j < Dp, i.e. the groups represent strictly monotonic degrees
(I2) bj+nj =bjy1 V1 <j < Dp, i.e. there are no gaps in the node ids

These invariants allow us to bound the memory footprint in two steps: first observe that a
list L of size Dp describes a graph with at least Zi 5 i/2 edges due to (I1). Thus, graphs from
an arbitrary L filling the whole IM have Q(M?) edges. Even under pessimistic assumptions this
amounts to an edge list of more than 1PB of size on realistic machines] Therefore, even in
the worst case the whole data structure can be kept in IM for all practical scenarios. On top
of this, a probabilistic argument applies: While there exist graphs with Dp=0(n) (cf. Fig. ,
Lemma (1| gives a sub-linear bound on Dp if D is sampled from a powerlaw distribution (refer
also to section for experimental results).

Lemma 1. Let D be a degree sequence with n nodes sampled from PLD ([1,n),7). Then, the
number of unique degrees Dp = ‘{dz 1<i < n}‘ is bounded by O(n'/") with high probability.

Proof. Consider random variables (Xi,...,X,,) sampled i.i.d. from PLD([1,n),v) as an un-
ordered degree sequence. Fix an index 1<j<n. Due to the powerlaw distribution, X is likely
to have a small degree. Even if all degrees 1, ... ,n'/7 were realized, their occurrences would be

covered by the claim. Thus, it suffices to bound the number of realized degrees larger than n'/7.
We first show that their total probability mass is small. Then we can argue that Dp is
asymptotically unaffected by their rare occurrences:

n—1 n—1 . n—1 . .. n—1 _
PlX;>n'M = Y PX;=i] = Licatirar U @ Diwra B fp, o de
’ e Sl () S T) - [Fada
5 (=D =R e — (- 1) Ot)
C(y) + 5nt (v = 1)¢(y) —nt= ’

where (i) ((y) = >_;2, i~ 7 is the Riemann zeta function which satisfies () > 1 for all yeR, y>1.
In (ii) we exploit the sum’s monotonicity to bound it between the two integrals f:H x Vdx <
S i< f;—l x 7 dx.

i=a
In order to bound the number of occurrences, define Boolean indicator variables Y; with
Y;=1 iff X;>n!/7. Observe that they model Bernoulli trials Y;€B(p) with p=0O(n'/7/n). Thus,
the expected number of high degrees is E[Y 1, ;] = .7 | P[X;>n'/7] = O(n'/7). Chernoff’s
inequality gives an exponentially decreasing bound on the tail distribution of the sum which
thus holds with high probability. O

Due to Lemma [l a graph sampled from a powerlaw distribution with m = O(M?7) can be
computed in IM with high probability.

4While direct sampling of the group’s multinomial distribution is not beneficial in LFR, it may be used to
omit the compaction phase for other applications.

5A single item of L can be represented by its three values and two pointers, i.e. a total of 5-8=40 bytes per
item (assuming 64 bit integers and pointers). Just 2 GB of IM suffice for storing 5 x 107 items, which result in
at least 6.25 x 10'* edges, i.e. storing just two bytes per edge would require more than one Petabyte. Further,
standard tricks (e.g., exploiting the redundancy due to (I2)) can be used to reduce the memory footprint of L.

Vak V2(k—1) V2(k—2) V2

Figure 2: Materialization of the degree sequence Dy = (1,1, 2,2, ..., k, k) with Dp, = k = ©(n) which
mazximizes EM-HH’s memory consumption asymptotically. A mnode’s label corresponds to the verter’
degree.

4.2 Algorithm

EM-HH works in n rounds, where every iteration corresponds to a recursion step of the
original formulation. Each time it extracts vertex vp, with the smallest available id and with
minimal degree d;. The extraction is achieved by incrementing the lowest node id (b] < b1+1)
of group ¢1 and decreasing its size (n} < n;—1). If the group becomes empty (n} = 0), it is
removed from L at the end of the iteration. We now connect node vp, to d; nodes from the end
of L. Let g; be the group of smallest index to which v, connects to.

Then there are two cases:

(C1) If node vp, connects to all nodes in g;, we directly emit the edges {[u,z]|n—8; <z < n}
and decrement the degrees of all groups gj, ..., gz accordingly. Since degree ;1 remains
unchanged, it may now match the decremented J;. This violation of (I1) is resolved by
merging both groups. Due to (I2), the union of g;_; and g; contains consecutive ids and
it suffices to grow n;_1 <= n;_1+n; and to delete group g;.

(C2) If v, connects only to a number a < n; of nodes in group g;, we split g; into two groups
gé- and gé-’ of sizes a and n;—a respectively. We then connect vertex u to all a nodes in the
first fragment g;- and hence need to decrease its degree. Thus, a merge analogous to (C1)
may be required (see Fig. . Now, groups gj1, ..., |z are consumed wholly as in (C1).

If the requested degree d; cannot be met (i.e., j; > Z‘,ﬂl ng), the input is not graphical [20].
Since the vast majority of nodes have low degrees, a sufficiently large random powerlaw degree
sequence D contains at most very few nodes that cannot be materialized as requested. Therefore,
we do not explicitly ensure that the sampled degree sequence is graphical and rather correct the
negligible inconsistencies later on by ignoring the unsatisfiable requests.

4.3 Improving the I/O-complexity

In the current formulation of EM-HH we perform constant work per edge which is already
optimal. However, we introduce a simple optimization which improves constant factors and
gives I/O-efficient accesses. It also allows EM-HH to test whether D is graphical in time O(n).
Observe that only groups in the vicinity of g; can be split or merge; we call these the active fron-
tier. In contrast, the so-called stable groups g;y1,...,9gp, keep their relative degree differences
as the pending degrees of all their nodes are decremented by one in each iteration. Further, they
will become neighbors to all subsequently extracted nodes until group g;41 eventually becomes
an active merge candidate. Thus, we do not have to update the stable degrees in every round,
but rather maintain a single global iteration counter I and count how many iterations a group
remained stable: when a group g becomes stable in iteration Iy, we annotate it with Iy by
adding 0 < dp+1y. If g has to be activated again in iteration I > I, its updated degree
follows as 0y < dx—I. The degree 0 remains positive since (I1) enforces a timely activation.

List [(b;, n4,0;)]i Uncompressed Degree Sequence D Initial situation

group g; group gj
[(1,2,1), (3,2,2), (5,2,3)] O 1 2 2 - @2 3 ‘ a1 ‘ ‘ P ‘
extract edge-to
[(27 1, 1)-, (37 3, 2)- (6-, 1, 3)] (*\'@('t 2 2 2 d®t2 Splitting at g; (front) ! Splitting at g; (back)
e edge-to group g; group g; i group g; ‘
3,4,2 @ 1 1| 2 - N 1 N -
[(T)} extract cd@to cd@to ‘ 1 ‘ ‘ 4t ‘ | ‘ 1 M o ! d ‘
Before g; can be split, the degrees of 1

[(47 2, 1), (6, 1, 2)} @ 1 @ 1 groups g; with j > i are decreased |

ract edge-to |

group g;

|
0
ex@ct ed@to ‘ d-2 ! d—1 M d-1 ‘

[(5,2,1)]

Figure 3: Left: EM-HH on D=(1,1,2,2,3,3). Values of L and D in row i correspond to the state at
the beginning of the i-th iteration. Groups are visualized directly after extraction of the head verter. The
number next to an edge-to symbol indicates the new degree. After these updates, splitting and merging
takes place. Right: Consider two adjacent groups g;, g; with degrees d—1 and d. A split of g; (left) or
g; (right) directly triggers a merge, so the number of groups remains the same.

Lemma 2. The optimized variant of EM-HH requires O(scan(Dp)) 1/Os if L is stored in an
external memory list.

Proof. An external-memory list requires O(scan(k)) I/Os to execute any sequence of k sequential
read, insertion, and deletion requests to adjacent positions (i.e. if no seeking is necessary) [38].
We will argue that EM-HH scans L roughly twice, starting simultaneously from the front and
back.

Every iteration starts by extracting a node of minimal degree. Doing so corresponds to
accessing and eventually deleting the list’s first element g;. If the list’s head block is cached, we
only incur an I/O after deleting ©(B) head groups, yielding O(scan(Dp)) I/Os during the whole
execution. The same is true for accesses to the back of the list: the minimal degree increases
monotonically during the algorithm’s execution until the extracted node has to be connected to
all remaining vertices. In a graphical sequence, this implies that only one group remains and we
can ignore the simple base case asymptotically. Neglecting splitting and merging, the distance
between the list’s head and the active frontier decreases monotonically triggering O(scan(Dp))
I/Os.

Merging. As described before, it may be necessary to reactivate stable groups, i.e. to reload
the group behind the active frontier (towards L’s end). Thus, we not only keep the block F
containing the frontier cached, but also block G behind it. It does not incur additional 1/0,
since we are scanning backwards through L and already read G before F'. The reactivation of
stable groups hence only incurs an I/O when the whole block G is consumed and deleted. Since
this does not happen before 2(B) merges take place, reactivations may trigger O(scan(Dp))
I/0s in total.

Splitting. Observe that L at most doubles in size as splitting a group with degree d, which
has a neighbor of degree d+1, directly triggers another merge (cf. Fig. . Since a split replaces
one group by two adjacent fragments which differ in their degree by exactly one, a second split
to one of the fragments does not increase the size of the list. O

5 EM-ES: 1/0-efficient Edge Switching

EM-ES is a central building block of our pipeline and is used to randomize and rewire existing
graphs. It applies a sequence S=[o4]1<s<k of edge swaps o5 to a simple graph G=(V, E), where
typically k = ¢|E| for a constant ¢ € [1,100]. The graph is represented by a lexicographically
ordered edge list E1,=[e;]1<i<m which only stores the pair (u, v) and omits (v, u) for every ordered
edge [u,v] € E. As illustrated in Fig. |4 a swap o((a,b), d) is encoded by a direction bit d and
the edge ids a and b (i.e. the position in E},) of the edges supposed to be swapped. The switched
edges are denoted as e] and ej and are given by (e7, ef) := o((a,b), d) as defined in Fig.

a’

M e o({a,b), d) = {({017[31}7{02732}) 'lfd=false’
2 ({ar, B2} {a2,51}) if d = true
@

e Q where [a1, ag] = e, and 31, B2] = €, are the edges
input ((1,2), false) a((1,2), true) at positions a and b in the edge list Ef.
1llegal creates multi-edge)

Figure 4: A swap consists of two edge ids and a direction flag. The edge ids describe an induced subgraph
(left); the flag indicates how the incident nodes are shuffled.

We assume that the swap’s constituents are drawn independently and uniformly at random.
Thus, the sequence can contain illegal swaps that would introduce multi-edges or self-loops if
executed. Such illegal swaps are simply skipped. In order to do so, the following tasks have to
be addressed for each o({a,b), d):

T1
T2
T3
T4

Gather the nodes incident to edges e, and e.

Compute e and ej and skip if a self-loop arises.

Verify that the graph remains simple, i.e. skip if edge eJ or e already exist in Ey.
Update the graph representation Fr,.

