arXiv:1112.0662v1 [cs.NI] 3 Dec 2011

Instance-based XML Data Binding for Mobile Devices

Alain Tamayo
Institute of New Imaging
Technologies
Universitat Jaume I, Spain
Ave Vicent Sos Baynat, SN,
12071, Castellén de la Plana
atamayo@uiji.es

ABSTRACT

XML and XML Schema are widely used in different domains
for the definition of standards that enhance the interoper-
ability between parts exchanging information through the
Internet. The size and complexity of some standards, and
their associated schemas, have been growing with time as
new use case scenarios and data models are added to them.
The common approach to deal with the complexity of pro-
ducing XML processing code based on these schemas is the
use of XML data binding generators. Unfortunately, these
tools do not always produce code that fits the limitations
of resource-constrained devices, such as mobile phones, in
the presence of large schemas. In this paper we present
Instance-based XML data binding, an approach to produce
compact application-specific XML processing code for mo-
bile devices. The approach utilises information extracted
from a set of XML documents about how the application
make use of the schemas.

Categories and Subject Descriptors

1.7.2 [Document and Text Processing]: Document Prepa-
ration—Languages and System, Standards

General Terms

Performance, Design, Experimentation, Standardization, Lan-

guages

Keywords

XML Processing, XML Schema, Mobile applications, XML
Data Binding

1. INTRODUCTION

eXtensible Markup Language (XML) has reached a great
success in the Internet era. XML documents are similar to
HTML documents, but do not restrict users to a single vo-
cabulary, which offers a great deal of flexibility to represent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

M-MPAC’2011, December 12th, 2011, Lisbon, Portugal.

Copyright 2011 ACM 978-1-4503-1065-9/11/12 ...$10.00.

Carlos Granell
Institute for Environment
and Sustainability
European Commission
Joint Research Centre
Ispra, ltaly
carlos.granell@jrc.ec.europa.eu

Joaquin Huerta
Institute of New Imaging
Technologies
Universitat Jaume I, Spain
Ave Vicent Sos Baynat, SN,
12071, Castellén de la Plana
huerta@uiji.es

information. To define the structure of documents within
a certain vocabulary, schema languages such as Document
Type Definition (DTD) or XML Schema are used.

XML has been adopted as the most common form of en-
coding information exchanged by Web services 14} [35] 136].
|14] attribute this success to two reasons. The first one is
that the XML specification is accessible to everyone and it is
reasonably simple to read and understand. The second one
is that several tools for processing XML are readily available.
We add to these reasons that as XML is vocabulary-agnostic,
it can be used to represent data in basically any domain.
For example, we can find the Universal Business Language
(UBLE in the business domain, or the standards defined by
the Open Geospatial Consortium (OGC) in the geospatial
domain. UBL defines a standard way to represent business
documents such as electronic invoices or electronic purchase
orders. OGC standards define web service interfaces and
data encodings to exchange geospatial information. All of
these standards (UBL and OGC’s) have two things in com-
mon. The first one is that they use XML Schema to define
the structure of XML documents. The second one is that the
size and complexity of the standards is very high, making
very difficult its manipulation or implementation in certain
scenarios |20}, [23].

The use of such large schemas can be a problem when
XML processing code based on the schemas is produced for
a resource-constrained device, such as a mobile phone. This
code can be produced using a manual approach, which will
require the low-level manipulation of XML data, often pro-
ducing code that is hard to modify and maintain. Another
option is to use an XML data binding code generator that
maps XML data into application-specific concepts. This way
developers can focus on the semantics of the data they are
manipulating [34]. The problem with generators is that they
usually make a straightforward mapping of schema compo-
nents to programming languages constructs that may result
in a binary code with a very large size that cannot be easily
accommodated in a mobile device [23].

Although schemas in a certain domain can be very large
this does not imply that all of the information contained on
them is necessary for all of the applications in the domain.
For example, in |26] a study of the use of XML in a group
of 56 servers implementing the OGC’s Sensor Observation
Service (SOS) speciﬁcatior% revealed that only 29.2% of the

"http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.html
2308 is a standard web service interface to exchange infor-
mation between sensor data producers and consumers|19].

