
Hindley-Milner Elaboration in Applicative Style

Functional pearl

François Pottier

INRIA

Francois.Pottier@inria.fr

Abstract

Type inference—the problem of determining whether a program is
well-typed—is well-understood. In contrast, elaboration—the task
of constructing an explicitly-typed representation of the program—
seems to have received relatively little attention, even though, in a
non-local type inference system, it is non-trivial. We show that the
constraint-based presentation of Hindley-Milner type inference can
be extended to deal with elaboration, while preserving its elegance.
This involves introducing a new notion of “constraint with a value”,
which forms an applicative functor.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

Keywords Type inference; elaboration; polymorphism; constraints

1. Prologue

It was a bright morning. The Advisor was idle, when his newest
student suddenly entered the room. “I need your help,” she began.
“I am supposed to test my type-preserving compiler for ML21,” the
Student continued, “but I can’t conduct any experiments because I
don’t know how to connect the compiler with the front-end.”

“Hmm,” the Advisor thought. This experimental compiler was
supposed to translate an explicitly-typed presentation of ML21 all
the way down to typed assembly language. The stumbling block
was that the parser produced abstract syntax for an implicitly-typed
presentation of ML21, and neither student nor advisor had so far
given much thought to the issue of converting one presentation
to the other. After all, it was just good old Hindley-Milner type
inference [15], wasn’t it?

“So,” the Student pressed. “Suppose the term t carries no type
annotations. How do I determine whether t admits the type τ? And
if it does, which type-annotated term t′ should I produce?”

The Advisor sighed. Such effrontery! At least, the problem had
been stated in a clear manner. He expounded: “Let us consider
just simply-typed λ-calculus, to begin with. The answers to your
questions are very simple.” On the whiteboard, he wrote:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2873-9/14/09. . . $15.00.
http://dx.doi.org/10.1145/2628136.2628145

• If t is a function λx.u, then, for some types τ1 and τ2,

the types τ and τ1 → τ2 should be equal,

assuming that the type of x is τ1, u should have type τ2,

and t′ should be the type-annotated abstraction λx : τ1.u
′.

• If t is an application t1 t2, then, for some type τ2,

t1 should have type τ2 → τ ,

t2 should have type τ2,

and t′ should be t′1 t′2.

• If t is a variable x, and if the type of x is θ, then

the types τ and θ should be equal,

and t′ should be x.

“There is your algorithm,” the Advisor declared, setting the
pen down and motioning towards the door. “It can’t be any more
complicated than this.”

“This is a declarative specification,” the Student thought. “It is
not quite obvious whether an executable algorithm could be written
in this style.” It then occurred to her that the Advisor had not
addressed the most challenging part of the question. “Wait,” she
said. “What about polymorphism?”

The Advisor pondered. He was not quite sure, offhand, how to
extend this description with Hindley-Milner polymorphism.

“Let’s see,” he thought. So far, he had been implicitly thinking
in terms of constraints C ::= true | C ∧ C | τ = τ | ∃α.C [25].
When he wrote “the types τ and θ should be equal”, he had in mind
an equality constraint τ = θ. When he wrote “for some type τ2,”
he had in mind an existentially quantified constraint ∃α2. . . . (and
he rather conveniently ignored the distinction between the type
variable α2 and the type τ2 that he was really after). When he wrote
“t has type τ”, he had in mind a constraint, which, once t and τ are
given, can be systematically constructed: on the whiteboard was a
recursive description of this constraint generation process.

Now, one way of understanding Hindley-Milner polymorphism
is to construct the predicate λα.(t has type α). This is a constraint,
parameterized over one type variable; in other words, a constraint
abstraction [7]. A key theorem is that every satisfiable constraint
abstraction λα.C can be transformed to an equivalent canonical
form, λα.∃~β.(α = θ), for suitably chosen type variables ~β and
type θ. In traditional parlance, this canonical form is usually known
as a type scheme [8] and written ∀~β.θ. A type that satisfies the
predicate λα.∃~β.(α = θ) is usually referred to as an instance of
the type scheme ∀~β.θ. The existence of such canonical forms for
constraint abstractions is the principal type scheme property [8, 2].

“Jolly good,” the Advisor resumed. “Let me amend the case of
variables as follows.”

• If t is x, and if the type scheme of x is ∀~β.θ, then

for some vector ~τ , the types τ and [~τ/~β]θ should be equal,

and t′ should be the type application x ~τ .

“And let me add a new case for let bindings.” Somewhat more
hesitantly, he wrote:

• If t is let x = t1 in t2, then:

the constraint abstraction “λα.(t1 has type α)” should have
some canonical form ∀~β.θ,

assuming that the type scheme of x is ∀~β.θ, the term t2
should have type τ ,

and t′ should be let x = Λ~β.t′1 in t′2.

“There you are now.” The Advisor seemed relieved. Apparently
he had been able to write something plausible.

“This looks reasonably pretty, but is really still quite fuzzy,” the
Student thought. “For one thing, which type variables are supposed,
or not supposed, to occur in the term t′? Is it clear that Λ-abstracting
the type variables ~β in t′1 is the right thing to do?” Indeed, the
Advisor’s specification would turn out to be incorrect or misleading
(§B). “And,” the Student thought, “it is now even less obvious
how this description could be turned into executable code without
compromising its elegance.”

As if divining her thought, the Advisor added: “ML21 is a large
language, whose design is not fixed. It is quite important that the
elaboration code be as simple as possible, so as to evolve easily.
Split it into a constraint generator, along the lines of the whiteboard
specification, and a constraint solver. The generator will be specific
of ML21, but will be easy to adapt when the language evolves. The
solver will be independent of ML21.”

The Student shrugged imperceptibly. Such amazing confidence!
Her advisor was a constraint buff. He probably thought constraints
could save the world!

2. Constraints: a recap

The Student was well schooled, and knew most of what had been
spelled out on the whiteboard. Why didn’t her advisor’s answer
fully address her concerns?

Type inference in the simply-typed case can be reduced to
solving a conjunction of type equations [25], or in other words, to
solving constraints of the form C ::= true | C∧C | τ = τ | ∃α.C.
In its simplest formulation, the problem is to determine whether the
equations (or the constraint) are satisfiable. In a more demanding
formulation, the problem is to compute a most general unifier of
the equations, or in other words, to bring the constraint into an
equivalent solved form. These problems are collectively known
as first-order unification. They are solved in quasi-linear time by
Huet’s first-order unification algorithm [9], which relies on Tarjan’s
efficient union-find data structure [23].