(
(
(
(

~— — ~— —

If the whole graph fits in IM, a hash set per node storing all neighbors can be used for
adjacency queries and updates in expected constant time (e.g., VL-ES [47]). Then, (T3) and
(T4) can be executed for each swap in expected time O(1). However, in the EM model this
approach incurs Q(1) I/Os per swap with high probability for a graph with m > ¢M and any
constant ¢ > 1.

To improve the situation, we split S into smaller runs of » = ©(|E|) swaps which are then
batchwise processed. Note that two swaps within a run can depend on each other. If an edge
is contained in more than one swap, the nodes incident to the edge may change after the first
swap has been executed. We call this a source edge dependency. Since the resulting graph has
to remain simple, there further is a dependency between two swaps o, o; through target edges
if executing o; creates or removes an edge created by o;. We model both types of dependencies
explicitly and forward information between dependent swaps using Time Forward Processing.

As illustrated in Fig. [f] EM-ES executes several phases for each run. They roughly corre-
spond to the four tasks outlined above. For simplicity’s sake, we first assume that all swaps are
independent, i.e. that there are no two swaps that share any source edge id or target edge. We
will then explain how dependencies are handled.

5.1 EM-ES for Independent Swaps

During the request nodes phase, EM-ES requests for each swap o({a,b), -) the endpoints
of the two edges at positions a and b in Ey. These requests are then executed in the load
nodes phase. In combination, both implement task (T1). Subsequently, the step simulate swaps
computes e] and ef which corresponds to (T2). In the fourth step, load existence, we check
for each of these target edges whether it already exists. Then, the step perform swaps executes
swaps iff the graph remains simple; this corresponds to (T3). To implement (T4), the state of
all involved edges is materialized in the update graph phase.

The communication between the different phases is mostly realized via external memory
sortersﬂ Independent swaps require only the communication shown at the top of Fig.

5The term sorter refers to a container with two modes of operation: in the first phase, items are pushed into
the write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the filled data structure
becomes read-only and the elements are provided as a lexicographically non-decreasing stream which can be
rewound at any time. While a sorter is functionally equivalent to filling, sorting and reading back an EM vector,
the restricted access model reduces constant factors in the implementation’s runtime and I/O-complexity [5].

markers for edges that receive updates (InvalidEdge)

request nodes

first swap request
(EdgeMsg) (ExistReq)

processed swaps
(EdgeUpdates)

incident to ¢ '
(ExistMsg)

edge state to edge existence edge exist. info ‘ edges after

edge id (EdgeReq)

™~ // ™~ // ~ — ~ — ~
Er . Er Ep E;
basi | itchi request g load simulate ! load perform | update Ty
asic edge sw o .
asic edge switching nodes nodes swaps | existence swaps | graph
dependency handling . AN i
! “ | (swap-id) (edge-id) (swap-id) | (edge) (swap-id) | - (edge)
\ \
~—_ - N /) ~__ A A
! inform about edge state inform about edge state and
e — > ! e suCccessor swap updates to successor swap existence updates
Sorter Stream Priority QllCllC (IdSucc) successor (ExistSucc) to successor

Figure 5: Data flow during an EM-ES run. Communication between phases is implemented via EM
sorters, self-loops use a PQ-based TFP. Brackets within a phase represent the type of elements iterated
over. If multiple input streams are used, they are joined with this key.

5.1.1 Request nodes and load nodes

The goal of these two phases is to load every referenced edge. We iterate over the sequence
S of swaps. For the s-th swap o({(a,b), d), we push the two messages edge_req(a,s,0) and
edge_req(b, s, 1) into the sorter EdgeReq. A message’s third entry encodes whether the request
is issued for the first or second edge of a swap. This information only becomes relevant when
we allow dependencies. EM-ES then scans in parallel through the edge list Er and the re-
quests EdgeReq, which are now sorted by edge ids. If there is a request edge_req(i,s,p) for
an edge e;=[u,v], the edge’s node pair is sent to the requesting swap by pushing a message
edge msg(s,p, (u,v)) into the sorter EdgeMsg.

Additionally, for every edge we push a bit into the sequence InvalidEdge, which is asserted
iff an edge received a request. These edges are considered invalid and will be deleted when
updating the graph. Since both phases produce only a constant amount of data per input
element, we obtain an I/O complexity of O(sort(r) 4 scan(m)).

5.1.2 Simulate swaps and load existence

The two phases gather all information required to decide whether a swap is legal. EM-ES
scans through the sequence S of swaps and EdgeMsg in parallel: For the s-th swap o({(a,b), d),
there are exactly two messages edge msg(s,0, e,) and edge msg(s, 1, ¢,) in EdgeMsg. This infor-
mation suffices to compute the switched edges e and ej, but not to test for multi-edges.

To avoid these, it remains to check whether the switched edges already exist. Thus, we push
existence requests exist_req(e?,s) and exist_req(ej,s) in the sorter ExistReq (in contrast
to request nodes we use the node pairs rather than edge ids, which are not well defined here).
Afterwards, a parallel scan through the edge list F7, and ExistReq is performed to answer the
requests. Only if an edge e requested by swap id s is found, the message exist msg(s,e) is
pushed into the sorter ExistMsg. Both phases hence incur a total of O(sort(r)+scan(m)) I/Os.

5.1.3 Perform swaps

We rewind the EdgeMsg sorter and jointly scan through the sequence of swaps S and the
sorters EdgeMsg and ExistMsg. As described in the simulation phase, EM-ES computes the
switched edges e and ej from the original state e, and e,. The swap is marked illegal if a
switched edge is a self-loop or if an existence info is received via ExistMsg. If o is legal we push
the switched edges e and ef into the sorter EdgeUpdates, otherwise we propagate the unaltered
source edges e, and €. This phase requires O(sort(r)) I/Os.

5.1.4 Update edge list

The new edge list E is obtained by merging the original edge list £, and the updated edges
EdgeUpdates, triggering O(scan(m)) I/Os. During this process, we skip all edges in Ef, that
are flagged invalid in the bit stream InvalidEdge.

10

5.2 Inter-Swap Dependencies

In contrast to the earlier over-simplification, swaps may share source ids or target edges. In
this case, EM-ES produces the same result as a sequential processing of S. Two swaps containing
the same source edges are detected during the load nodes phase. In such a case there arrive
multiple requests for the same edge id. We record these dependencies as an explicit dependency
chain (see below for details).

In the simulation phase we do not know yet whether a swap can be executed. Therefore we
need to consider both cases (i.e. a swap has been executed or an existing edge prevented its
execution) and dynamically forward all possible edge states using a priority queue.

In the load existence phase, we detect whether several swaps might produce the same out-
come; in this case both issue an existence request for the same edge during simulation. Again,
an explicit dependency chain is computed. During the perform swaps phase, EM-ES forwards
the source edge states and existence updates to successor swaps using information from both
dependency chains.

5.2.1 Target edge dependencies

Consider the case where a swap o5, ({a, b), d) changes the state of edges e, and e, to €' and
e;' respectively. Later, a second swap o9 inquires about the existence of either of the four edges
which has obviously changed compared to the initial state. We extend the simulation phase in
order to track such edge modifications. Here, we not only push messages exist_req(eJ!, s1) and
exist_req(ej', s1) into sorter EdgeReq, but also report that the original edges may change. This
is achieved by using messages exist_req(e,, s1, may_change) and exist_req(ep, s1, may_change)
that are pushed into the same sorter. If there are dependencies, multiple messages are received
for the same edge e during the load existence phase. In this case, only the request of the first
swap involved is answered as before. Also, every swap o, is informed about its direct successor
os, (if any) by pushing the message exist_succ(sy,e, s2) into the sorter ExistSucc, yielding
the aforementioned dependency chain. As an optimization, may_change requests at the end of
a chain are discarded since no recipient exists.

During the perform swaps phase, EM-ES executes the same steps as described earlier. The
swap may receive a successor for every edge it sent an existence request to, and it informs each
successor about the state of the appropriate edge after the swap is processed.

5.2.2 Source edge dependencies

Consider two swaps o5, ({(a1,b1), d1) and os,({a2, b2), d2) with s;<ss which share a source
edge id, i.e. {a1,b1}N{az, by} is non-empty. This dependency is detected during the load nodes
phase, where requests edge req(e;, s1,p1) and edge_req(e;, s2, p2) arrive for the same edge id
e;. In this case, we answer only the request of s; and build a dependency chain as described
before using messages id_succ(sy, p1, 2, p2) pushed into the sorter IdSucc.

During the simulation phase, EM-ES cannot decide whether a swap is legal. Therefore, s;
sends for every conflicting edge its original state e as well as the updated state et to the ps-th
slot of so using a PQ. If a swap receives multiple edge states per slot, it simulates the swap for
every possible combination.

During the perform swaps phase, EM-ES operates as described in the independent case: it
computes the swapped edges and determines whether the swap has to be skipped. If a successor
exists, the new state is not pushed into the EdgeUpdates sorter but rather forwarded to the
successor in a TFP fashion. This way, every invalidated edge id receives exactly one update in
EdgeUpdates and the merging remains correct.

Due to the second modification, EM-ES’s complexity increases with the number of swaps
that target the same edge id. This number is quite low in case r = O(m). Let X; be a random
variable expressing the number of swaps that reference edge e;. Since every swap constitutes two
independent Bernoulli trials towards e;, the indicator X; is binomially distributed with p = 1/m,
yielding an expected chain length of 2r/m.

11

Input Shuffled sequence Resulting graph

Degree sequence D = (1,1,2,2,2,4) (6,6;774,5, 4,5, 6,1, 3,2, 3.6 0 e.e
Materialized multi-set Matched edges

[1,2,3,3,4,4,5,5,6,6,6, 6] 6,6] [4,5] [4,5] [1,6] [2,3] [3.6] ‘@ O=6
Figure 6: A Configuration Model run on degree sequence D = (1,1,2,2,2,4).

Also, for r = m/2 swaps, max;<i<n(X;) = O(In(m)/Inln(m)) holds with high probability
based on a balls-into-bins argument [36]. Thus, we can bound the largest number of edge
states simulated with high probability by O(polylog(m)), assuming non-overlapping dependency
chains. Further observe that X; converges towards an independent Poisson distribution for large
m. Then the expected state space per edge is O(1). Experiments suggest that this bound also
holds for overlapping dependency chains (cf. section .

In order to keep the dependency chains short, EM-ES splits the sequence of swaps S into
runs of equal size. Our experimental results show that a run size of r = m/8 is a suitable choice.
For every run, the algorithm executes the six phases as described before. Each time the graph
is updated, the mapping between an edge and its id may change. The switching probabilities,
however, remain unaltered due to the initial assumption of uniformly distributed swaps. Thus
EM-ES triggers O(k/msort(m)) I/Os in total with high probability.

6 EM-CM/ES: Sampling of random graphs from prescribed de-
gree sequence

In this section, we propose an alternative approach to generate a graph from a prescribed
degree sequence. In contrast to EM-HH which generates a highly biased but simple graph, we
use the Configuration Model to sample a random but non-simple graph. Thus, the resulting
graph may contain self-loops and multi-edges which we then remove to obtain a simple graph.