SOS schemas were used in a large collection of XML docu-
ments gathered from those servers. Based on this informa-
tion we proposed in [25] an algorithm to simplify large XML
schema sets in an application-specific manner by using a set
of XML documents conforming to these schemas. The algo-
rithm allowed a 90% reduction of the size of the schemas for
a real case study. This reduction was translated in a reduc-
tion of binary code ranging between 37 to 84% when usin

code generators such as J AXBEL XMLBeanﬁ and XBinderﬁ

In this paper we extend the schema simplification algo-
rithm presented in [25] to a more complete Instance-based
XML Data Binding approach. This approach allows to pro-
duce very compact application-specific XML processing code
for mobile devices. In order to make the code as small as pos-
sible the approach will use, similarly to [25], a set of XML
documents conforming to the application schemas. From
these documents, in addition to extract the subset of the
schemas that is needed, we extract other relevant informa-
tion about the use of schemas that can be utilised to reduce
the size of the final code. A prototype implementation tar-
geted to Androicﬂ and the Java programming language has
been developed.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an introduction to XML Schema and XML
data binding. In Section 3, related work is presented. The
Instance-based data binding approach is presented in Sec-
tion 4. Section 5 overviews some implementation details
and limitations found during the development of the pro-
totype. Section 6 presents experiments to measure size an
execution times of the code generated by the tool in a real
scenario. Last, conclusions and future work are presented.

2. BACKGROUND

In this section we present a brief introduction to the topics
of XML Schema and XML data binding. XML Schema files
are used to assess the validity of well-formed element and
attribute information items contained in XML instance files
[31)[32]. The term XML data binding refers to the idea of
taking the information in an XML document and convert it
to instances of application objects [17].

2.1 XML Schema

An XML Schema document contains components in the
form of complex and simple type definitions, element dec-
larations, attribute declarations, group definitions, and at-
tribute group definitions. This language allows users to de-
fine their own types, in addition to a set of predefined types
defined by the language. Elements are used to define the
content of types and when global, to define which of them
are valid as top-level element of an XML document.

XML Schema provides a derivation mechanism to express
subtyping relationships. This mechanism allows types to be
defined as subtypes of existing types, either by extending
or restricting the content model of base types . Apart from
type derivation, a second subtyping mechanism is provided
through substitution groups. This feature allows global ele-
ments to be substituted by other elements in instance files.
A global element E, referred to as head element, can be sub-

https://jaxb.dev.java.net
“http://xmlbeans.apache.org
®http://www.obj-sys.com/xbinder.shtml
Shttp://www.android.com

stituted by any other global element that is defined to belong
to the E’s substitution group.

2.2 XML Data Binding

With XML Data Binding, an abstraction layer is added
over the raw XML processing code, where XML information
is mapped to data structures in an application data model.
XML data binding code is often produced by using code
generators that use a description of the structure of XML
documents using some schema language. The use of genera-
tors potentially gives benefits such as increased productivity,
consistent quality throughout all the generated code, higher
levels of abstraction as we usually work with an abstract
model of the system; and the potential to support different
programming languages, frameworks and platforms [10].

Although most of the generators available nowadays are
targeted to desktop or server applications, several tools
have been develop for mobile devices such as XBinder and
CodeSysnthesis XSD/eﬂ or for building complete web ser-
vices communication end-points for resource constrained en-
vironments, such as gSOAP [29]. All of the tools mentioned
before map XML Schema structures to programming lan-
guages construct in a straightforward way, which is not ad-
equate when large schemas sets are used.

3. RELATED WORK

Problems related with having large and complex schemas
have been presented in several articles |20} 21} 25| |30]. For
example, |20] deal with problems of large schemas in schema
matching in the business domain. In the context of schema
and ontology mapping, [21] states that current match sys-
tems still struggle to deal with large-scale match tasks to
achieve both good effectiveness and good efficiency. [25],
the work extended here, expose the problems related to us-
ing XML data binding tools to generate XML processing
code for mobile geospatial applications. Last, [30] present an
algorithm to extract fragments of large conceptual schemas
arguing that the largeness of these schemas makes difficult
the process of getting the knowledge of interest to users.

When considering XML processing in the context of mo-
bile devices, literature is focused in two main competing
requirements: compactness (of information) and processing
efficiency [12]. To achieve compactness compression tech-
niques are used to reduce the size of XML-encoded infor-
mation [11} |13} [33]. About processing efficiency, not much
work has been done in the mobile devices field. A promi-
nent exception in this topic is the work presented in [12],
|13] and [16]. These articles are all related to the imple-
mentation of a middleware platform for mobile devices: the
Fuego mobility middleware |28], where XML processing has
a large impact. The proposed XML stack provides a general-
purpose XML processing API called XAS [|12], an XML bi-
nary format called Xebu [13], and others APIs such as Trees-
with-references (RefTrees) and Random Access XML Store
(RAXS)[16].