Type inference with Hindley-Milner polymorphism can also be
considered a constraint solving problem, for a suitably extended
constraint language [7, 19]:

τ ::= α | τ → τ | . . .
C ::= true | C ∧ C | τ = τ | ∃α.C

| let x = λα.C in C
| x τ

The extension is quite simple. The let construct binds the variable x
to the constraint abstraction λα.C. The instantiation construct x τ
applies the constraint abstraction denoted by x to the type τ . One
way of defining or explaining the meaning of these constructs is to
expand them away via the following substitution law:

let x = λα.C1 in C2 ≡ ∃α.C1 ∧ [λα.C1/x]C2

That is, the let constraint on the left-hand side is equivalent to (a)
requiring that there exist at least one value of α for which C1 holds;
and (b) replacing1 every reference to x in C2 with a copy of the
constraint abstraction λα.C1.

According to the accepted wisdom, as repeated by the Advisor,
one should write a constraint generator, which maps an unanno-
tated term t to a constraint C, and a constraint solver, mapping a
constraint C to a “satisfiable” or “unsatisfiable” answer. By com-
posing the generator and the solver, one can determine whether t is
well-typed.

In greater detail, the constraint generator takes the form of a
recursive function that maps a term t and a type τ to a constraint
Jt : τK, which informally means “t has type τ”. It can be defined
as follows [19]:

Jx : τK = x τ

Jλx.u : τK = ∃α1α2.

(

τ = α1 → α2 ∧
def x = α1 in Ju : α2K

)

Jt1 t2 : τK = ∃α.(Jt1 : α → τK ∧ Jt2 : αK)

Jlet x = t1 in t2 : τK = let x = λα.Jt1 : αK in Jt2 : τK

There, def x = τ in c is a short-hand for let x = λα.(α = τ) in c.
A variable x that occurs free in the term t also occurs free in the
constraint Jt : τK, where it now stands for a constraint abstraction.
It is convenient to keep the name x, since the term t and the
constraint Jt : τK have the same binding structure.

This resembles the Advisor’s whiteboard specification, but
solves only the type inference problem, that is, the problem of
determining whether a program is well-typed. It does not solve
the elaboration problem, that is, the problem of constructing an
explicitly-typed representation of the program. If the solver returns
only a Boolean answer, how does one construct a type-annotated
term t′? How does one obtain the necessary type information? A
“satisfiable” or “unsatisfiable” answer is not nearly enough.

One may object that a solver should not just produce a Boolean
answer, but also transform a constraint C into an equivalent solved
form. However, if the term t is closed, then the constraint Jt : αK
has just one free type variable, namely α. This implies that a solved
form of Jt : αK cannot constrain any type variables other than α.
Such a solved form could be, for instance, α = unit, which tells us
that t has type unit, but does not tell us how to construct t′, which
presumably must contain many type annotations.

A more promising idea, or a better formulation of this idea,
would be to let the solver produce a satisfiability witness W , whose
shape is dictated by the shape of C. (This could be implemented
simply by annotating the constraint with extra information.) One
would then write an elaboration function, mapping t and W to an
explicitly-typed term t′.

Certainly, this approach is workable: the solution advocated in
this paper can be viewed as a nicely-packaged version of it. If
implemented plainly in the manner suggested above, however, it
seems unsatisfactory. For one thing, the elaboration function ex-
pects two arguments, namely a term t and a witness W , and must
deconstruct them in a “synchronous” manner, keeping careful track
of the correlation between them. This is unpleasant2. Furthermore,
in this approach, the type inference and elaboration process is split

1 Technically, one defines [λα.C/x](x τ) as [τ/α]C; that is, the β-redex
(λα.C) τ is reduced on the fly as part of the substitution.
2 Rémy and Yakobowski’s elaboration of eMLF into xMLF [21] merges
the syntax of terms, constraints, and witnesses. Similarly, Gundry suggests
“identifying the syntactic and linguistic contexts” [6, §2.4]. If one follows
them, then the constraint C carries more information than the term t, and
the witness W in turn carries more information than C. This means that the
elaboration phase does not have to be a function of two arguments: it maps

in three phases, namely constraint generation, constraint solving,
and elaboration. Only the second phase is independent of the pro-
gramming language at hand. The first and last phases are not. For
our Student, this means that, at every evolution of ML21, two
places in the code have to be consistently updated. This is not as
elegant as we (or the Student’s exacting advisor) would like.

In summary, the traditional presentation of type inference as a
constraint solving problem seems to fall a little short of offering an
elegant solution to the elaboration problem.

3. Constraints with a value

The fundamental reason why there must be three separate phases
(namely generation, solving, elaboration) is that constraint solving
is a non-local process. In a constraint of the form (∃α.C1)∧C2, for
instance, the final value of α cannot be determined by inspecting
just C1: the solver must inspect also C2. In other words, when
looking at a constraint of the form ∃α.C, the final value of α cannot
be determined by examining C alone: this value can be influenced
by the surrounding context. Thus, one must wait until constraint
solving is finished before one can query the solver about the value
of α. One cannot query it and obtain an answer right away.

Yet, the pseudo-code on the whiteboard (§1) seems to be written
as if this was possible. It wishes for some type τ to exist, subject
to certain constraints, then goes on and uses τ in the construction
of the term t′. In other words, even though phases 1 and 3 (that is,
generation and elaboration) must be separately executed, we wish
to express them together. This is the key reason why this pseudo-
code seems concise, compositional, and maintainable (i.e., when
ML21 evolves, only one piece of code must be updated).

Fortunately, one can give precise, executable meaning to the
Advisor’s style of expression. This is what the Student discovered
and worked out, confirming that his Advisor was on the right track,
even though he most likely did not have a very clear idea of the
difficulties involved.

Described in high-level, declarative terms, what is desired is
a language of “constraints with a value”, that is, constraints that
not only impose certain requirements on their free type variables,
but also (provided these requirements are met) produce a result.
Here, this result is an explicitly-typed term. In general, though, it
could be anything. The language of constraints-with-a-value can
(and should) be independent of the nature of the values that are
computed. For any type α of the meta-language3, we would like
to be able to construct “α-constraints”, that is, constraints which
(once satisfied) produce a result of type α.

Described in lower-level, operational terms, one wishes to bring
together the code of phase 1, which builds a constraint, and the code
of phase 3, which (by exploiting the information provided by the
solver) produces a result. So, one could think of an “α-constraint”
as a pair of (a) a raw constraint (which can be submitted to the
solver) and (b) a function which (after the solver has finished)
computes a value of type α. Our OCaml implementation (§4) is
based on this representation.