6.1 Configuration Model

Let D = [di]i<i<n be a degree sequence with n nodes. The Configuration Model builds a
multiset of node ids which can be thought of as half-edges (or stubs). It produces a total of d;
half-edges labelled v; for each node v;. The algorithm then chooses two half-edges uniformly at
random and creates an edge according to their labels. It repeats the last step with the remaining
half-edges until all are matched. In this naive implementation, the procedure requires 2(m) 1/Os
with high probability for m > ¢M and any constant ¢ > 1. It is therefore impractical in the
fully external setting.

As illustrated in Fig. [6] and similar to [26], we instead materialize the multiset as a sequence
in which each node appears d; times. Subsequently, the sequence is shuffled to obtain a random
permutation with O(sort(m)) I/Os by sorting the sequence by a uniform variate drawn for each
half—edgeﬂ Finally, we scan over the shuffled sequence and match pairs of adjacent half-edges.

We now give upper bounds for the number of self-loops and multi-edges introduced by the
Configuration Model. Define (D) := 3 d,/n and (D?) := Y, d2/n to be the mean and the
second moment of the sequence D.

In [2] and [37] the expected number of self-loops and multi-edges has already been studied.
The results are stated in the following two lemmata.

"The random permutation can be obtained with O(scan(m)) I/Os in case M > vmB(1 + o(1)) + O(B) [&]]
which does not affect the complexity of our total pipeline.

12

Lemma 3. Let D be a degree sequence with n nodes. The expected number of self-loops is given

by
(D) — (D) (D% — (D)
2(D)—1/n) 2(D)

for n — oo.

Lemma 4. Let D be a degree sequence with n nodes. The expected number of multi-edges is

bounded by ,
1/ (D) - (D) N
2<<D—1/n><z>—3/n>>—>2< D) > Jorm = oo

Let D be a degree sequence drawn from the powerlaw distribution PLD ([a,b),~). For fixed
v = 2, we bound the number of illegal edges as a function of @ and b. Since each entry in D is
independently drawn, it suffices to give bounds for the expected value and the second moment
of the underlying distribution.

For general v, the expected value and second moment are given by Zf: “ i~ and Z?: “ i+

respectively. Both expressions are bound between the two integrals f;H z7Pdx < Zf:a 7P <

fb_l 2 Pdx where p = —y + 1 or p = —v + 2 respectively. In the case of v = 2, the sec-

a

ond moment is (D?) = Zi’:a 1 = b—a+1. Then, by using this identity and the lower bound
ff“ r~tdz < (D), we obtain the two following lemmata:

Lemma 5. Let D be drawn from PLD ([a,b),2). The expected number of self-loops is bounded

g 1 b—a+1
2<m@+1y4m@>'

Lemma 6. Let D be drawn from PLD ([a,b),2). The expected number of multi-edges is bounded

by ,
;Qm;aSjL@Q'

6.2 Edge rewiring for non-simple graphs

As a consequence of lemmata [5] and [6] graphs generated using the Configuration Model
may contain multi-edges and self-loops. In order to detect them, we first sort the edge list
lexicographically. Then both types of illegal edges can be detected in a single scan. For each
self-loop we issue a swap with a randomly selected partner edge. Similarly, for each group of
f > 1 of parallel edges, we generate f—1 swaps with random partner edges. Subsequently, we
execute the provisioned swaps using a variant of EM-ES (see below). The process is repeated
until all illegal edges have been removed. To accelerate the endgame, we double the number of
swaps for each remaining illegal edge in every iteration.

Since EM-ES is employed to remove parallel edges based on targeted swaps, it needs to
process non-simple graphs. Analogous to the initial formulation, we forbid swaps that introduce
multi-edges even if they would reduce the multiplicity of another edge (cf. [50]). Nevertheless,
EM-ES requires slight modifications for non-simple graphs.

Consider the case where the existence of a multi-edge is inquired several times. Since Ejp, is
sorted, the initial edge multiplicities can be counted while scanning F, during the load existence
phase. In order to correctly process the dependency chain, we have to forward the (possi-
bly updated) multiplicity information to successor swaps. We annotate the existence tokens
exist msg(s, e, #(e)) with these counters where #(e) is the multiplicity of edge e.

More precisely, during the perform swaps phase, swap o1 = o({a,b), d) is informed (amongst
others) of multiplicities of edges e,,ep, €J' and €)' by incoming existence messages. If oy is
legal, we send requested edges and multiplicities of the swapped state to any successor o9 of oy
provided in ExistSucc.

13

The swapped state consists of the same edges where multiplicities for eJ' and e;' are in-
cremented and decremented for e, and e;. Otherwise, we forward the edges and multiplicities
of the unchanged initial state. As an optimization, edges which have been removed (i.e. have
multiplicity zero) are omitted.

7 EM-CA: Community Assignment

For the sake of simplicity, we first restrict the EM community assignment EM-CA to the non-
overlapping case, in which every node belongs to exactly one community. Consider a sequence
of community sizes S=[s¢]1<¢<c With n= 250:1 s¢ and a sequence of intra-community degrees
D=[d"]1<y<n. Let S and D be non-increasing and positive. The task is to find a random
surjective assignment x: V—[C] with:

(R1) Every community ¢ is assigned s¢ nodes as requested, with s¢ := |[{v|v € V A x(v)=¢}|.
R2) Every node v € V becomes member of a sufficiently large community x(v) with s,y > d.
x(v) v

7.1 Ignoring constraint on community size (R2)

Without constraint (R2), the bipartite assignment graphﬁ X can be sampled in the spirit of
the Configuration Model (cf. section @: Draw a permutation 7 of nodes uniformly at random
and assign nodes {Ur(z 41)s-- - Un(aetse)} 10 community § where z¢ := Zf;ll s;. To ease later
modifications, we prefer an equivalent iterative formulation: while there exists a yet unassigned
node u, draw a community X with probability proportional to the number of its remaining free
slots (i.e. P[X=¢] o s¢). Assign u to X, reduce the community’s probability mass by updating
sx < sx — 1 and repeat. By construction, the first scheme is unbiased and the equivalence of
both approaches follows as a special case of Lemma

We implement the random selection process efficiently based on a binary tree where each
community corresponds to a leaf with a weight equal to the number of free slots in the community.
Inner nodes store the total weight of their left subtree. In order to draw a community, we sample
an integer Y € [0, W) uniformly at random where W¢ := Zgzl s¢ is the tree’s total weight.
Following the tree according to Y yields the leaf corresponding to community X. An I/O-
efficient data structure [32] based on lazy evaluation for such dynamic probability distributions
enables a fully external algorithm with O(n/B - logy;5(C/B)) = O(sort(n)) I/Os. However,
since C' < M, we can store the tree in IM, allowing a semi-external algorithm which only needs
to scan through D, triggering O(scan(n)) I/0Os.

7.2 Enforcing constraint on community size (R2)

To enforce (R2), we exploit the monotonicity of S and D. Define p, := max{{|s¢ > di'}
as the index of the smallest community node v may be assigned to. Since [p,], is therefore
monotonic itself, it can be computed online with O(1) additional IM and O(scan(n)) I/Os
in the fully external setting by scanning through S and D in parallel. In order to restrict the
random sampling to the communities {1, ..., p,}, we reduce the aforementioned random interval
to [0, W,) where the partial sum W, := Zg”;ll s¢ is available while computing p,. We generalize
the notation of uniformity to assignments subject to (R2) as follows:

Lemma 7. Given S={s1,...,s¢} and D, let u,v € V be two nodes with the same constraints
(pu = pv) and let ¢ be an arbitrary community. Further, let x be an assignment generated by
EM-CA. Then, Plx(u)=c|] = P[x(v)=c].

Proof. Without loss of generality, assume that p, = p1, i.e. u is one of the nodes with the
tightest constraints. If this is not the case, we just execute EM-CA until we reach a node v/
which has the same constraints as u does (i.e. p,y = py), and apply the Lemma inductively.

8Consider a bipartite graph where the partition classes are given by the communities [C] and nodes [n] respec-
tively. Each edge then corresponds to an assignment.

14

This is legal since EM-CA streams through D in a single pass and is oblivious to any future
values. In case ¢ > pi, neither u nor v can become a member of c. Therefore, P[x(u)=c| =
P[x(v)=c] = 0 and the claim follows trivially.

Now consider the case ¢ < p;. Let sgi) be the number of free slots in community ¢ at the

beginning of round i > 1 and W = Zle sg-i) their sum at that time. By definition, EM-CA

assigns node u to community ¢ with probability P[x(u)=c] = sgu) /W@ Further, the algorithm
has to update the number of free slots. Thus, for iteration ¢ € [n] it holds that

Sc ifi=1
s((f) = s,(f_l) —1 if i—1 was assigned to c .
sg_l) otherwise

The number of free slots is reduced by one in each step:
‘ C
WO =38 -(@—-1)
j=1

It remains to show P[x(u)=c] = s W = sM /W) and the claim follows by transitivity.
For u=1 it is true by definition. Now, consider the induction step for u>1:

Plx(u)=c] = s /W)
S()ufl) 1 S(U71) sgufl) Sgufl) _1 . <1 Sgufl) > Sgufl)

= Px(u—1)=c > + Phe(u—1)7d s

W T Wen W T Wwen | ww
B sgufl) WD) Sgufl) B Sgufl)(W(u—l) —1) B Sgufl) Ind. Hyp. sgl)
= W) T W1, (W=1) —7) T Wwu—1) B W)

7.3 Assignment with overlapping communities

In the overlapping case, the weight of S increases to account for nodes with multiple mem-
berships. There is further an additional input sequence [v,]1<y<n corresponding to the number
of memberships a node v shall have, each of which has d" intra-community neighbors. We then
sample not only one community per node v, but v, different ones.

Since the number of memberships v, < M is small, a duplication check during the repeated
sampling is easy in the semi-external case and does not change the I/O complexity. However, it
is possible that near the end of the execution there are less free communities than memberships
requested. We address this issue by switching to an offline strategy for the last © (M) assignments
and keep them in IM. As v = O(1), there are {2(r) communities with free slots for the last ©(M)
vertices and a legal assignment exists with high probability. The offline strategy proceeds as
before until it is unable to find v different communities for a node. In that case, it randomly
picks earlier assignments until swapping the communities is possible.

In the fully external setting, the I/O complexity grows linearly in the number of samples
taken and is thus bounded by O(v sort(n)). However, the community memberships are obtained
lazily and out-of-order which may assign a node several times to the same community. This
corresponds to a multi-edge in the bipartite assignment graph. It can be removed using the
rewiring technique detailed in section [6.2

15

8 Merging and repairing the intra- and inter-community graphs

8.1 Global Edge Rewiring

The global graph is materialized without taking the community structure into account. It
therefore can contain edges between nodes that share a community. Those edges have to be
removed as they increase the mixing parameter .

In accordance with LFR, we use rewiring steps to do so and perform an edge swap for each
forbidden edge with a randomly selected partner. Since it is unlikely that such a random swap
introduces another illegal edge (if sufficiently many communities exist), the probabilistic ap-
proach effectively removes forbidden edges. We apply this idea iteratively and perform multiple
rounds until no forbidden edges remain.