Regarding the use of instance files to drive the manipula-
tion of schemas, |21] presents a review of different methods
that use instance files for ontology matching. In the field
of schema inference, instance files are used as well to gener-
ated adequate schema files that can be used to assess their
validity (e.g. [2} (9] [18]).

"http://codesynthesis.com /products/xsde

XML
Instance
Files

XML Schema
Files

Input Input

Instance-based
Instance-based Schema Simplificati implif ion

Algorithm

Output Output

ZaN
RN
/ \

/ \
/~Schema Use
\.Schema files ~ “\Information

N / /

\
\ /
S N

‘Subset of XML
/

N/

Input Input

XML Data Binding

Code generation Code Generator

Output

Source Code

Figure 1: Instance-based XML data binding code
generation process

4. INSTANCE-BASED DATA BINDING

Instance-based XML data binding, is a two-step process.
The first step, Instance-based schema simplification, extracts
the information about how schema components are used by
a specific application, based on the assumption that a repre-
sentative subset of XML documents that must be manipu-
lated by the application is available. The second step, Code
generation, consists of using all of the information extracted
in the previous step to generate XML processing code as
optimised as possible for a target platform.

The whole process is shown in Figure|[l] the inputs to the
first step are a set of schemas and a set of XML documents
conforming to them. The outputs will be the subset of the
schemas used by the XML documents and other information
about the use of certain features of the schemas that can be
used to optimise the code in the following step. The outputs
of the first step are the inputs of the code generation step.
The two steps of the process are detailed in the following
subsections.

4.1 Instance-based Schema Simplification

The Instance-based schema simplification step extracts the
subset of the schemas used on a set of XML documents. The
algorithm used to perform this simplification was first pre-
sented in [25] and has been extended here to extracts other
information that can be used to produce more compact XML
processing code.

The idea behind this algorithm, is depicted graphically in
Figure[2] The figure shows to the left the graph of relation-
ships between schemas components. The different planes
represent different namespaces. Links between schema com-
ponents represent dependencies between them. To the right

Figure 2: Relations between XML instance informa-
tion items (right) and schemas components defining
its structure (left)

we have the tree of information items (XML nodes) con-
tained in XML documents. For the sake of simplicity we
show in the figure only the tree of nodes corresponding to
a single document. An edge between an XML node and a
schema component represents that the component describes
the structure of the node. To simplify the figure we have
shown only a few edges, although an edge for every XML
node must exist. Starting from a set of XML documents
and the schema files defining their structure, it is possible to
calculate which schema components are used and which are
not. In doing so, the following information is also recorded:

o Types that are instanced in XML documents: For each
XML node exists a schema type describing its struc-
ture. While XML documents are processed the type
of each XML node is recorded. This way we can know
which types are instanced and which are not.

o Types and elements substitutions: The subtyping mech-
anisms mentioned in Section 2.1 allow the real or dy-
namic type of an element to be different from its de-
clared type. Elements declared as having type A, may
have any type derived from A in an XML document.
In this case the real type must be specified with the at-
tribute zsi:type. Something similar happens with sub-
stitution groups, although in this case the attribute
zsi:type is not necessary. The information about XML
nodes whose dynamic type is different from its declared
type is recorded.

o Wildcards substitutions: The elements used to substi-
tute wildcards are recorded.

e FElements occurrence constraints information: For all
of the elements it is checked that if they allow multi-
ple occurrences there is at least one document where
several occurrences of the element are present.

e FElements with a single child: All of the elements that
contain a single child are also recorded.

4.2 Code generation process

A more detailed view of the code generation process is
shown in Figure [3] The outputs of the schema simplifica-
tion step are used as inputs to the schema processor, the

AN
/ \
/ \

N / h \
‘/S/ubset of XML ~Schema Use ™
\Schema files “_Information
\ / AN /
NZ %

Input Input

Schema Processor

Output

Template Data
. Model

Input

Class
Templates

Input

Template Engine

Output

Source Code

Figure 3: Flow diagram for the code generation pro-
cess

component of the generator in charge of creating the data
model that will be used later by the template engine. The
template engine combines pre-existing class templates with
the data model to generate the final source code. The use
of a template engine allows the generation of code for other
platforms and programming languages by just defining new
class templates.