We propose the following syntax of constraints-with-a-value:

C ::=
| true | C ∧ C | τ = τ | ∃α.C
| let x = λα.C in C
| x τ
| map f C

This syntax is identical to that of raw constraints (§2), with one
addition. A new construct appears: map f C, where f is a meta-

just W to t′. A disadvantage of this approach, though, is that the syntax of
constraints is no longer independent of the programming language at hand.
3 In our implementation (§4, §5), the meta-language is OCaml.

language function. The intention is that this constraint is satisfied
when C is satisfied, and if the constraint C produces some value V ,
then map f C produces the value f V .

The other constructs retain their previous logical meaning, and
in addition, acquire a new meaning as producers of meta-language
values. At this point, let us give only an informal description of
the value that each construct produces. Things are made more
precise when we present the high-level interface of the OCaml
library (§4.3). Furthermore, to the mathematically inclined reader,
an appendix (§A) offers a formal definition of the meaning of
constraints-with-a-value, that is, when they are satisfied, and what
value they produce. This allows us to specify what the OCaml code
is supposed to compute.

As usual, a conjunction C1 ∧ C2 is satisfied if and only if C1

and C2 are satisfied. In addition, if C1 and C2 respectively produce
the values V1 and V2, then the conjunction C1 ∧ C2 produces the
pair (V1, V2).

The constraints true and τ1 = τ2 produce a unit value.
Existential quantification is more interesting. If C produces

the value V , then ∃α.C produces the pair (T, V), where T is
the witness, that is, the value that must be assigned to the type
variable α in order to satisfy the constraint C. (We write T for
a “decoded type”. This notion is clarified in §4, from an OCaml
programmer’s point of view, and in §A, from a more formal point
of view.) The type T may have free “decoded type variables”,
which we write a. The reader may wonder where and how these
variables are supposed to be introduced. This is answered below in
the discussion of let constraints.

An instantiation constraint x τ produces a vector ~T of decoded
types. These are again witnesses: they indicate how to the type
scheme associated with x must be instantiated in order to obtain
the type τ .

A constraint of the form let x = λα.C1 in C2 produces a tuple
of three values:

1. The canonical form of the constraint abstraction λα.C1. In
other words, this is the type scheme that was inferred for x, and
that was associated with x while solving C2. It is a “decoded
type scheme”, of the form ∀~b.T .

2. A value of the form Λ~a.V1, if V1 is the value produced by C1.

3. The value V2 produced by C2.

In order to understand the binder “Λ~a” in the second item, one
must note that, in general, the value V1 may have free decoded type
variables. For instance, if C1 begins with an existential quantifier
∃α. . . ., then V1 is a pair (T, . . .), where the decoded type T may
have free decoded type variables. By introducing the binder “Λ~a”,
the solver is telling the user that, at this particular place, the type
variables ~a should be introduced. (In the OCaml code, the solver
separately returns ~a and V1, and the user is responsible for building
an appropriate abstraction.)

The reader may wonder whether there should be a connection
between the vectors ~a and~b. The short answer is, in general,~b is a
subset of ~a. This is discussed in detail in the appendices (§A, §B).

4. Solving constraints with a value

We have implemented our proposal as an OCaml library, whose
code is available online [17]. It is organized in two layers. The low-
level layer (§4.2) solves a raw constraint, exports information via
write-once references, and offers facilities to decode this informa-
tion. The high-level layer (§4.3) hides many of these low-level de-
tails. It allows the client to construct constraints-with-a-value and
offers a single function solve; nothing else is needed.

module type TEVAR = sig
type tevar
val compare: tevar → tevar → int

end

Figure 1. Term variables

module type STRUCTURE = sig
type α structure
val map: (α → β) → α structure → β structure
val iter: (α → unit) → α structure → unit
val fold: (α → β → β) → α structure → β → β
exception Iter2
val iter2: (α → β → unit) → α structure → β structure → unit

end

Figure 2. Shallow structure of types

module type OUTPUT = sig
type tyvar = int
type α structure
type ty
val variable: tyvar → ty
val structure: ty structure → ty
val mu: tyvar → ty → ty
type scheme = tyvar list × ty

end

Figure 3. Decoded representation of types

4.1 Parameters

The low-level and high-level solvers are functors, parameterized
over three arguments.

The first argument (Figure 1) provides the type tevar of term
variables. This type must be equipped with a total ordering.

The second argument (Figure 2) provides a type α structure,
which defines the first-order universe over which type variables
are interpreted. A value of type α structure is a shallow type: it
represents an application of a constructor (say, arrow, or product)
to a suitable number of arguments of type α. It must be equipped
with a map function (as well as iter and fold, which in principle can
be derived from map) and with iter2, which is expected to fail if its
arguments exhibit distinct constructors.

The last argument (Figure 3) provides the types tyvar and ty
of decoded type variables and decoded types. For simplicity, the
definition of tyvar is fixed: it is just int. That is, a decoded type
variable is represented as an integer name. The type ty is the client’s
representation of types. It must be able to express type variables
(the function variable is an injection of tyvar into ty) as well as
types built by applying a constructor to other types (the function
structure is an injection of ty structure into ty).

The type ty must also come with a function mu, which allows
constructing recursive types. If a is a type variable and t represents
an arbitrary type, then mu a t should represent the recursive type
µa.t. This feature is required for two reasons: (a) the solver option-
ally supports recursive types, in the style of ocaml -rectypes;
and (b) even if this option is disabled, the types carried by the solver
exceptions Unify and Cycle (Figure 5) can be cyclic.

The last line of Figure 3 specifies that a decoded type scheme
is represented as a pair of a list of type variables (the universal
quantifiers) and a type (the body).

module Make
(X : TEVAR)
(S : STRUCTURE)
(O : OUTPUT with type α structure = α S.structure)

: sig
open X
open S
open O
type variable
val fresh: variable structure option → variable

type ischeme
type rawco =
CTrue
CConj of rawco × rawco
CEq of variable × variable
CExist of variable × rawco
CInstance of tevar × variable × variable list WriteOnceRef.t
CDef of tevar × variable × rawco
CLet of (tevar × variable × ischeme WriteOnceRef.t) list

× rawco
× rawco
× variable list WriteOnceRef.t

exception Unbound of tevar
exception Unify of variable × variable
exception Cycle of variable
val solve: bool → rawco → unit

val decode_variable: variable → tyvar
type decoder = variable → ty
val new_decoder: bool → decoder
val decode_scheme: decoder → ischeme → scheme

end

Figure 4. The solver’s low-level interface

4.2 Low-level interface

As the low-level layer is not a contribution of this paper, we de-
scribe it rather briefly. The reader who would like to know more
may consult its code online [17]. Its interface appears in Figure 4.