The community assignment step outputs a lexicographically ordered sequence x of (v,&)-
pairs containing the community & for each node v. For nodes that join multiple communities
several such pairs exist. Based on this, we annotate every edge with the communities of both
incident vertices by scanning through the edge list twice: once sorted by source nodes, once by
target nodes. For each forbidden edge, a swap is generated by drawing a random partner edge
id and a swap direction. Subsequently, all swaps are executed using EM-ES which now also
emits the set of edges involved. It suffices to restrict the scan for illegal edges to this set since
all edges not contained have to be legal.

Complexity. Each round needs O(sort(m)) I/Os for selecting the edges and executing the
swaps. The number of rounds is usually small but depends on the community size distribution:
the smaller the communities, the less likely are edges inside them.

8.2 Community Edge Rewiring

In the case of overlapping communities, an edge can be generated as part of multiple clusters.
Similarly to section we iteratively apply semi-random swaps to remove those parallel edges.
Here, however, the selection of random partners is more involved. In order not to violate the
community size distribution, both edges of a swap have to belong to the same community. While
it is easy to achieve this by considering all communities independently, we need to consider the
whole merged graph to detect forbidden edges.

In order to do so, we annotate each edge with its community id and merge all communities
together into one graph that possibly contains parallel edges. During a scan through all sorted
edges, we select from each set of parallel edges all but one as candidates for rewiring. Then, a
random partner from the same community is drawn for each of these edges. For this, we sort all
edges and the selected candidates by community. By counting the edges per community, we can
sample random partners, load them in a second scan, randomize their order, and assign them
to the candidates of their community. For the execution, multi-edges need to be considered, i.e.
we do not only need to know if an edge exists, but also how often, and update that information
accordingly. Together with all loaded edges we also need to store community ids such that we
can uniquely identify them and update the correct information.

While these steps are possible in external memory, we exploit the fact that there are signifi-
cantly less communities than nodes. Hence, storing some information per community in internal
memory is possible. We assume further that all candidates can be stored in internal memory. If
there were too many candidates, we would simply consider only some of them in each round.

We can avoid the expensive step of sorting all edges by community for every round using the
following observation: When scanning the edges, we can keep track of how many edges of each
community we have seen so far. We sort the edge ids to be loaded for every community and
keep a pointer on the current position in the list for every community. This allows us to load
specific edges of all communities without the need to sort all edges by community.

Complexity. The fully external rewiring requires O(sort(m)) I/Os for the initial step and
each following round. The semi-external variant triggers only O(scan(m)) I/Os per round. The
number of rounds is usually small and the overall runtime spend on this step is insignificant.

16

Nevertheless, the described scheme is a Las Vegas algorithm and there exist (unlikely) instances
on which it will faﬂﬂ To mitigate this issue, we allow a small fraction of edges (e.g., 1073) to
be removed if we detect a slow convergence. To speed up the endgame, we also draw additional
swaps uniformly at random from communities which contain a multi-edge.

9 Implementation

We implemented the proposed algorithms in C++ based on the STXXL library [12], pro-
viding implementations of EM data structures, a parallel EM sorter, and an EM priority queue.
Among others, we applied the following optimizations for EM-ES:

e Most message types contain both a swap id and a flag indicating which of the swap’s edges is
targeted. We encoded both of them in a single integer by using all but the least significant bit
for the swap id and store the flag in there. This significantly reduces the memory volume and
yields a simpler comparison operator since the standard integer comparison already ensures
the correct lexicographic order.

e Instead of storing and reading the sequence of swaps several times, we exploit the implemen-
tation’s pipeline structure and directly issue edge id requests for every arriving swap. Since
this is the only time edge ids are read from a swap, only the remaining direction flag is stored
in an efficient EM vector, which uses one bit per flag and supports I/O-efficient writing and
reading. Both steps can be overlapped with an ongoing EM-ES run.

e Instead of storing each edge in the sorted external edge list as a pair of nodes, we only store
each source node once and then list all targets of that vertex. This still supports sequential
scan and merge operations which are the only operations we need. This almost halves the
I/0O volume of scanning or updating the edge list.

e During the execution of several runs we can delay the updating of the edge list and combine
it with the load nodes phase of the next run. This reduces the number of scans per additional
run from three to two.

e We use asynchronous stream adapters for tasks such as streaming from sorters or the gen-
eration of random numbers. These adapters run in parallel in the background to preprocess
and buffer portions of the stream in advance and hand them over to the main thread.

Besides parallel sorting and asynchronous pipeline stage, the current EM-LFR implemen-
tation facilitates parallelism only during the generation and randomization of intra-community
graphs which can be computed pleasingly parallel.

10 Experimental Results

The number of repetitions per data point (with different random seeds) is denoted with S.
Errorbars correspond to the unbiased estimation of the standard deviation. For LFR we perform
experiments based on two different scenarios:

e (lin) — In one setting, the maximal degrees and community sizes scale linearly as a
function of n. For a n and v the parameters are chosen as: p € {0.2,0.4,0.6}, dpin=10v,
Amax=nv /20, 7=2, $min=20, Smax=n/10, =1, O=n.

e (const) — In the second setting, we keep the community sizes and the degrees constant
and consider only non-overlapping communities. The parameters are chosen as: d;,=>50,
Amax=10,000, v=2, $min=50, smax=12,000, f=1, O=n.

Real-world networks have been shown to have increasing average degrees as they become
larger [30]. Increasing the maximum degree as in our first setting (lin) increases the average

9 Consider a node which is a member of two communities in which it is connected to all other nodes. If only
one of its neighbors also appears in both communities, the multi-edge cannot be rewired.

17

106 — —— 100

2 B=1:0379 211 ‘ A, ‘ Run size 0.05n
E Sy =2:1.380- Il/.2 S o107t L X Run size 0.125n]
g 10 F=3:1.270 21/3 3 ; *><,><\>< Run size 0.5n ——<—
3 g 1072 L g
g 10t | % e !
) e XK 2 1073
E AR S
Z w0k 5 £
5 j»)/ e = 10
5 . + ><—><><>< %
< 102 + ><><'><'><'>< = 107°
Z 1L ‘ ‘ ‘ ‘] 1076 ‘
10% 104 10° 106 107 108 10 100

Number n of samples Number of edge configuration received by swap

Figure 7: Left: Number of distinct elements in n samples (i.e. node degrees in a degree sequence) taken
from PLD ([1,n),v). Right: Overhead induced by tracing inter-swap dependencies. Fraction of swaps as
function of the number of edge configurations they receive during the simulation phase.

degree. Having a maximum community size of n/10 means, however, that a significant propor-
tion of the nodes belongs to such huge communities which are not very tightly knit due to the
large number of nodes of low degree. While a more limited growth is probably more realistic,
the exact parameters depend on the network model.

Our second parameter set (const) shows an example of much smaller maximum degrees and
community sizes. We chose the parameters such that they approximate the degree distribution
of the Facebook network in May 2011 when it consisted of 721 million active users as reported
n [46]. Note however that strict powerlaw models are unable to accurately mimic Facebook’s
degree distribution [46]. Further, they show that the degree distribution of the U.S. users
(removing connections to non-U.S. users) is very similar to the one of the Facebook users of the
whole world, supporting our use of just one parameter set for different graph sizes.

The actual minimum degree of the Facebook network is 1, but the smaller degrees are signif-
icantly less prevalent than a power law degree sequence would suggest, which is why we chose a
larger value of 50. Our maximum degree of 10,000 is larger than the one reported for Facebook
(5000), but the latter was also an arbitrarily enforced limit by Facebook. The expected average
degree of this degree sequence is 264, which is slightly higher than the reported 190 (world) or
214 (U.S. only). Our parameters are chosen such that the median degree is approximately 99,
which matches the worldwide Facebook network. Similar to the first parameter set, we chose
the maximum community size slightly larger than the maximum degree of 12,000 nodes.

10.1 EM-HH’s state size

In Lemma [} we bound the internal memory consumption of EM-HH by showing that a
sequence of n numbers randomly sampled from PLD ([1,7),v) contains only O(n'/7) distinct
values with high probability.

In order to support Lemma [l| and to estimate the hidden constants, samples of varying size
between 10% and 108 are taken from distributions with exponents v € {1,2,3}. Each time, the
number of unique elements is computed and averaged over S = 9 runs with identical config-
urations but different random seeds. The results illustrated in Fig. [7] support the predictions
with small constants. For the commonly used exponent 2, we find 1.38,/n distinct elements in
a sequence of length n.

10.2 Inter-Swap Dependencies

Whenever multiple swaps target the same edge, EM-ES simulates all possible states to be
able to retrieve conflicting edges. We argued that the number of dependencies (and thus the
state size) remains manageable if the sequence of swaps is split into sufficiently short runs. We
found that for m edges and k swaps, 8k/m runs minimize the runtime for large instances of
(lin). As indicated in Fig. m in this setting 78.7 % of swaps do not receive additional edge
configurations during the simulation phase and less than 0.4 % have to consider more than four
additional states. Similarly, 78.6 % of existence requests remain without dependencies.

18

10° 106

X
<
—E< 4

10* + 10° L

0

103 F 10* +

10% L 10% b e

> = VL-ES, d= 100 —+—

] 2 [VL-ES, d= 1000 —<—]

Original LFR —— 10 % EM-ES, d= 100

‘ ‘ EM-LFR —<— 100 : ‘ EM-ES, d= 1000 ‘

10t 10° 106 107 108 107 108 10° 100
Number n of node Number m of edges

Runtime [s]
Runtime [s]
A

b
101+

10°

Figure 8: Left: Runtime on (SysA) of the original LFR implementation and EM-LFR for u=0.2. Right:
Runtime on (SysB) of IM VL-ES and EM-ES on a graph with m of edges and average degree d executing
k=10m swaps.

10.3 Performance benchmarks
Runtime measurements were conducted on the following systems:

e (SysA) — inexpensive compute server:
Intel Xeon E5-2630 v3 (8 cores/16 threads, 2.40GHz), 64 GB RAM, 3x Samsung 850 PRO
SATA SSD (1 TB).

e (SysB) — commodity hardware:
Intel Core i7 CPU 970 (6 cores/12 threads, 3.2GHz), 12 GB RAM, 1x Samsung 850 PRO
SATA SSD (1 TB).

Since edge switching scales linearly in the number of swaps (in case of EM-ES in the number
of runs), some of the measurements beyond 3 h runtime are extrapolated from the progress until
then. We verified that errors stay within the indicated margin using reference measurements
without extrapolation.

10.4 Performance of EM-HH

Our implementation of EM-HH produces 180 + 5 million edges per second on (SysA) up to at
least 2 x 10'° edges. Here, we include the computation of the input degree sequence, EM-HH’s
compaction step, as well as the writing of the output to external memory.