A summary of the features of the code generation process

that contribute to the generation of optimised code is listed
next:

e Use of information extracted from XML documents:
The use of information about schema use allows to
apply the following optimisations:

— Remove unused schema components: The schema
components that are not used are not considered
for code generation. By removing the unused
components we can substantially reduce the size
of the generated code. The amount of the re-
duction will depend on how specific applications
make use of the original schemas.

— Efficient handling of subtyping and wildcards:
The number of possible substitutions of a type
by its subtypes, and a head element of a substi-
tution group by the members of the group can
be bounded with the information gathered from
the instances files. In the general case, where no
instance-based information is available, generic
code to face any possible type or element sub-
stitution must be written. Limiting the number
of possible substitutions to only a few allows the
production of simpler and faster code. The same
reasoning is applied to wildcards.

— Inheritance flattening: By flattening subtyping
hierarchies for a given type, i.e., including explic-
itly in its type definition all of the fields inherited
from base types and eliminating the subtype rela-
tionship with its parents, we can reduce the num-
ber of classes in the generated code. The appli-
cation of this technique will not necessarily result
in smaller generated code, as the fields defined
in base types must be replicated in all of their
child types, but it will have a positive impact in
the work of the class loader because a lower num-
ber of classes have to be loaded while the appli-
cation is executed. Let us consider the case of
the geospatial schemas introduced in Section 1.
These schemas typically present deep subtyping
hierarchies with six or more levels, as a conse-
quence when an XML node of a type in the lowest
levels of the hierarchy must be processed, all of its
parent types must be loaded first. The technique
of inheritance flattening has been widely explored
and used in different computer science and engi-
neering fields as is proven by the abundant liter-
ature found in the topic [3 |4} [5] [6] [7] [15].

— Adjust occurrence constraints: If an element is
declared to have multiple occurrences it must be
mapped to a data structure in the target program-
ming language that allows the storage of the mul-
tiple instances of the elements, e.g. an array or
a linked list. In practice if the element has at
most one occurrence in the XML documents that
must be processed by the application it can be
mapped to a single object instance. Using this
optimisation the final code will make a better use
of memory because instead of creating a collection
(array, linked list, etc.) that will only contain a
single object, it creates a single object instance.

Collapse elements containing single child elements: In-
formation items that will always contain single ele-
ments can be replaced directly by its content. By ap-
plying this optimisation we can reduce the number of
classes in the generated code, which will have a posi-
tive impact in the size of the final code, the amount of
work that has to be done by the class loader, and the
use of memory during execution. This optimization is
used by mainstream XML data binding tools such as
J iBXE and the XML Schema Definition Tooﬂ

Disabling parsing/serialization operations as needed:
Some code generators always includes code for parsing
and serialization even when only one of these functions
is needed. For example, in the context of geospatial
web services, most of the time spent in XML process-
ing by client-side applications is dedicated to parsing,
as messages received from the servers are potentially
large. On the other hand, most of these services al-
lows request to be sent to the server encoded in an
HTTP GET request, therefore XML serialisation is
not needed at all.

Ignoring sections of XML documents: Frequently, we
are not interested in all of the information contained in

Shttp://jibx.sourceforge.net/
“http://msdn.microsoft.com /en-us/library /x6c1kb0s

XML files, ignoring the unneeded portions of the file
will improve the speed of the parsing process and it
may have a significant impact in the amount of mem-
ory used by the application.

In addition, the following features not related directly
with code optimisation are also supported:

e Source code based on simple code patterns: The gener-
ated source code is straightforward to understand and
modify in case it is necessary.

e Tolerate common validation errors: Occasionally, XML
documents that are not valid against their respective
schemas must be processed by our applications. In
many cases, the validation errors can be ignored fol-
lowing simple coding rules.

A detailed explanation of each of the features presented
in this section can be found in [22].

As mentioned before, the approach presented in this pa-
per is based on the assumption that a representative set
of XML documents exists. By representative we mean that
these documents contain instances of all of the possible XML
Schema elements and types that will be processed by the ap-
plication in the future. Nevertheless, this subset might not
always be available. In this case, we can still take advantage
of the approach by building synthetic XML documents con-
taining relevant information. Whether XML processing code
is produced manually or automatically developers typically
have some knowledge of the structure of the documents that
must be processed by the applications. Therefore, we can
use this knowledge to build sample XML documents that
can be used as input to the algorithm. In case it were nec-
essary, the final code can be manually modified later, or the
sample files changed and used to regenerate the code.