The types variable and ischeme are abstract. They are the
solver’s internal representations of type variables and type schemes.
Here, a type variable can be thought of as a vertex in the graph
maintained by the first-order unification algorithm. The function
fresh allows the client to create new vertices. It can be applied to
None or to Some t, where t is a shallow type. In the former case,
the new vertex can be thought of as a fresh unification variable; in
the latter case, it can be thought of as standing for the type t.

The type rawco is the type of raw constraints. Their syntax is as
previously described (§2), except that CLet allows binding several
term variables at once, a feature that we do not describe in this
paper. A couple of low-level aspects will be later hidden in the
high-level interface, so we do not describe them in detail:

• In CExist (v, c), the type variable v must be fresh and unique. A
similar requirement bears on the type variables carried by CLet.

• CInstance and CLet carry write-once references (i.e., references
to an option), which must be fresh (uninitialized) and unique.
The solver sets these references4.

4 Instead of setting write-once references, the solver could build a witness,
a copy of the constraint that carries more information. That would be
somewhat more verbose and less efficient, though. Since these details are
ultimately hidden, we prefer to rely on side effects.

The function solve expects a closed constraint and determines
whether it is satisfiable. The Boolean parameter indicates whether
recursive types, in the style of ocaml -rectypes, are legal.

If the constraint is unsatisfiable, an exception is raised. The
exception Unify (v1, v2) means that the type variables v1 and v2
cannot be unified; the exception Cycle v means that a cycle in
the type structure has been detected, which the type variable v
participates in.

If the constraint is satisfiable, the solver produces no result,
but annotates the constraint by setting the write-once references
embedded in it.

The type information that is made available to the client, either
via the exceptions Unify and Cycle or via the write-once references,
consists of values of type variable and ischeme. These are abstract
types: we do not wish to expose the internal data structures used by
the solver. Thus, the solver must also offer facilities for decoding
this information, that is, for converting it to values of type tyvar, ty,
etc. These decoding functions are supposed to be used only after
the constraint solving phase is finished.

The function decode_variable decodes a type variable. As noted
earlier, the type tyvar is just int: a type variable is decoded to its
unique integer identifier.

The function new_decoder constructs a new type decoder, that
is, a function of type variable → ty. (The Boolean parameter tells
whether the decoder should be prepared to support cyclic types.)
This decoder has persistent state. Indeed, decoding consists in
traversing the graph constructed by the unification algorithm and
turning it into what appears to be a tree (a value of type ty) but
is really a DAG. The decoder internally keeps track of the visited
vertices and their decoded form (i.e., it maintains a mapping of
variable to ty), so that the overall cost of decoding remains linear
in the size of the graph5.

We lack space to describe the implementation of the low-level
solver, and it is, anyway, beside the point of the paper. Let us just
emphasize that it is is modular: (a) at the lowest layer lies Tarjan’s
efficient union-find algorithm [23]; (b) above it, one finds Huet’s
first-order unification algorithm [9]; (c) then comes the treatment
of generalization and instantiation, which exploits Rémy’s integer
ranks [20, 12, 11] to efficiently determine which type variables
must be generalized; (d) the last layer interprets the syntax of con-
straints. The solver meets McAllester asymptotic time bound [12]:
under the assumption that all of the type schemes that are ever con-
structed have bounded size, its time complexity is O(nk), where n
is the size of the constraint and k is the left-nesting depth of CLet
nodes.

4.3 High-level interface

The solver’s high-level interface appears in Figure 5. It abstracts
away several details of raw constraints, including the transmission
of information from solver to client via write-once references and
the need to decode types. In short, it provides: (a) an abstract type
α co of constraints that produce a value of type α; (b) a number
of ways of constructing such constraints; and (c) a single function,
solve, that solves and evaluates such a constraint and (if successful)
produces a final result of type α.

The type α co is internally defined as follows:

type α co =
rawco × (env → α)

That is, a constraint-with-a-value is a pair of a raw constraint rc
and a continuation k, which is intended to be invoked after the

5 This is true when support for cyclic types is disabled. When it is enabled,
one must place µ binders in a correct manner, and this seems to prevent the
use of persistent state. We conjecture that the unary µ is too impoverished
a construct: it does not allow describing arbitrary cyclic graphs without a
potential explosion in size.

module Make
(X : TEVAR)
(S : STRUCTURE)
(O : OUTPUT with type α structure = α S.structure)

: sig
open X
open S
open O
type variable

type α co
val pure: α → α co
val (^&): α co → β co → (α × β) co
val map: (α → β) → α co → β co
val (--): variable → variable → unit co
val (---): variable → variable structure → unit co
val exist: (variable → α co) → (ty × α) co
val instance: tevar → variable → ty list co
val def : tevar → variable → α co → α co
val let1: tevar → (variable → α co) → β co →

(scheme × tyvar list × α × β) co

exception Unbound of tevar
exception Unify of ty × ty
exception Cycle of ty
val solve: bool → α co → α

end

Figure 5. The solver’s high-level interface

constraint solving phase is over, and is expected to produce a result
of type α. The continuation receives an environment which, in the
current implementation, contains just a type decoder:

type env =
decoder

If one wished to implement α co in a purely functional style,
one would certainly come up with a different definition of α co.
Perhaps something along the lines of rawco × (witness → α m),
where witness is the type of the satisfiability witness produced by
the low-level solver (no more write-once references!) and α m is
a suitable monad, so as to allow threading the state of the type
decoder through the elaboration phase. Perhaps one might also
wish to use a dependent type, or a GADT, to encode the fact that the
shape of the witness is dictated by the shape of the raw constraint.
We use OCaml’s imperative features because we can, but the point
is, the end user does not need to know; the abstraction that we offer
is independent of these details, and is not inherently imperative.

The combinators (pure, . . . , let1) allow building constraints-
with-a-value. Most of them produce a little bit of the underlying
raw constraint, together with an appropriate continuation. The only
exception is map, which installs a continuation but does not affect
the underlying raw constraint.