10.5 Performance of EM-ES

Figure presents the runtime required on (SysB) to process k=10m swaps in an input graph
with m edges and an average degree d € {100,1000}. For reference, the performance of the
existing internal memory edge swap algorithm VL-ES based on the authors’ implementation [47]
is included. Here we report only on the edge swapping process excluding any precomputation.
To achieve comparability, we removed connectivity tests, fixed memory management issues, and
adopted the number of swaps. Further, we extended counters for edge ids and accumulated
degrees to 64 bit integers in order to support experiments with more than 230 edges. VL-ES
slows down by a factor of 25 if the data structure exceeds the available internal memory by less
than 10 %. We observe an analogous behavior on machines with larger RAM. EM-ES is faster
than VL-ES for all instances with m > 2.5 x 10® edges; those graphs still fit into main memory.

FDSM has applications beyond synthetic graphs, and is for instance used on real data to
assess the statistical significance of observations [43]. In that spirit, we execute EM-ES on an
undirected version of the crawled ClueWebl12 graph’s core [45] which we obtain by deleting
all nodes corresponding to uncrawled URLSF;UI Performing k& = m swaps on this graph with
n ~ 9.8 x 108 nodes and m ~ 3.7 x 100 edges is feasible in less than 19.1h on (SysB).

10We consider such vertices unrealistically (simple) as they have only degree 1 and account for ~84 % of nodes
in the original graph.

19

%109 Nodes: 10°, Mixing: 1.0 Nodes: 107, Mixing: 0.2
T - T T T
- : - Mean after 5m swaps ||
F T EMES, §=40
H+H EM-CMES, S = 40

3.05
3.00
2.95
2.90
2.85

I
- Mean after 5m swaps [
1F T EM-ES, § =1138
-{HHH EM-CMES, S =600 H

=1

Y

AT
=

7.5

Number of triangles

Degre:

6.5

6.0 [arsapesagy TIA Ty e

1 S A e DO i S B

£
[}

7
I T R T N W ST
1

{
N T T T O V|

LI B ED Y

[T
°

o
w
=
w
S

Number of swaps per edge k/m Number of swaps per edge k/m

Figure 9: Left: Number of triangles on (const) with n = 1 x 10% and u = 1.0. Right: Degree
assortativity on (const) with n = 1 x 107 and p = 0.2. In order to factor in the increased runtime of
EM-CM/ES compared to EM-HH, plots of EM-CM/ES are shifted by the runtime of this phase relative to
the execution of EM-ES. As EM-CM/ES is a Las-Vegas algorithm, this incurs an additional error along
the z-axis.

Bhuiyan et al. propose a distributed edge switching algorithm and evaluate it on a compute
cluster with 64 nodes each equipped with two Intel Xeon E5-2670 2.60GHz 8-core processors and
64GB RAM [7]. The authors report to perform k=1.15 x 10! swaps on a graph with m=10'°
generated in a preferential attachment process in less than 3h. We generate a preferential
attachment graph using an EM generator [32] matching the aforementioned properties and
carried out edge swaps using EM-ES on (SysA). We observe a slow down of only 8.3 on a
machine with 1/128 the number of comparable cores and 1/64 of internal memory.

10.6 Performance of EM-CM/ES and qualitative comparison with EM-ES

In section [0 we describe an alternative graph sampling method. Instead of seeding EM-
ES with a highly biased graph using EM-HH, we employ the Configuration Model to quickly
generate a non-simple random graph. In order to obtain a simple graph, we then carry out
several EM-ES runs in a Las-Vegas fashion.

Since EM-ES scans through the edge list in each iteration, runs with very few swaps are
inefficient. For this reason, we start the subsequent Markov Chain early: First identify all
multi-edges and self-loops and generate swaps with random partners. In a second step, we then
introduce additional random swaps until the run contains at least m/10 operationﬁ

For an experimental comparison between EM-ES and EM-CM/ES, we consider the runtime
until both yield a sufficiently uniform random sample. Of course, the uniformity is hard to
quantify; similarly to related studies (cf. section , we estimate the mixing times of both
approaches as follows. Starting from a common seed graph G(©), we generate an ensemble
{ng), ceey ng)} of S > 1 instances by applying independent random sequences of k > m swaps
each. During this process, we regularly export snapshots GEJ ™) of the intermediate instances
j € [k/m] of graph G;. For EM-CM/ES, we start from the same seed graph, apply the algorithm
and then carry out k swaps as described above.

For each snapshot, we compute a number of metrics, such as the average local clustering
coefficient (ACC), the number of triangles, and degree assortativityE We then investigate how
the distribution of these measures evolves within the ensemble as we carry out an increasing
number of swaps. We omit results for ACC since they are less sensitive compared to the other
measures (cf. section [10.7)).

As illustrated in Fig. [9] and Appendix [C] all proxy measures converge within 5m swaps with
a very small variance. No statistically significant change can be observed compared to a Markov

"'We chose this number as it yields execution times similar to the m/8-setting of EM-ES on simple graphs

121 preliminary experiments, we also included spectral properties (such as extremal eigenvalues of the adja-
cency/laplacian matrix) and the closeness centrality of fixed nodes. As these measurement are more expensive to
compute and yield qualitatively similar results, we decided not to include them in the larger trials.

20

5.0 T 5.0
n : @@ Local cluster coeff. @@ Local cluster coeff.
é B Ty Degree assortativity || o Degree assortativity ||
% 4.0 B Triangle count H . Triangle count H
3] LT e - _ - - __‘.‘ ~ e s
g 30 ___.____,»'.“"'—-.'—"“."‘—‘——'“'I Tl ‘“‘—‘ B
5 2 :
3
O 15 oo B
1.0

Il 1
10° 100 107 100
Number n of nodes Number 7 of nodes

107

Figure 10: Number of swaps per edge after which ensembles of graphs with (const), 1 x 10° < n <1 x 107
and p = 0.4 (left) and p = 0.6 (right) converge. Due to computation costs, the ensemble size is reduced
from S > 100 to S > 10 for large graphs.

chain with 30m operations (which was only computed for a subset of each ensemble). EM-
HH generates biased instances with special properties, such as a high number of triangles and
correlated node degrees, while the features of EM-CM/ES’s output nearly match the converged
ensemble. This suggests that the number of swaps to obtain a sufficiently uniform sample can
be reduced for EM-CM/ES.

Due to computational costs, the study was carried out on multiple machines executing several
tasks in parallel. Hence, absolute running times are not meaningful, and we rather measure the
computational costs in units of time required to carry out 1m swaps by the same process. This
accounts for the offset of EM-CM/ES’s first data point.

The number of rounds required to obtain a simple graph depends on the degree distribution.
For (const) with n = 1 x 10% and p = 1, a fraction of 5.1% of the edges produced by the
Configuration Model are illegal. EM-ES requires 18 + 2 rewiring runs in case a single swap is
used per round to rewire an illegal edge. In the default mode of operation, 5.0 & 0.0 rounds
suffice as the number of rewiring swaps per illegal edge is doubled in each round. For larger
graphs with n = 1 x 107, only 0.07 % of edges are illegal and need 2.25 + 0.40 rewiring runs.

10.7 Convergence of EM-ES

In a similar spirit to the previous section, we indirectly investigate the Markov chain’s mixing
time as a function of the number of nodes n. To do so, we generate ensembles as before with
1x10° <n <1x107 and compute the same graph metrics. For each group and measure, we
then search for the first snapshot p in which the measure’s mean is within an interval of half the
standard deviation of the final values and subsequently remains there for at least three phases.
We then interpret p as a proxy for the mixing time. As depicted in Fig. no measure shows a
systematic increase over the two orders of magnitude considered. It hence seems plausible not to
increase the number of swaps performed by EM-LFR compared to the original implementation.

10.8 Performance of EM-LFR

Figure [§ reports the runtime of the original LFR implementation and EM-LFR as a func-
tion of the number of nodes n and v = 1. EM-LFR is faster for graphs with n > 2.5 x 104
nodes which feature approximately 5 x 10° edges and are well in the IM domain. Further, the
implementation is capable of producing graphs with more than 1 x 100 edges in 17 hH Using
the same time budget, the original implementation generates graphs more than two orders of
magnitude smaller.

13Roughly 1.5h are spend in the end-game of the Global Rewiring (at that point less than one edge out of
10° is invalid). In this situation, an algorithm using random I/Os may yield a speed-up. Alternatively, we could
simply discard the few remaining invalid edges since they only constitute an insignificant fraction.

21

Mixing p = 0.6, Cluster: Infomap Mixing p = 0.6, Cluster: Louvain

s 3 T T 1 L
NV ; NN
0.8 + S 1 08 3% 25 % I
X TR R ¥ oy
g 06 t 1 e 06+ R T G
: : 3 W
0.4 Oni 1 X 1 04 - O * N KA
T1g >—’—< T1Z >—’—<
02 | Networkit >] 0.2 | NetworKit —><
EM EM
0 > . e " 0 I . -
10% 10* 10° 10 10t 10°
Number n of nodes Number n of nodes

Figure 11: Adjusted rand measure of Infomap/Lowvain and ground truth at p = 0.6 with disjoint clusters,
Smin = 10, Smax = n/20.

Mixing: p = 0.4, Cluster: OSLOM, Overlap: v =2 Mixing: p = 0.4, Cluster: OSLOM, Overlap: v =4
. ‘ Orig] . ‘ Oy]
EM > EM >
0.8 %< % 4 0.8 + |
E 0.6 X «] ; 0.6 |
0.4 - ¥ ¥ ¥ 0.4 v S S %
02t 1 02| K KoX
0 L - L L - 0 \4 L L
10 10t 10° 10° 10* 10°
Number n of nodes Number n of nodes

Figure 12: NMI of OSLOM and ground truth at p = 0.4 with 2/4 overlapping clusters per node.

10.9 Qualitative Comparison of EM-LFR

When designing EM-LFR, we made sure that it closely follows the LFR benchmark such
that we can expect it to produce graphs following the same distribution as the original LFR
generator. In order to show experimentally that we achieved this goal, we generated graphs with
identical parameters using the original LFR implementation and EM-LFR. For disjoint clusters
we also compare it with the implementation that is part of NetworKit [44]. Using NetworKit,
we evaluate the results of Infomap [40], Louvain [§] and OSLOM [29], three state-of-the-art
clustering algorithms [14], [0l [I7], and compare them using the adjusted rand measure [24] and
NMI [15].

Further, we examine the average local clustering coefficient, a measure for the percentage
of closed triangles which shows the presence of locally denser areas as expected in communities
[25]. We report these measures for graphs ranging from 10% to 10° nodes. In Fig.
and we present a selection of results; all of them can be found in Appendix There are
only small differences within the range of random noise between the graphs generated by EM-
LFR and the other two implementations. Note that due to the computational costs above
10° edges, there is only one sample for the original implementation which explains the outliers
in Fig. Similar to the results in [14], we also observe that the performance of clustering
algorithms drops significantly as the graph’s size grows. This might be due to less clearly
defined community structures since the parameters are scaled, and also due to limits of current
clustering algorithms. Such behavior clearly demonstrates the necessity of EM-LFR for being
able to study this phenomenon on even larger graphs and develop algorithms that are able to
handle such instances.