If we were using synthetic documents instead of actual
documents some of the optimisations related to the infor-
mation extracted from them should not be applied. The
reason for this is that we do not have enough information
about how the related schema features are used. For exam-
ple, we cannot apply optimisations such as the efficient han-
dling of subtyping and wildcards, as we might not know all
of the possible type substitutions. Something similar hap-
pens with the adjustment of occurrence constraints. Nev-
ertheless, other optimisations such as inheritance flattening
or removing unused schema components can be still safely
applied.

S. IMPLEMENTATION

DBMobileGen (DBMG for short) is the current imple-
mentation of the Instance-based XML data binding approach
[22]. It includes components implementing both the simpli-
fication algorithm and code generation process. It is im-
plemented in Java and relies on existing libraries such as
Eclipse XS’].ﬂ for processing XML schemas, FreemarkeTE
as template engine library, and as well as the generated code,
kXM for low-level XML processing. This tool produces
code targeted to Android mobile devices and the Java pro-
gramming language.

Ohttp://www.eclipse.org/modeling/mdt/?project=xsd#xsd
"http://freemarker.sourceforge.net
2http://kxml.sourceforge.net /kxml2/

The current implementation has some limitations. Be-
cause of the complexity of the XML Schema language itself,
support for certain features and operations have been only
included if it is considered necessary for the case study or
applications where the tool has been used [1} 27]. Some of
these limitations are listed next:

o Serialization is not supported yet: The role of parsing
for our sample applications and case studies is far more
important than serialization. This is mainly because
we have preferred to use HTTP GET to issue server
requests wherever possible.

e Dynamic typing using zsi:type not fully supported: The
mechanism of dynamic type substitution by using the
zsi:type attribute has not been fully implemented yet,
as the XML documents processed in the applications
developed so far do not use this feature.

6. EXPERIMENTS

In this section we present two experiments. The first one
tries to test how much the size of the generated code can
be reduced by using DBMG. The second one measures the
execution times of generated code in a mobile phone.

6.1 Measuring code size

In this experiment we borrow the test case presented in
|25] that implements the communication layer for an SOS
client. SOS is a standard web service interface defined to
enhance interoperability between sensor data producers and
consumers [19]. The SOS schemas are among the most com-
plex geospatial web service schemas as they are comprised of
more than 80 files and they contain more than 700 complex
types and global elements [23] .

The client must process data retrieved from a server that
contains information about air quality for the Valencian
Community. This information is gathered by 57 control sta-
tions located in that area. The stations measure the level of
different contaminants in the atmosphere.

A set of 2492 XML documents was gathered from the
server to be used as input, along with the SOS schemas, to
the Instance-based data binding process. The source code
generated by DBMG is compiled to the compressed jar for-
mat and compared with the final code generated by other
generators: XBinder, JAXB and XMLBeans. The last two
are not targeted to mobile devices but are used here as ref-
erence to compare the size of similar code for other types of
applications.

Table [1| shows the size of the code produced with the dif-
ferent generators from the full SOS schemas (Full) and from
the subset of the schemas used in the input instance files
(Reduced). The reduced schemas are calculated applying
the schema simplification algorithm to the full SOS schemas.
The last row of the table (Libs) includes the size of the sup-
porting libraries needed to execute the generated code in
each case.

Figureshows the total size of XML processing code when
using the full and reduced schemas. In both cases, we can
see the enormous difference that exists between the code
generated by DBMG and the code generated by other tools.

The size for DBMG is the same in both cases because
it implicitly performs the simplification of the schemas be-
fore generating source code. It must be noted that serialisa-
tion is not still implemented in DBMG. We roughly estimate

Table 1: Comparing size of code (KBs) for original
and simplified schema sets

XBinder | JAXB

XMLBeans | DBMG

Full 3,626 754 2,822 88
Reduced 567 90 972 88
Libs 100 1,056 2,684 30

6000

5000

4000 -

3000

size[KiloBytes]

2000 -

1000 -

Full+Libs

Figure 4: Size of generated code for full schemas

that including serialisation code will increase the final size
in about 30%. In any case, the code generated by this tool is
about 6 times smaller than the code generated by XBinder
from the reduced schemas and about 30 times smaller than
the code generated from the full schemas. One of the reasons
for this difference in size is the lack of serialisation support
in DBMG. Another reason is that XBinder generates code
to ensure all of the restrictions related to user-defined sim-
ple types. This is an advantage if we parse data obtained
for a non-trusted source and the application requires the
data to be carefully validated, but it is a disadvantage in
the opposite case, as unneeded verification increase proces-
sor usage and memory footprint. In the case of DBMG, as it
aggressively tries to lower final code size, these simple type
restrictions are ignored and these types do not even have a
counterpart in the generated code.