The constraint pure a is always satisfied and produces the
value a. It is defined as follows:

let pure a =
CTrue,
fun env → a

If c1 and c2 are constraints of types α co and β co, then c1 ^& c2
is a constraint of type (α × β) co. It represents the conjunction of
the underlying raw constraints, and produces a pair of the results
produced by c1 and c2.

let (^&) (rc1, k1) (rc2, k2) =
CConj (rc1, rc2),
fun env → (k1 env, k2 env)

If c is a constraint of type α co and if the user-supplied function f
maps α to β, then map f c is a constraint of type β co. Its logical
meaning is the same as that of c.

let map f (rc, k) =
rc,
fun env → f (k env)

Equipped with the combinators pure, ^&, and map, the type
constructor co is an applicative functor. More specifically, it is an
instance of McBride and Paterson’s type class Monoidal [13, §7].
Furthermore, the combinator ^& is commutative, that is, it enjoys
the following law:

c1 ^& c2 ≡ map swap (c2 ^& c1)

where swap (a2, a1) is (a1, a2). This law holds because CConj is
commutative; the order in which the members of a conjunction are
considered by the solver does not influence the final result.

It is worth noting that co is not a monad, as there is no sensible
way of defining a bind operation of type α co → (α → β co)
→ β co. In an attempt to define bind (rc1, k1) f 2, one would
like to construct a raw conjunction CConj (rc1, rc2). In order
to obtain rc2, one must invoke f 2, and in order to do that, one
needs a value of type α, which must be produced by k1. But the
continuation k1 must not be invoked until the raw constraint rc1
has been solved. In summary, a constraint-with-a-value is a pair of
a static component (the raw constraint) and a dynamic component
(the continuation), and this precludes a definition of bind. This
phenomenon, which was observed in Swierstra and Duponcheel’s
LL(1) parser combinators [22], was one of the motivations that led
to the recognition of arrows [10] and applicative functors [13] as
useful abstractions.

Although we do not have bind, we have map. When one builds
a constraint map f c, one is assured that the function f will be run
after the constraint solving phase is finished. In particular, f is run
after c has been solved. We emphasize this by defining a version of
map with reversed argument order:

let (<$$>) a f =
map f a

The combinators -- and --- construct equations, i.e., unification
constraints. The constraint v1 -- v2 imposes an equality between
the variables v1 and v2, and produces a unit value. Its definition is
straightforward:

let (--) v1 v2 =
CEq (v1, v2),
fun env → ()

The constraint v1 --- t2 is also an equation, whose second member
is a shallow type.

The next combinator, exist, builds an existentially quantified
constraint ∃α.C. Its argument is a user-defined function f which,
once supplied with a fresh type variable α, must construct C. It is
defined as follows:

let exist f =
let v = fresh None in
let rc, k = f v in
CExist (v, rc),
fun env →

let decode = env in
(decode v, k env)

At constraint construction time, we create a fresh variable v and
pass it to the client by invoking f v. This produces a constraint,
i.e., a pair of a raw constraint rc and a continuation k. We can
then construct the raw constraint CExist (v, rc). We define a new
continuation, which constructs a pair of the decoded value of v and
the value produced by k. As a result, the constraint exist f has type

(ty × α) co: it produces a pair whose first component is a decoded
type. The process of decoding types has been made transparent to
the client.

The combinator instance constructs an instantiation constraint
x v, where x is a term variable and v is a type variable. The type of
instance x v is ty list co: this constraint produces a vector of decoded
types, so as to indicate how the type scheme associated with x was
instantiated. This combinator is implemented as follows:

let instance x v =
let witnesses = WriteOnceRef.create() in
CInstance (x, v, witnesses),
fun env →

let decode = env in
List.map decode (WriteOnceRef.get witnesses)

At constraint construction time, we create an empty write-once
reference, witnesses, and construct the raw constraint CInstance (x,
v, witnesses), which carries a pointer to this write-once reference.
During the constraint solving phase, this reference is written by the
solver, so that, when the continuation is invoked, we may read the
reference and decode the list of types that it contains. Thus, the
transmission of information from the solver to the client via write-
once references has been made transparent.

The last combinator, let1, builds a let constraint. It should be
applied to three arguments, namely: (a) a term variable x; (b) a
user-supplied function f 1, which denotes a constraint abstraction
λα.c1 (i.e., when applied to a fresh type variable α, this function
constructs the constraint c1); (c) a constraint c2. We omit its code,
which is in the same style as that of instance above. As promised
earlier (§3), this constraint produces the following results:

• A decoded type scheme, ∀~b.T , of type scheme. It can be viewed
as the canonical form of the constraint abstraction λα.c1. This
type scheme has been associated with x while solving c2. We
guarantee that~b is a subset of ~a (see §A and §B for details).

• A vector of decoded type variables ~a, of type tyvar list, and a
value V1, of type α, produced by c1. The type variables ~a may
occur in V1. The user is responsible for somehow binding them
in V1, so as to obtain the value referred to as “Λ~a.V1” in §3.

• A value V2, produced by c2, of type β.

The function solve takes a constraint of type α co to a result of
type α. If the constraint is unsatisfiable, then the exception that is
raised (Unify or Cycle) carries a decoded type, so that (once again)
the decoding process is transparent. Thus, in the implementation,
we redefine Unify and Cycle:

exception Unify of O.ty × O.ty
exception Cycle of O.ty

and implement solve as follows:

let solve rectypes (rc, k) =
begin try

Lo.solve rectypes rc
with
Lo.Unify (v1, v2) →

let decode = new_decoder true in
raise (Unify (decode v1, decode v2))

Lo.Cycle v →
let decode = new_decoder true in
raise (Cycle (decode v))

end;
let decode = new_decoder rectypes in
let env = decode in
k env

The computation is in two phases. First, the low-level solver,
Lo.solve, is applied to the raw constraint rc. Then, elaboration

type tevar = string
type term =

Var of tevar
Abs of tevar × term
App of term × term
Let of tevar × term × term

Figure 6. Syntax of the untyped calculus (ML)

type (α, β) typ =
TyVar of α
TyArrow of (α, β) typ × (α, β) typ
TyProduct of (α, β) typ × (α, β) typ
TyForall of β × (α, β) typ
TyMu of β × (α, β) typ

type tyvar = int
type nominal_type = (tyvar, tyvar) typ
type tevar = string
type (α, β) term =

Var of tevar
Abs of tevar × (α, β) typ × (α, β) term
App of (α, β) term × (α, β) term
Let of tevar × (α, β) term × (α, β) term
TyAbs of β × (α, β) term
TyApp of (α, β) term × (α, β) typ

type nominal_term = (tyvar, tyvar) term

let ftyabs vs t =
List.fold_right (fun v t → TyAbs (v, t)) vs t

let ftyapp t tys =
List.fold_left (fun t ty → TyApp (t, ty)) t tys

Figure 7. Syntax of the typed calculus (F)

takes place: the continuation k is invoked. It is passed a fresh type
decoder, which has persistent state6, so that (as announced earlier)
the overall cost of decoding is linear.