11 Outlook and Conclusion

We propose the first I/O-efficient graph generator for the LFR benchmark and the FDSM,
which is the most challenging step involved: EM-HH materializes a graph based on a prescribed
degree distribution without I/O for virtually all realistic parameters. Including the generation of
a powerlaw degree sequence and the writing of the output to disk, our implementation generates

22

Mixing: p = 0.6

o
3 T T T

3 "

S 1 Orig —1—
o0 NetworKit >~
E 0.8 + EM

o)

Z o6

204t]
S | A/
) L N <N
S 02 o NN 0 NS R

ib 0 N ZON !

<

10% 10 10°
Number n of nodes

Figure 18: Average local clustering coefficient at y = 0.6 with disjoint clusters.

1.8 x 108 edges per second for graphs exceeding main memory. EM-ES perturbs existing graphs
with m edges based on k edge switches using O(k/m - sort(m)) 1/Os for k = Q(m).

We demonstrate that EM-ES is faster than the internal memory implementation [47] even
for large instances still fitting in main memory and scales well beyond the limited main memory.
Compared to the distributed approach by [7] on a cluster with 128 CPUs, EM-ES exhibits a
slow-down of only 8.3 on one CPU and hence poses a viable and cost-efficient alternative. Our
EM-LFR implementation is orders of magnitude faster than the original LFR implementation
for large instances and scales well to graphs exceeding main memory while the generated graphs
are equivalent. We further gave evidence indicating that commonly accepted parameters to
derive the length of the Edge Switching Markov Chain remain valid for graph sizes approaching
the external memory domain and that EM-CM/ES can be used to accelerate the process.

Currently, EM-ES does not yet fully exploit the parallelism offered by modern machines.
While dependencies between swaps make a parallelization challenging, preliminary experiments
indicate that an extension is possible: each run can be split further into smaller batches which
can be parallelized in the spirit of [33].

Another possibility for a speedup could be to use the recently proposed Curveball sampling
algorithm for graphs with fixed degree sequence [10]. Further studies are necessary to estab-
lish whether this really leads to a faster sampling in practice. While the underlying Markov
chain seems to require less steps to converge in practice, each step is more expensive. Also, a
combination of Curveball with EM-CM/ES seems possible.

Further, this is just the starting point for clustering large graphs that exceed main memory
using external memory. Not only are new clustering algorithms needed, but also the evaluation
of the results needs to be investigated since existing evaluation measures might not be easily
computable in external memory.

Acknowledgment
We thank Hannes Seiwert and Mark Ortmann for valuable discussions on EM-HH.

23

References

1]

2]

Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9), pages 1116-1127, 1988.

Omer Angel, Remco van der Hofstad, and Cecilia Holmgren. Limit laws for self-loops and
multiple edges in the configuration model. CoRR, abs/1603.07172, 2017. URL: https:
//arxiv.org/abs/1603.07172.

Lars Arge. The buffer tree: A new technique for optimal I/O-algorithms (extended ab-
stract). In Algorithms and Data Structures, 4th International Workshop, WADS 95,
Kingston, Ontario, Canada, August 16-18, 1995, Proceedings, pages 334-345, 1995. URL:
http://dx.doi.org/10.1007/3-540-60220-8_74, doi:10.1007/3-540-60220-8_74.

David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes,
and Dorothea Wagner. Encyclopedia of Social Network Analysis and Mining, chap-
ter Benchmarking for Graph Clustering and Partitioning, pages 73-82. Springer New
York, 2014. URL: http://dx.doi.org/10.1007/978-1-4614-6170-8_23, doi:10.1007/
978-1-4614-6170-8_23!

Andreas Beckmann, Roman Dementiev, and Johannes Singler. Building a parallel pipelined
external memory algorithm library. In 23rd IEEE International Symposium on Paral-
lel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, pages 1-10,
2009. URL: http://dx.doi.org/10.1109/IPDPS.2009.5161001, doi:10.1109/IPDPS.
2009.5161001.

Jon Louis Bentley and James B. Saxe. Generating sorted lists of random numbers. ACM
Trans. Math. Softw., 6(3):359-364, 1980. URL: http://doi.acm.org/10.1145/355900.
355907, doi:10.1145/355900.355907.

Hasanuzzaman Bhuiyan, Jiangzhuo Chen, Maleq Khan, and Madhav V. Marathe. Fast
parallel algorithms for edge-switching to achieve a target visit rate in heterogeneous graphs.
In 48rd International Conference on Parallel Processing, ICPP 2014, Minneapolis, MN,
USA, September 9-12, 2014, pages 6069, 2014. URL: http://dx.doi.org/10.1109/ICPP.
2014.15,/doi:10.1109/ICPP.2014.15.

Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Ezxperiment, 2008(10), 2008. URL: http://dx.doi.org/10.1088/1742-5468/2008/10/
P10008.

Nazar Buzun, Anton Korshunov, Valeriy Avanesov, Ilya Filonenko, Ilya Kozlov, Denis
Turdakov, and Hangkyu Kim. Egolp: Fast and distributed community detection in billion-
node social networks. In 2014 IEEE International Conference on Data Mining Workshop,
pages 533-540, Dec 2014. doi:10.1109/ICDMW.2014.158.

Corrie Jacobien Carstens, Annabell Berger, and Giovanni Strona. Curveball: a new gen-
eration of sampling algorithms for graphs with fixed degree sequence. ArXiv e-prints,
September 2016. larXiv:1609.05137.

Kyrylo Chykhradze, Anton Korshunov, Nazar Buzun, Roman Pastukhov, Nikolay
Kuzyurin, Denis Turdakov, and Hangkyu Kim. Distributed generation of billion-node
social graphs with overlapping community structure. In Complex Networks V: Proceed-
ings of the 5th Workshop on Complex Networks CompleNet, pages 199-208. Springer
International, 2014. URL: http://dx.doi.org/10.1007/978-3-319-05401-8_19, doi:
10.1007/978-3-319-05401-8_19.

24

https://arxiv.org/abs/1603.07172
https://arxiv.org/abs/1603.07172
http://dx.doi.org/10.1007/3-540-60220-8_74
http://dx.doi.org/10.1007/3-540-60220-8_74
http://dx.doi.org/10.1007/978-1-4614-6170-8_23
http://dx.doi.org/10.1007/978-1-4614-6170-8_23
http://dx.doi.org/10.1007/978-1-4614-6170-8_23
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://doi.acm.org/10.1145/355900.355907
http://doi.acm.org/10.1145/355900.355907
http://dx.doi.org/10.1145/355900.355907
http://dx.doi.org/10.1109/ICPP.2014.15
http://dx.doi.org/10.1109/ICPP.2014.15
http://dx.doi.org/10.1109/ICPP.2014.15
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1109/ICDMW.2014.158
http://arxiv.org/abs/1609.05137
http://dx.doi.org/10.1007/978-3-319-05401-8_19
http://dx.doi.org/10.1007/978-3-319-05401-8_19
http://dx.doi.org/10.1007/978-3-319-05401-8_19

[12]

[13]

[22]

Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: standard template library
for XXL data sets. Softw., Pract. Ezxper., 38(6):589-637, 2008. URL: http://dx.doi.org/
10.1002/spe.844) doi:10.1002/spe.844.

Roger B. Eggleton and Derek Allan Holton. Simple and multigraphic realizations of
degree sequences. In Proceedings of the FEighth Australian Conference on Combinato-
rial Mathematics, Lecture Notes in Mathematics, pages 155-172. Springer, 1980. URL:
http://dx.doi.org/10.1007/BFb0091817.

Scott Emmons, Stephen G. Kobourov, Mike Gallant, and Katy Borner. Analysis of Network
Clustering Algorithms and Cluster Quality Metrics at Scale. PLoS ONE, 11(7):1-18, July
2016. URL: http://dx.doi.org/10.1371/journal.pone.0159161.

Alcides Viamontes Esquivel and Martin Rosvall. Comparing network covers using mutual
information, 2012. larXiv:1202.0425. URL: http://arxiv.org/abs/1202.0425.

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75 — 174, 2010. URL: http://www.sciencedirect.com/science/article/pii/
S0370157309002841, doi:10.1016/j.physrep.2009.11.002.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 659:1-44, 2016. URL: https://dx.doi.org/10.1016/j.physrep.2016.09.002.

Christos Gkantsidis, Milena Mihail, and Ellen W. Zegura. The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. In Proceedings of the 5th
Workshop on Algorithm Engineering and Ezperiments (ALENEX’03), pages 16-25. SIAM,
2003.

Catherine S. Greenhill and Matteo Sfragara. The switch markov chain for sampling irregular
graphs and digraphs. CoRR, abs/1701.07101, 2017. URL: http://arxiv.org/abs/1701.
07101.

Seifollah L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph. i. Journal of the Society for Industrial and Applied Mathematics, 10(3):496-506,
1962. |[doi:10.1137/0110037.

Michael Hamann, Ulrich Meyer, Manuel Penschuck, and Dorothea Wagner. I/O-efficient
Generation of Massive Graphs Following the LFR Benchmark. In Proceedings of the 19th
Meeting on Algorithm Engineering and Experiments (ALENEX’17), pages 58-72. SIAM,
2017. URL: http://dx.doi.org/10.1137/1.9781611974768.5.

Steve Harenberg, Gonzalo Bello, L. Gjeltema, Stephen Ranshous, Jitendra Harlalka, Ra-
mona Seay, Kanchana Padmanabhan, and Nagiza Samatova. Community detection in large-
scale networks: a survey and empirical evaluation. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 6(6):426-439, 2014. URL: http://dx.doi.org/10.1002/wics.1319,
do0i:10.1002/wics.1319.

Véclav Havel. Pozndmka o existenci koneénych grafi. Casopis pro péstovdni matematiky,
080(4):477-480, 1955. URL: http://eudml.org/doc/19050.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,
2(1):193-218, December 1985. URL: http://dx.doi.org/10.1007/BF01908075.

Marcus Kaiser. Mean clustering coefficients: the role of isolated nodes and leafs on clustering
measures for small-world networks. New Journal of Physics, 10(8), 2008. URL: http:
//dx.doi.org/10.1088/1367-2630/10/8/083042.

25

http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1007/BFb0091817
http://dx.doi.org/10.1371/journal.pone.0159161
http://arxiv.org/abs/1202.0425
http://arxiv.org/abs/1202.0425
http://www.sciencedirect.com/science/article/pii/S0370157309002841
http://www.sciencedirect.com/science/article/pii/S0370157309002841
http://dx.doi.org/10.1016/j.physrep.2009.11.002
https://dx.doi.org/10.1016/j.physrep.2016.09.002
http://arxiv.org/abs/1701.07101
http://arxiv.org/abs/1701.07101
http://dx.doi.org/10.1137/0110037
http://dx.doi.org/10.1137/1.9781611974768.5
http://dx.doi.org/10.1002/wics.1319
http://dx.doi.org/10.1002/wics.1319
http://eudml.org/doc/19050
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1088/1367-2630/10/8/083042
http://dx.doi.org/10.1088/1367-2630/10/8/083042

[26]

[27]

33]

Panganamala Ramana Kumar, Martin J Wainwright, and Riccardo Zecchina. Mathematical
Foundations of Complex Networked Information Systems: Politecnico Di Torino, Verres,
Ttaly 2009, volume 2141. Springer, 2015.

Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communities. Phys.
Rev. E, 80:016118, Jul 2009. Source code available at https://sites.google.com/site/
santofortunato/inthepress2. URL: http://link.aps.org/doi/10.1103/PhysRevE.
80.016118|, doi:10.1103/PhysRevE.80.016118.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E, 78:046110, Oct 2008. URL: http://link.
aps.org/doi/10.1103/PhysRevE.78.046110, doi:10.1103/PhysRevE.78.046110.

Andrea Lancichinetti, Filippo Radicchi, José J. Ramasco, and Santo Fortunato. Finding
Statistically Significant Communities in Networks. PLoS ONE, 6(4):1-18, April 2011. URL:
http://dx.doi.org/10.1371/journal .pone.0018961.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs Over Time: Densification
Laws, Shrinking Diameters and Possible Explanations. In Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 177—
187. ACM Press, 2005. URL: http://portal.acm.org/citation.cfm?id=1081893.

Anil Maheshwari and Norbert Zeh. A survey of techniques for designing I/O-efficient
algorithms. In Algorithms for Memory Hierarchies, pages 36-61, 2003. URL: http:
//dx.doi.org/10.1007/3-540-36574-5_3, |doi:10.1007/3-540-36574-5_3.

Ulrich Meyer and Manuel Penschuck. Generating massive scale-free networks under resource
constraints. In Proceedings of the Eighteenth Workshop on Algorithm FEngineering and
Ezperiments (ALENEX 2016), pages 39-52, 2016. URL: http://epubs.siam.org/doi/
abs/10.1137/1.9781611974317 .4, doi:10.1137/1.9781611974317 .4.

Ulrich Meyer and Peter Sanders. Delta-stepping: A parallel single source shortest path
algorithm. In Algorithms - ESA 98, 6th Annual European Symposium, Venice, Italy, Au-
gust 24-26, 1998, Proceedings, pages 393-404, 1998. URL: http://dx.doi.org/10.1007/
3-540-68530-8_33, doi:10.1007/3-540-68530-8_33.

Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for Memory Hierar-
chies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002/, volume 2625 of
Lecture Notes in Computer Science. Springer, 2003.

Ron Milo, Nadav Kashtan, Shalev Itzkovitz, Mark E. J. Newman, and Uri. Alon. On the
uniform generation of random graphs with prescribed degree sequences. eprint |arXiv:cond-
mat/0312028, December 2003. arXiv:cond-mat/0312028.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New York, NY,
USA, 2010.

Rasmus Pagh. Basic external memory data structures. In Algorithms for Memory Hierar-
chies, pages 14-35. Springer, 2003.

Jaideep Ray, Ali Pinar, and C. Seshadhri. Are We There Yet? When to Stop a
Markov Chain while Generating Random Graphs. In Algorithms and Models for the

26

https://sites.google.com/site/santofortunato/inthepress2
https://sites.google.com/site/santofortunato/inthepress2
http://link.aps.org/doi/10.1103/PhysRevE.80.016118
http://link.aps.org/doi/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://link.aps.org/doi/10.1103/PhysRevE.78.046110
http://link.aps.org/doi/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1371/journal.pone.0018961
http://portal.acm.org/citation.cfm?id=1081893
http://dx.doi.org/10.1007/3-540-36574-5_3
http://dx.doi.org/10.1007/3-540-36574-5_3
http://dx.doi.org/10.1007/3-540-36574-5_3
http://epubs.siam.org/doi/abs/10.1137/1.9781611974317.4
http://epubs.siam.org/doi/abs/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1007/3-540-68530-8_33
http://dx.doi.org/10.1007/3-540-68530-8_33
http://dx.doi.org/10.1007/3-540-68530-8_33
http://arxiv.org/abs/cond-mat/0312028
http://arxiv.org/abs/cond-mat/0312028
http://arxiv.org/abs/cond-mat/0312028

[41]

[42]

[43]

Web-Graph, Proceedings of the 9th International Workshop, WAW 2012, Lecture Notes
in Computer Science, pages 153-164. Springer, 2012. URL: https://doi.org/10.1007/
978-3-642-30541-2_12.

Martin Rosvall, Daniel Axelsson, and Carl T. Bergstrom. The map equation. The Furopean
Physical Journal Special Topics, 178(1):13-23, 2009. URL: http://dx.doi.org/10.1140/
epjst/e2010-01179-1l

Peter Sanders. Random permutations on distributed, external and hierarchical memory. Inf.
Process. Lett., 67(6):305-309, 1998. URL: http://dx.doi.org/10.1016/30020-0190(98)
00127-6/ doi:10.1016/50020-0190(98)00127-6.

Peter Sanders. Fast priority queues for cached memory. Journal of Experimental Algorith-
mics (JEA), 5, 2000.

Wolfgang E. Schlauch, Emdke Agnes Horvat, and Katharina A. Zweig. Different fla-
vors of randomness: comparing random graph models with fixed degree sequences. So-
cial Network Analysis and Mining, 5(1):1-14, 2015. URL: http://dx.doi.org/10.1007/
513278-015-0267-2),|doi:10.1007/s13278-015-0267-2.

Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508530, 2016. doi:10.1017/
nws.2016.20.

The Lemur Project. ClueWeb12 Web Graph, Nov 2013. http://www.lemurproject.org/
cluewebl2/webgraph. phpl

Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the
facebook social graph. CoRR, abs/1111.4503, 2011. URL: http://arxiv.org/abs/1111.
4503.

Fabien Viger and Matthieu Latapy. Fast generation of random connected graphs with
prescribed degrees. CoRR, abs/cs/0502085, 2005. Source code available at https:
//www-complexnetworks.lip6.fr/~latapy/FV/generation.html. URL: http://arxiv.
org/abs/cs/0502085.

Jeffrey Scott Vitter. An efficient algorithm for sequential random sampling. ACM Trans.
Math. Softw., 13(1):58-67, 1987. URL: http://doi.acm.org/10.1145/23002.23003, doi:
10.1145/23002.23003.

Jianping Zeng and Hongfeng Yu. A study of graph partitioning schemes for parallel graph
community detection. Parallel Computing, 2016. URL: http://dx.doi.org/10.1016/j.
parco.2016.05.008.

James Y. Zhao. Expand and contract: Sampling graphs with given degrees and other
combinatorial families. CoRR, abs/1308.6627, 2013. URL: http://arxiv.org/abs/1308.
6627.

27

https://doi.org/10.1007/978-3-642-30541-2_12
https://doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://dx.doi.org/10.1016/S0020-0190(98)00127-6
http://dx.doi.org/10.1016/S0020-0190(98)00127-6
http://dx.doi.org/10.1016/S0020-0190(98)00127-6
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1017/nws.2016.20
http://www.lemurproject.org/clueweb12/webgraph.php
http://www.lemurproject.org/clueweb12/webgraph.php
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
http://arxiv.org/abs/cs/0502085
http://arxiv.org/abs/cs/0502085
http://doi.acm.org/10.1145/23002.23003
http://dx.doi.org/10.1145/23002.23003
http://dx.doi.org/10.1145/23002.23003
http://dx.doi.org/10.1016/j.parco.2016.05.008
http://dx.doi.org/10.1016/j.parco.2016.05.008
http://arxiv.org/abs/1308.6627
http://arxiv.org/abs/1308.6627

Summary of Definitions

Symbol Description

(k] [k] :={1,...,k} for k € Ny (section [2)

[u, V] Undirected simple edge with implication u < v (section

B Number of items in a block transferred between IM and EM (sec-

tion

dminv dmax

Min/max degree of nodes in LFR benchmark (section B[)

ay A = (1—p) - dy, intra-community degree of node v (section |§D

D D = (dy,...,d,) with d; < d;+1Vi. Degree sequence of a graph
(section [4)

Dp Dp = }{dz 1< < n}’ where D = (dy,...,d,), degree support
(section

n Number of vertices in a graph (section

m Number of edges in a graph (section

I Mixing parameter in LFR benchmark, i.e. ratio of neighbors that
shall be in other communities (section

M Number of items fitting into internal memory (section H

PLD ([a,b),7y) | Powerlaw distribution with exponent —v on the interval [a, b) (sec-

tion [5[)

Smin, Smax

Min/max size of communities in LFR benchmark (section |§D

scan(n) scan(n) = ©(n/B) 1/0s, scan complexity (section
sort(n) sort(n) = ©((n/B) - logy p(n/B)) 1/0s, sort complexity (sec-

tion

Table 2: Definitions used in this paper.

28

B Comparing LFR Implementations

Mixing 1 = 0.2, Cluster: Infomap Mixing 1 = 0.4, Cluster: Infomap Mixing o = 0.6, Cluster: Infomap
B S| 1 N 1 Ko¥ X |
0.8 0.8 X 0.8 S
X ¥
= 06 = 06 Ny = 06
= = A <
04 04 04 o b
Orig —— rig —— rig
02t Networkit —<— 0.2 it > 02 b Networkit —<—
EM + EM
0 - 0 - 0
10* 10t 10 10 107 10* 10* 107
Number n of nodes Number n of nodes Number n of nodes
Mixing 1 = 0.2, Cluster: Infomap Mixing 1 = 0.4, Cluster: Infomap Mixing 1 = 0.6, Cluster: Infomap
B] ! X % + 1 *
% £
0.8 0.8 * 0.8 S {
= 06 = 06 = 06
z z z X
0.4 04 04
Orig Orig Orig —}— 1
0.2 b NetworKit —<— 02t Networkit —>¢— 0.2 | NetworKit —><¢— K
EM EM EM Cor o=
0 — 0 — 0 — ==
10% 10" 107 10% 10* 107 10% 10* 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing 41 = 0.2, Cluster: Louvain Mixing 1 = 0.4, Cluster: Louvain Mixing 1 = 0.6, Cluster: Louvain
v K N
! KK X XK ¥ ¢ ¢ o KX % ox ¥ g ! IR
08 ~ K X 08 D e N 08 K- XK-¥-g
R A) ™ X w w
= 06 = 06 ZS = 06 e S
= = = P
0.4 0.4 0.4 :
Orig Orig —}— Orig —f—
0.2 b NetworKit —<— 0.2 b Networkit —<— 0.2 | Networkit —<—
EM EM EM
0 - 0 - 0 -
10% 10! 10° 10° 10* 10° 10% 10* 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing 1 = 0.2, Cluster: Louvain Mixing 1 = 0.4, Cluster: Louvain Mixing 1 = 0.6, Cluster: Louvain
1 XK N2 1 MY SN Iy Y W w oy W
N X X N AR K X X w o
08 08 0.8 &K
z 06 z 0.6 z 0.6
04 04 04
Orig —— Orig —— Orig —f—
02 b NetworKit —<— 0.2 b Networkit —<— 0.2 | Networkit —<—
EM EM EM
0 - 0 - 0 -
10% 10! 10° 10° 10* 10° 10° 10° 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing: = 0.2 Mixing: 1 = 0.4 Mixing: 1 = 0.6
10% 10% 108
107 107 % 107
A
g 108 R g 100 X g 100
3 x = =
& 10° & 10° N = 10° N
Orig Orig Orig ——
10! Networkit —>< 10! Networkit —>¢— 10t Networkit —>¢
EM EM EM
10° — 10° . 10° —
10° 10! 10° 10° 101 10° 10° 101 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing: 1 = 0.2 Mixing: ¢ = 0.4 Mixing: = 0.6
L=
S Orig —— 1 Orig —— 1 Orig ——
b Networkit —¢— NetworKit —¢— NetworKit —¢—
08 EM 0.8 EM 0.8 EM
0.6 S 0.6 0.6
w ¢ ¥ X XK XK A A - 5
04 L RN — 04 oW ¥ X 0.4
o ¥ X X X XA s ¥
S 02 S0zt X XK X 0.2 ¥ X
X N
20 - o0 - o0 -
< 10* 10! 10 < 10% 10 10° < 10* 10* 10°
Number n of nodes Number n of nodes Number n of nodes

Comparison of the original LFR implementation, the NetworKit implementation and our
EM solution for values of 10% < n < 10°, 4€{0.2,0.4,0.6}, v=2, = — 1 dumin=10, dmax=n/20,
Smin=10, Smax=n/20. Clustering is performed using Infomap and Louvain and compared to
the ground-truth emitted by the generator using AdjustedRandMeasure (AR) and Normalized
Mutual Information (NMI); S > 8. Due to the computational costs, graphs with n > 10° have
a reduced multiplicity. In case of the original implementation it may be based on a single run
which accounts for the few outliers.