When compared to JAXB, using the reduced schemas,
the main difference in size is in the supporting libraries,
as the code generated by JAXB is very simple. Still, the
code generated by DBMG is slightly smaller because the
step of removing elements with single child elements and
inheritance flattening eliminates a large number of classes.
In all of the cases, XMLBeans has the largest size. This tool
is mostly optimised for speed at the expense of generating a
more sophisticated and complex code and the use of bigger
supporting libraries.

6.2 Measuring execution times

To test the performance of the generated code we will
parse a set of 38 capabilities ﬁleﬂ obtained from different
SOS servers. The code needed to parse these files is gen-

13Capabilities files contain metadata about the information
contained in a server instance that implement any of the
OGC’s web service interfaces.

160

140

120

100

80

Time [ms]

60

40

20

0 10 20 30 40 50 60 70 80
Size [KiloBytes]

Figure 5: Execution times for small files

erated and deployed to a HT'C Desire Android smartphone
with a 1 GHz Qualcomm QuadDragon CPU and 576 MB
of RAM. The 38 files have sizes ranging from less than 4
KB to 3.5 MB, with a mean size of 315 KB and a standard
deviation of 26.7 KB. As the size range is large and with
the purpose of simplifying presentation we divide the files
in two groups, those with a size below 100 KB, CAPS-S (30
files), and those with size equal to or higher than 100 KB,
CAPS-L (8 files).

To obtain accurate measures of the execution time for the
code we selected the methodology presented in . This
methodology provides a statistically rigorous approach to
deal with all of the non-deterministic factors that may af-
fect the measurement process (multi-threading, background
processes, etc.).

As our goal is only to measure the execution times of XML
processing code, we stored the files to be parsed locally to
avoid interferences related to network delays. Besides, to
minimise the interference of data transfer delays from the
storage medium all of the files below 500 KB were read into
memory before being parsed. It was impossible to do the
same for files with sizes above 500 KB because of the device
memory restrictions.

Figures [f] and [6] shows the execution times of code gener-
ated by DBMG. The figures also include the execution times
needed by kXML, the underlying parser used by DBMG, to
process the same group of files. The execution times for
kXML were calculated by creating a simple test case where
files are processed using this parser, but no action is taken
when receiving the events generated by it.

When files below 100 KB are processed it can be observed
that the overhead added by the generated code is not high
(Figure [§). Nevertheless, we can see in Figure [f] that when
file size is above 1 MB, the overhead starts to be important
(>1s). This happens because the large amount of memory
that is required to store the information that is being pro-
cessed forces the execution of the garbage collector with a
high frequency. We have to keep in mind that code produced
manually can have similar problems if it were necessary to
retain most of the information read from the XML files in
memory.

The experiment described above was extended in to
compare the code generated by DBMG with other data bind-
ing tools and to measure also the performance of this code

8000 T T T T T

T
DEMG #--%¢-¢
Kitml

7000 g
6000 P

5000 1

Tine [ns]

4000t .
3000 | 4
2000} o E

1000 g

0 L L L L L L
0 500 1000 1500 2000 2500 3000 3500

Size [KiloBytes]

Figure 6: Execution times for large files

when executed in a Windows PC. The experiments showed
that the execution times for the mobile devices were around
30 to 90 times slower than those for the personal computer.
The experiments also showed that the code generated by
DBMG was as fast as code generated by other data binding
tools for the Android platform.

7. CONCLUSIONS

In this paper we have presented an approach to gener-
ate compact XML processing code based on large schemas
for mobile devices. It utilises information about how XML
documents make use of its associated schemas to reduce the
size of the generated code as much as possible. The solution
proposed here is based on the observation that applications
that makes use of XML data based on large schemas do not
use all of the information included in these schemas.

A code generator implementing the approach that pro-
duces code targeted to Android mobile devices and the Java
programming language has been developed. This tool has
been tested in a real case study showing a large reduction
in the size of the final XML processing code when compared
with other similar tools generating code for mobile, desktop
and server environments. Nevertheless, this result must be
looked at with caution as the magnitude of the reduction
will depend directly from the use that specific applications
make of their schemas.

8. ACKNOWLEDGEMENTS

This work has been partially supported by the “Espana
Virtual” project (ref. CENIT 2008-1030) through the Insti-
tuto Geogréafico Nacional (IGN); and project GEOCLOUD,
Spanish Ministry of Science and Innovation IPT-430000-
2010-11.