If the raw constraint rc is found to be unsatisfiable, the exception
raised by the low-level solver (Lo.Unify or Lo.Cycle) is caught;
its arguments are decoded, and an exception (Unify or Cycle) is
raised again. The decoder that is used for this purpose must support
recursive types, even if rectypes is false. Obviously, the argument
carried by Cycle is a vertex that participates in a cycle! Perhaps
more surprisingly, the arguments carried by Unify may participate
in cycles too, as the occurs check is performed late (i.e., only at
CLet constraints) and in a piece-wise manner (i.e., only on the so-
called “young generation”).

The high-level solver has asymptotic complexity O(nk), like
the low-level solver. Indeed, the cost of constructing and invoking
continuations is O(n), and the cost of decoding is linear in the total
number of type variables ever created, that is, O(nk).

5. Elaborating ML into System F

We now show how to perform elaboration for an untyped calculus
(“ML”, shown in Figure 6) and translate it to an explicitly-typed
form (“F”, shown in Figure 7). The code (Figure 8) is a formal and
rather faithful rendition of the Advisor’s pseudo-code (§1).

5.1 Representations of type variables and binders

In both calculi, the representation of term variables is nominal.
(Here, they are just strings. One could use unique integers instead.)
The representation of type variables in System F is not fixed: the

6 Provided rectypes is false (§4.2).

let rec hastype (t : ML.term) (w : variable) : F.nominal_term co
= match t with

ML.Var x →
instance x w <$$> fun tys →
F.ftyapp (F.Var x) tys

ML.Abs (x, u) →
exist (fun v1 →

exist (fun v2 →
w --- arrow v1 v2 ^&
def x v1 (hastype u v2)

)
) <$$> fun (ty1, (ty2, ((), u′))) →
F.Abs (x, ty1, u′)

ML.App (t1, t2) →
exist (fun v →

lift hastype t1 (arrow v w) ^&
hastype t2 v

) <$$> fun (ty, (t′1, t′2)) →
F.App (t′1, t′2)

ML.Let (x, t, u) →
let1 x (hastype t)

(hastype u w)
<$$> fun ((b, _), a, t′, u′) →
F.Let (x, F.ftyabs a t′,
F.Let (x, coerce a b (F.Var x),
u′))

Figure 8. Type inference and translation of ML to F

syntax is parametric in α (a type variable occurrence) and β (a
type variable binding site). A nominal representation is obtained
by instantiating α and β with tyvar (which is defined as int, so a
type variable is represented by a unique integer identifier), whereas
de Bruijn’s representation (not shown) is obtained by instantiating
α with int (a de Bruijn index) and β with unit.

In the following, we construct type-annotated terms under a
nominal representation. This is natural, because the constraint
solver internally represents type variables as mutable objects with
unique identity, and presents them to us as unique integers. One
may later perform a conversion to de Bruijn’s representation, which
is perhaps more traditional for use in a System F type-checker.

5.2 Translation

Thanks to the high-level solver interface, type inference for ML and
elaboration of ML into F are performed in what appears to be one
pass. The code is simple and compositional: it takes the form of a
single recursive function, hastype. This function maps an ML term t
and a unification variable w to a constraint of type F.nominal_term
co. This constraint describes, at the same time, a raw constraint
(what is a necessary and sufficient condition for the term t to have
type w?) and a process by which (if the raw constraint is satisfied)
a term of System F is constructed.

The function hastype appears in Figure 8. Most of it should be
clear, since it corresponds to the whiteboard specification of §1. Let
us explain just a few points.

The auxiliary function lift (not shown) transforms a function
of type α → variable → β co into one of type α → variable
structure → β co. It can be defined in terms of map, exist, and ---.
Thus, whereas the second argument of hastype is a type variable,
the second argument of lift hastype is a shallow type. This offers a
convenient notation in the case of ML.App.

In the case of ML.Let, the partial application hastype t is quite
literally a constraint abstraction! The construct ML.Let is translated
to F.Let. (One could encode F.Let as a β-redex, at the cost of extra

type annotations.) The type variables a are explicitly Λ-abstracted
in the term t′, as explained in the description of let1 (§4.3).

In the next-to-last line of Figure 8, the variable x is re-bound to
an application of a certain coercion to x, which is constructed by the
function call coerce a b (F.Var x). This coercion has no effect when
the vectors of type variables a and b are equal. The case where they
differ is discussed in the appendix (§B).

6. Conclusion

What have we achieved? We have started with a language of “raw”
constraints (§2) that can express the type inference problem in a
concise and elegant manner. Its syntax is simple. Yet, it requires
a non-trivial and non-local constraint solving procedure, involving
first-order unification as well as generalization and instantiation.
We have argued that it does not solve the elaboration problem. A
“satisfiable” or “unsatisfiable” answer is not enough, and asking the
solver to produce more information typically results in a low-level
interface (§4.2) that does not directly allow us to express elabora-
tion in an elegant manner. The key contribution of this paper is a
high-level solver interface (§4.3) that allows (and forces) the user
to tie together the constraint generation phase and the elaboration
phase, resulting in concise and elegant code (§5). The high-level
interface offers one key abstraction, namely the type α co of “con-
straints with a value”. Its meaning can be specified in a declarative
manner (§A). It is an applicative functor, which suggests that it is
a natural way of structuring an elaboration algorithm that has the
side effect of emitting and solving a constraint. The high-level in-
terface can be modularly constructed above the low-level solver,
without knowledge of how the latter is implemented, provided the
low-level solver produces some form of satisfiability witness.

The idea of “constraints with a value” is not specific of the
Hindley-Milner setting. It is in principle applicable and useful in
other settings where constraint solving is non-local. For instance,
elaboration in programming languages with dependent types and
implicit arguments [6], which typically relies on higher-order pat-
tern unification [14], could perhaps benefit from this approach.

The constraint language is small, but powerful. As one scales
up to a real-world programming language in the style of ML, the
constraint language should not need to grow much. The current
library [17] already offers a combinator letn for defining a con-
straint abstraction with n entry points; this allows dealing with
ML’s “let p = t1 in t2”, which simultaneously performs gener-
alization and pattern matching. Two simple extensions would be
universal quantification in constraints [18, §1.10], which allows
dealing with “rigid”, user-provided type annotations, and rows [19,
§10.8], which allow dealing with structural object types in the style
of OCaml. The value restriction requires no extension to the library,
but the relaxed value restriction [3] would require one: the solver
would have to be made aware of the variance of every type con-
structor. Higher-rank polymorphism [4, 16], polymorphism in the
style of MLF [21], and GADTs [24, 5] would require other exten-
sions, which we have not considered.