29

Mixing: 42 = 0.2, Cluster: OSLOM, Overlap: v =2

Mixing: p1 = 0.4, Cluster: OSLOM, Overlap: v

Mixing: 1 = 0.6, Cluster: OSLOM, Overlap: v

1 Orig ——— 1 Orig —— 1 Orig ——
EM EM — EM <
08 X & 08 X K 08
= 06 w = 06 X = 06
E z z
z z z
04 o o % 04 ¥ x4 04 x K ¥ % oy %
0.2 0.2 0.2 %
0 - 0 - 0 -
10° 10t 107 10* 10! 10° 10* 10! 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing: 1 = 0.2 Mixing: 1 = 0.4 Mixing: 1 = 0.6
% %
1 Orig —f— S 1 Orig —— S Orig ——
M EM EM
08 08 0.8
0.6 0.6 0.6
04 oy R 04
02 deooMX o ¥ N S 02 P S 02 ¥
0 — 20 v o0 -
10% 10* 107 < 10° 10t 10 < 10° 10! 10
Number n of nodes Number n of nodes Number n of nodes
Mixing: 1 = 0.2, Degree Assortativity, Overlap: v = 2 Mixing: 2 = 0.4, Degree Assortativity, Overlap: v = 2 Mixing: 1 = 0.6, Degree Assortativity, Overlap: v = 2
1 Grig —— = 1 Orig —— = 1 Orig ——
EM — £ EM — £ EM —<
08 £ 08 £ 08
0.6 s 06 s 06
04 X ox T 04 X ox T 04 X ¥ Kesie
0.2 * ok ¥ g ooz ko ¥ g o2 *
0 - 0 - 0 -
10% 10* 107 10% 10* 107 10% 10" 107
Number n of nodes Number n of nodes Number n of nodes
Mixing: 4 = 0.2, Cluster: OSLOM, Overlap: v = 3 Mixing: 4t = 0.4, Cluster: OSLOM, Overlap: v = Mixing: 1 = 0.6, Cluster: OSLOM, Overlap: v =
1 Orig —f— 1 Orig —— 1 Orig ——
EM — EM — EM —<
08 08 08
E 0.6 33 % E 0.6 ¥ X E 0.6
0.4 * X 04 > 4 X 0.4 w
02 KX 0.2 S 0.2 X X * X X
0 - 0 - 0 X -
10% 10* 107 10* 10t 10 10° 10t 107
Number n of nodes Number n of nodes Number n of nodes
Mixing: jt = 0.2 Mixing: 1 = 0.4 Mixing: 1 = 0.6
1 Orig —f— 1 Orig —— 1 Orig ——
EM EM EM
08 08 08
0.6 0.6 0.6
0.4 @ 04 04
0.2 2 ¥k oIS 0.2 wo kK 0.2 ANV
0 _ 0 - 0 _
10% 10" 107 10% 10" 10° 10% 10" 10°
Number n of nodes Number n of nodes Number n of nodes
Mixing: 1 = 0.2, Degree Assortativity, Overlap: v/ Mixing: u = 0.4, Degree Assortativity, Overlap: v =3 Mixing: o = 0.6, Degree Assortativity, Overlap: v/
Orig —— 51 Orig —— 1 Orig ——
EM £ EM EM
£ 08 08
2 06 0.6
¥ T o4 X ¥ N 0.4 * oK oy
* ¥ *) 0.2 X % * 0.2 oK *
ORI g ¥ *
0 0
10° 10* 10° 10° 10t 10° 10% 10" 10°
Number 1 of nodes Number n of nodes Number n of nodes
Mixing: = 0.2, Cluster: OSLOM, Overlap: v = 4 Mixing: = 0.4, Cluster: OSLOM, Overlap: v = Mixing: 1 = 0.6, Cluster: OSLOM, Overlap: v = 4
1 Orig —— 1 Orig —— 1 Orig —f—
EM EM EM <
08 08 08
; 06 ; 0.6 ; 0.6
©o04 3 ¥ X ¥ 04 ¥ ¥ X Co04
02 * X 0.2 * KoK 0.2 w K ¥ K ¥ ¥
0 - 0 - -
10° 10t 10° 10° 10! 10° 10% 10" 10°
Number 1 of nodes Number n of nodes Number n of nodes
Mixing: o = 0.2 Mixing: 1 = 0.4 Mixing: 1 = 0.6
= = &
S 1 Orig —f— S o1 Orig —F— S Orig ——
w EM w EM w EM
Z 08 £ 08 E 08
Z 06 Z 06 Z 06
S o0a w S o4 04
2 02 S S K TN 2 02 Lok ¥ S 02 g
20) S
< 10° 10t 107 < 10* 10! 10° = 10% 10! 10°

Number n of nodes

Number n of nodes

30

Number n of nodes

Mixing: 1 = 0.2, Degree Assortativity, Overlap: v = 4 Mixing: ju = 0.4, Degree Assortativity, Overlap: v = 4 Mixing: ju = 0.6, Degree Assortativity, Overlap: v =4

Z . B 5 : W g ! W
£ 08 038 £ 08

?uo 0.6 ‘% 0.6

T oab XKoo ot Ko S ooap Kok oy

2 o2 * % X o 02 KXok ¥ 202 RN

0 0
10° 10t 107 10* 10! 10° 10* 10! 10°

Number n of nodes Number n of nodes Number n of nodes

Comparison of the original LFR implementation and our EM solution for values values
of 103 < n < 10%, ©e{0.2,0.4,0.6}, v€{2,3,4}, O = n, v=2, B= — 1 duin=10, dmax=n/20,
Smin=10V, Smax=V - n/20. Clustering is performed using OSLOM and compared to the ground-
truth emitted by the generator using a generalized Normalized Mutual Information (NMI);
S > 5.

31

C Comparing EM-ES and EM-CM/ES

Nodes: 10°, Mixing: 0.2

Number of triangles

T

-+ Mean after 5m swaps [1
AF 1T EM-ES, § = 1170
|+ EM-CMES,

3 4 5

Number of swaps per edge k/m

Nodes: 10°, Mixing: 0.2

Degree assortativity

.] -+ Mean after 5m swaps ||
|F T EM-ES, s=1170 ||
|+ EM-CMES, 5 =600 ||

2 3 4 5

Number of swaps per edge k/m

Number of triangles

Nodes: 107, Mixing: 0.2

T
-+ Mean after 5m swaps []
1E T EM-ES, S =40 I
S| EM-CMES, S =40]

Number of swaps per edge k/m

1.00

8
2
Z
2
@
£
)
&
[=]

Nodes: 107, Mixing: 0.2
T r

T
...] =+ Mean after 5m swaps |
. |FT EMES, s=40 1

| EM-CMES, S =40

Number of swaps per edge k/m

Degree assortativity Number of triangles

Number of triangles

=
g
8
Z
Z
E]
@
3
&
)
&
[=]

Nodes: 10°, Mixing: 1.0

I
-+ Mean after 5m swaps [|
AF T EMES, s=1138 H
-+ EM-CMES, S =600 H

Number of swaps per edge k/m

Nodes: 10°, Mixing: 1.0

T
-+ Mean after 5m swaps

2 3

Number of swaps per edge k/m

Nodes: 107

Mixing: 1.0

T
-+ Mean after 5m swaps ||

JF T EMES, s

2 3 4 5

Number of swaps per edge k/m

Nodes: 107, Mixing: 1.0
T

I
- Mean after 5m swaps ||
F T EM-ES, S=20

H+H EM-CMES, S = 20

I3 -

2 3 4 5
Number of swaps per edge k/m

Triangle count and degree assortativity of a graph ensemble obtained by applying random

swaps/the Configuration Model to a common seed graph. Refer to section |1

details.

32

for experimental

	1 Introduction
	1.1 Random Graphs from a prescribed Degree Sequence
	1.2 Our Contribution

	2 Preliminaries and Notation
	2.1 External-Memory Model
	2.2 Time Forward Processing

	3 The LFR Benchmark
	4 EM-HH: Deterministic Edges from a Degree Sequence
	4.1 Data structure
	4.2 Algorithm
	4.3 Improving the I/O-complexity

	5 EM-ES: I/O-efficient Edge Switching
	5.1 EM-ES for Independent Swaps
	5.1.1 Request nodes and load nodes
	5.1.2 Simulate swaps and load existence
	5.1.3 Perform swaps
	5.1.4 Update edge list

	5.2 Inter-Swap Dependencies
	5.2.1 Target edge dependencies
	5.2.2 Source edge dependencies

	6 EM-CM/ES: Sampling of random graphs from prescribed degree sequence
	6.1 Configuration Model
	6.2 Edge rewiring for non-simple graphs

	7 EM-CA: Community Assignment
	7.1 Ignoring constraint on community size (R2)
	7.2 Enforcing constraint on community size (R2)
	7.3 Assignment with overlapping communities

	8 Merging and repairing the intra- and inter-community graphs
	8.1 Global Edge Rewiring
	8.2 Community Edge Rewiring

	9 Implementation
	10 Experimental Results
	10.1 EM-HH's state size
	10.2 Inter-Swap Dependencies
	10.3 Performance benchmarks
	10.4 Performance of EM-HH
	10.5 Performance of EM-ES
	10.6 Performance of EM-CM/ES and qualitative comparison with EM-ES
	10.7 Convergence of EM-ES
	10.8 Performance of EM-LFR
	10.9 Qualitative Comparison of EM-LFR

	11 Outlook and Conclusion
	A Summary of Definitions
	B Comparing LFR Implementations
	C Comparing EM-ES and EM-CM/ES