9. REFERENCES

[1] P. Aragé, A. Tamayo, P. Viciano, J. Huerta, and
L. Diaz. Forest Fire Survey and Processing Tool for
Android-Based Mobile Devices. In INSPIRE
Conference 2011, 2011.

[2] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

Proceedings of 33rd International Conference on Very
Large Databases (VLDB ’07), pages 998-1009. VLDB
Endowment, 2007.

D. Beyer, C. Lewerentz, and F. Simon. Impact of
inheritance on metrics for size, coupling, and cohesion
in object-oriented systems. In Proceedings of the 10th
International Workshop on New Approaches in
Software Measurement, IWSM ’00, pages 1-17,
London, UK, 2000. Springer-Verlag.

C. bogdan Chirila, M. Ruzsilla, P. Crescenzo,

D. Pescaru, and E. Tundrea. Towards a reengineering
tool for java based on reverse inheritance. In In
Proceedings of the 3rd Romanian-Hungarian Joint
Symposium on Applied Computational Intelligence
(SACI 2006), pages 963-7154, 2006.

H.-J. Bungartz, W. Eckhardt, M. Mehl, and

T. Weinzierl. DaStGen - A Data Structure Generator
for Parallel C++ HPC Software. In Proceedings of the
8th International Conference on Computational
Science, Part III, ICCS ’08, pages 213-222, Berlin,
Heidelberg, 2008. Springer-Verlag.

H. J. Bungartz, W. Eckhardt, T. Weinzierl, and

C. Zenger. A precompiler to reduce the memory
footprint of multiscale PDE solvers in C++4. Future
Generation Computer Systems, 26:175-182, January
2010.

A. Cicchetti, D. D. Ruscio, R. Eramo, and

A. Pierantonio. Automating co-evolution in
model-driven engineering. In Proceedings of the 2008
12th International IEEE Enterprise Distributed Object
Computing Conference, pages 222—-231, Washington,
DC, USA, 2008. IEEE Computer Society.

A. Georges, D. Buytaert, and L. Eeckhout.
Statistically rigorous java performance evaluation. In
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems
and applications, OOPSLA ’07, pages 5776, New
York, NY, USA, 2007. ACM.

J. Hegewald, F. Naumann, and M. Weis. XStruct:
Efficient Schema Extraction from Multiple and Large
XML Documents. In Proceedings of the 22nd
International Conference on Data Engineering
Workshops (ICDEWO06 2006), page 81, 2006.

J. Herrington. Code Generation in Action. Manning
Publications Co., Greenwich, CT, USA, 2003.

S. Kébisch, D. Peintner, J. Heuer, and H. Kosch.
Efficient and Flexible XML-Based Data-Exchange in
Microcontroller-Based Sensor Actor Networks. In
Proceedings of the 24th International Conference on
Advanced Information Networking and Applications
Workshops, WAINA ’10, volume 0, pages 508-513, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.
J. Kangasharju, T. Lindholm, and S. Tarkoma. XML
Messaging for Mobile Devices: From Requirements to
Implementation. Computer Networks, 51:4634-4654,
November 2007.

J. Kangasharju, S. Tarkoma, and T. Lindholm. Xebu:
A binary format with schema-based optimizations for
xml data. In A. Ngu, M. Kitsuregawa, E. Neuhold,
J.-Y. Chung, and Q. Sheng, editors, Web Information
Systems Engineering - WISE 2005, volume 3806 of
Lecture Notes in Computer Science, pages 528-535.

[14]

Springer Berlin / Heidelberg, 2005.

M. H. Kay. XML Five Years On: A Review of the
Achievements So Far and the Challenges Ahead. In
Proceedings of the 2003 ACM symposium on
Document Engineering, DocEng '03, pages 29-31, New
York, NY, USA, 2003. ACM.

G. Lagorio, M. Servetto, and E. Zucca. Flattening
versus direct semantics for featherweight jigsaw. In
FOOL’09, International Workshop on Foundations of
Object Oriented Languages. ACM Press, 2009.

T. Lindholm and J. Kangasharju. How to edit
gigabyte XML files on a mobile phone with XAS,
RefTrees, and RAXS. In Proceedings of Mobiquitous
08, pages 50:1-50:10, 2008.

B. McLaughlin. Java and XML Data Binding. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

J. K. Min and C. W. Ahn, J. Y. Chung. Efficient
extraction of schemas for XML documents.
Information Processing Letters, 85, 2003.