The current library has limited support for reporting type errors,
in the form of the exceptions Cycle and Unify. The unification al-
gorithm is transactional. Equations are submitted to it one by one,
and each submission either succeeds and updates the algorithm’s
current state, or fails and has no effect. This means that the types
carried by the exception Unify reflect the state of the solver just be-
fore the problematic equation was encountered. The library could
easily be extended with support for embedding source code loca-
tions (of a user-specified type) in constraints. This should allow dis-
playing type error messages of roughly the same quality as those of
the OCaml type-checker. A more ambitious treatment of type errors
might require a different constraint solver, which hopefully would

offer the same interface as the present one, so that the elaboration
code need not be duplicated.

Our claim that the elaboration of ML into System F has com-
plexity O(nk) (§4.3) must be taken with a grain of salt. In our
current implementation, this is true because elaboration does not
produce a System F term: it actually constructs a System F DAG,
with sharing in the type annotations. Displaying this DAG in a naive
manner, or converting it in a naive way to another representation,
such as de Bruijn’s representation, causes an increase in size, which
in the worst case could be exponential. One could address this issue
by extending System F with a local type abbreviation construct, of
the form let a = T in t, where a is a type variable and T is a type.
The elaboration algorithm would emit this construct at let nodes.
(The low-level and high-level solver interfaces would have to be
adapted. The solver would publish, at every let node, a set of local
type definitions.) All type annotations (at λ-abstractions and at type
applications) would then be reduced to type variables. This could
be an interesting avenue for research, as this extension of System F
might enjoy significantly faster type-checking.

References

[1] Julien Cretin and Didier Rémy. On the power of coercion abstraction.
In Principles of Programming Languages (POPL), pages 361–372,
2012.

[2] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Principles of Programming Languages (POPL), pages
207–212, 1982.

[3] Jacques Garrigue. Relaxing the value restriction. In Functional

and Logic Programming, volume 2998 of Lecture Notes in Computer

Science, pages 196–213. Springer, 2004.

[4] Jacques Garrigue and Didier Rémy. Extending ML with semi-
explicit higher-order polymorphism. Information and Computation,
155(1):134–169, 1999.

[5] Jacques Garrigue and Didier Rémy. Ambivalent types for principal
type inference with GADTs. In Asian Symposium on Programming

Languages and Systems (APLAS), 2013.

[6] Adam Gundry. Type Inference, Haskell and Dependent Types. PhD
thesis, University of Strathclyde, 2013.

[7] Jörgen Gustavsson and Josef Svenningsson. Constraint abstractions.
In Symposium on Programs as Data Objects, volume 2053 of Lecture

Notes in Computer Science. Springer, 2001.

[8] J. Roger Hindley. The principal type-scheme of an object in com-
binatory logic. Transactions of the American Mathematical Society,
146:29–60, 1969.

[9] Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2,

. . ., ω. PhD thesis, Université Paris 7, 1976.

[10] John Hughes. Generalising monads to arrows. Science of Computer

Programming, 37(1–3):67–111, 2000.

[11] George Kuan and David MacQueen. Efficient type inference using
ranked type variables. In ACM Workshop on ML, pages 3–14, 2007.

[12] David McAllester. A logical algorithm for ML type inference. In
Rewriting Techniques and Applications (RTA), volume 2706 of Lec-

ture Notes in Computer Science, pages 436–451. Springer, 2003.

[13] Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1):1–13, 2008.

[14] Dale Miller. Unification under a mixed prefix. Journal of Symbolic

Computation, 14(4):321–358, 1992.

[15] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[16] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. Jour-

nal of Functional Programming, 17(1):1–82, 2007.

http://gallium.inria.fr/~remy/coercions/Cretin-Remy:coercions@popl2012.pdf
http://doi.acm.org/10.1145/582153.582176
http://doi.acm.org/10.1145/582153.582176
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://gallium.inria.fr/~remy/ftp/iandc.pdf
http://gallium.inria.fr/~remy/ftp/iandc.pdf
http://gallium.inria.fr/~remy/gadts/Garrigue-Remy:gadts@aplas2013.pdf
http://gallium.inria.fr/~remy/gadts/Garrigue-Remy:gadts@aplas2013.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-12-03.pdf
http://www.cse.chalmers.se/~josefs/publications/ca.pdf
http://dx.doi.org/10.2307/1995158
http://dx.doi.org/10.2307/1995158
http://www.cse.chalmers.se/~rjmh/Papers/arrows.pdf
http://people.cs.uchicago.edu/~gkuan/pubs/ml07-km.pdf
http://people.cs.uchicago.edu/~gkuan/pubs/ml07-km.pdf
http://ttic.uchicago.edu/~dmcallester/rta03.ps
http://www.soi.city.ac.uk/~ross/papers/Applicative.pdf
http://www.soi.city.ac.uk/~ross/papers/Applicative.pdf
http://www.lix.polytechnique.fr/~dale/papers/jsc92.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276
http://research.microsoft.com/en-us/um/people/simonpj/papers/higher-rank/putting.pdf

[17] François Pottier. Inferno: a library for Hindley-Milner type infer-
ence and elaboration, February 2014. http://gallium.inria.fr/
~fpottier/inferno/inferno.tar.gz.

[18] François Pottier and Didier Rémy. The essence of ML type inference.
Draft of an extended version. Unpublished, 2003.

[19] François Pottier and Didier Rémy. The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Pro-

gramming Languages, chapter 10, pages 389–489. MIT Press, 2005.

[20] Didier Rémy. Extending ML type system with a sorted equational
theory. Technical Report 1766, INRIA, 1992.

[21] Didier Rémy and Boris Yakobowski. A Church-style intermediate
language for MLF. Theoretical Computer Science, 435(1):77–105,
2012.

[22] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-
correcting combinator parsers. In Advanced Functional Program-

ming, volume 1129 of Lecture Notes in Computer Science, pages 184–
207. Springer, 1996.

[23] Robert Endre Tarjan. Efficiency of a good but not linear set union
algorithm. Journal of the ACM, 22(2):215–225, 1975.

[24] Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and
Martin Sulzmann. OutsideIn(X): Modular type inference with local
assumptions. Journal of Functional Programming, 21(4–5):333–412,
2011.