OGC. Sensor Observation Service 1.0.0. OGC
Document, (06-009r6), 2007.

C. Pichler, M. Strommer, and C. Huemer. Size
Matters!? Measuring the Complexity of XML Schema
Mapping Models. IEEE Congress on Services,
0:497-502, 2010.

E. Rahm. Towards large-scale schema and ontology
matching. In Z. Bellahsene, A. Bonifati, and E. Rahm,
editors, Schema Matching and Mapping, Data-Centric
Systems and Applications, pages 3—27. Springer Berlin
Heidelberg, 2011.

A. Tamayo. XML Data Binding for Geospatial Mobile
Applications. PhD thesis, University Jaume I, 2011.
A. Tamayo, C. Granell, and J. Huerta. Analysing
complexity of XML schemas in geospatial web services.
In Proceedings of the 2nd International Conference
and Ezhibition on Computing for Geospatial Research
and Application (COM.Geo 2011), pages 17:1-17:9,
New York, NY, USA, 2011. ACM.

A. Tamayo, C. Granell, and J. Huerta. Analysing
Performance of XML Data Binding Solutions for SOS
Applications. In Proceedings of Workshop on Sensor
Web Enablement 2011 (SWE 2011), 2011.

A. Tamayo, C. Granell, and J. Huerta. Dealing with
large schema sets in mobile SOS-based applications. In
Proceedings of the 2nd International Conference and
Exhibition on Computing for Geospatial Research and
Application (COM.Geo 2011), pages 16:1-16:9, New
York, NY, USA, 2011. ACM.

(26]

27]

(28]

29]

(30]

(31]

32]

33]

(34]

(35]

(36]

A. Tamayo, P. Viciano, C. Granell, and J. Huerta.
Empirical Study of Sensor Observation Services Server
Instances. In S. Geertman, W. Reinhardt, and

F. Toppen, editors, Advancing Geoinformation Science
for a Changing World, volume 1 of Lecture Notes in
Geoinformation and Cartography, pages 185—-209.
Springer Berlin Heidelberg, 2011.

A. Tamayo, P. Viciano, C. Granell, and J. Huerta.
Sensor Observation Service Client for Android Mobile
Phones. In Proceedings of Workshop on Sensor Web
Enablement 2011 (SWE 2011), 2011.

S. Tarkoma, J. Kangasharju, T. Lindholm, and

K. Raatikainen. Fuego: Experiences with Mobile Data
Communication and Synchronization. In Personal,
Indoor and Mobile Radio Communications, 2006
IEEE 17th International Symposium on, pages 1 =5,
sept. 2006.

R. A. Van Engelen and K. A. Gallivan. The gSOAP
Toolkit for Web Services and Peer-to-Peer Computing
Networks. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid, CCGRID 02, pages 128—, Washington, DC,
USA, 2002. IEEE Computer Society.

A. Villegas and A. Olivé. A method for filtering large
conceptual schemas. In Proceedings of the 29th
international conference on Conceptual modeling,
ER’10, pages 247-260, Berlin, Heidelberg, 2010.
Springer-Verlag.

W3C. XML Schema Part 1: Structures Second Ed.,
2004. Available from:
http://www.w3.org/TR/xmlschema-1.

W3C. XML Schema Part 2: Datatypes Second Ed.,
2004. Available from:
http://www.w3.org/TR/xmlschema-2,

W3C. Efficient XML Interchange (EXI) Format 1.0,
2011. Available from: http://www.w3.org/TR/exil

J. White, B. Kolpackov, B. Natarajan, and D. C.
Schmidt. Reducing application code complexity with
vocabulary-specific XML language bindings. In
Proceedings of the 43rd annual Southeast regional
conference - Volume 2, ACM-SE 43, pages 281-287,
New York, NY, USA, 2005. ACM.

E. Wilde. XML Technologies Dissected. IEEE Internet
Computing, 7:74-78, September 2003.

E. Wilde and R. J. Glushko. XML fever.
Communications of the ACM, 51:40-46, July 2008.

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/exi

	1 Introduction
	2 Background
	2.1 XML Schema
	2.2 XML Data Binding

	3 Related Work
	4 Instance-based Data Binding
	4.1 Instance-based Schema Simplification
	4.2 Code generation process

	5 Implementation
	6 Experiments
	6.1 Measuring code size
	6.2 Measuring execution times

	7 Conclusions
	8 Acknowledgements
	9 References