[25] Mitchell Wand. A simple algorithm and proof for type inference.
Fundamenta Informaticæ, 10:115–122, 1987.

A. Semantics of constraints with a value

In order to clarify the definition that follows, we must distinguish
two namespaces of type variables. In the syntax of constraints (§2,
§3), we have been using α to denote a type variable. Such a variable
may appear in a type τ and in a constraint C. It represents a type
to be determined; one could refer to it informally as a “unification
variable”. In contrast, the explicitly-typed terms that we wish to
construct also contain type variables, but those do not stand for
types to be determined; they are type constants, so to speak. For the
sake of clarity, we use distinct meta-variables, namely a and b, to
denote them, and we write T for a first-order type built on them:

T ::= a | T → T | . . .

We refer to a as a “decoded” type variable and to T as a “decoded”
type. In the following, we write φ for a partial mapping of the type
variables α to decoded types T . The application of φ to a type τ
produces a decoded type T .

We wish to define when a constraint C may produce a value V ,
where V denotes a value of the meta-language. (In §5, the values
that we build are OCaml representations of System F terms.) We do
not wish to fix the syntax of values, as it is under the user’s control.
We assume that it includes: (a) tuples of arbitrary arity, (b) decoded
type schemes, and (c) a way of binding a vector ~a in a value V :

V ::= (V, . . . , V) | ∀~a.T | Λ~a.V | . . .

In order to define when a constraint C may produce a value V ,
we need a judgement of at least two arguments, namely C and V .
In order to indicate which term variables x and which decoded
type variables a are in scope, we add a third argument, namely an
environment E, whose structure is as follows:

E ::= ∅ | E, x : ∀~a.T | E, a

(This is essentially an ML type environment.)
Finally, to keep track of the values assigned to unification vari-

ables, we add a fourth and last argument, namely a substitution φ.
Thus, we define a judgement of the following form:

E;φ ⊢ C V

E;φ ⊢ true ()
E;φ ⊢ C1 V1 E;φ ⊢ C2 V2

E;φ ⊢ C1 ∧ C2 (V1, V2)

φ(τ1) = φ(τ2)

E;φ ⊢ τ1 = τ2 ()

E ⊢ T ok
E;φ[α 7→ T] ⊢ C V

E;φ ⊢ ∃α.C (T, V)

E(x) = ∀~a.T φ(τ) = [~T/~a]T

E;φ ⊢ x τ ~T

E;φ ⊢ C V

E;φ ⊢ map f C f V

E,~b ⊢ T ok ~b ⊆ ~a
E,~a;φ[α 7→ T] ⊢ C1 V1

E, x : ∀~b.T ;φ ⊢ C2 V2

E;φ ⊢ let x = λα.C1 in C2 (∀~b.T,Λ~a.V1, V2)

Figure 9. Semantics of constraints with a value

where the free term variables of C are in the domain of E and the
free type variables of C are in the domain of φ. This judgement
means that in the context E, the constraint C is satisfied by φ and
produces the value V .

The definition of this judgement appears in Figure 9.
The meaning of truth and conjunction is straightforward. The

constraint true produces the empty tuple (), while a conjunction
C1 ∧ C2 produces a pair (V1, V2), as announced earlier.

Quite obviously, an equation τ1 = τ2 is satisfied by φ only if
the decoded types φ(τ1) and φ(τ2) are equal. Such an equation
produces the empty tuple ().

The rule for existential quantification states that the constraint
∃α.C is satisfied iff there exists an assignment of α that satisfies C.
More precisely, φ satisfies ∃α.C iff there exists a decoded type T
such that φ[α 7→ T] satisfies C. This is a non-deterministic specifi-
cation, not an executable algorithm, so the witness T is “magically”
chosen. (The first premise requires the free type variables of T to
be in the domain of E.) Finally, the rule states that if C produces
the value V , then ∃α.C produces the pair (T, V). This means that
the end user has access to the witness T .

An instantiation constraint x τ is satisfied by φ iff the decoded
type φ(τ) is an instance of the type scheme associated with x.
The first premise looks up this type scheme, say ∀~a.T , in E. The
second premise checks that the instance relation holds: that is, for
some vector ~T , the decoded types φ(τ) and [~T/~a]T are equal.
The vector ~T is again “magically” chosen. Finally, this constraint
produces the value ~T . This means that the end user has access to
the witnesses ~T .

The constraint map f C is satisfied iff C is satisfied. If C
produces V , then map f C produces f V . This allows the end user
to transform, or post-process, the value produced by a constraint.

For the moment, let us read the rule that describes the constraint
let x = λα.C1 in C2 as if the vector~b was equal to ~a. We explain
why they might differ in §B.

The rule’s third premise requires that C1 be satisfied by map-
ping α to T , in a context extended with a number of new type
variables ~a. This means that every instance of the type scheme
∀~a.T satisfies the constraint abstraction λα.C1. Again, ~a and T
are “magically” chosen. The last premise requires that, under the
assumption that x is associated with the type scheme ∀~a.T , the
constraint C2 be satisfied.

The conclusion states that, if C1 and C2 respectively produce
the values V1 and V2, then the constraint let x = λα.C1 in C2

produces the triple (∀~a.T,Λ~a.V1, V2). The first component of this

http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://cristal.inria.fr/attapl/preversion.ps.gz
http://gallium.inria.fr/~fpottier/publis/emlti-final.pdf
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://gallium.inria.fr/~remy/mlf/Remy-Yakobowski:xmlf@tcs2011.pdf
http://gallium.inria.fr/~remy/mlf/Remy-Yakobowski:xmlf@tcs2011.pdf
http://www.staff.science.uu.nl/~swier101/Papers/1996/DetErrCorrComPars.pdf
http://www.staff.science.uu.nl/~swier101/Papers/1996/DetErrCorrComPars.pdf
http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/constraints/jfp-outsidein.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/constraints/jfp-outsidein.pdf
http://www.cs.ucla.edu/~palsberg/course/cs239/reading/wand87.pdf

triple is the type scheme that has been associated with x while
examining C2. The second component is V1, in which the “new”
type variables ~a have been made anonymous, so as ensure that “if
E;φ ⊢ C V holds, then the free type variables of V are in the
domain of E”. The last component is just V2.

Our proposed definition of the judgement E;φ ⊢ C V
should be taken with a grain of salt, as we have not conducted any
proofs about it. One might wish to prove that it is in agreement
with the semantics of raw constraints, as defined by Rémy and the
present author [19, p. 414].

The judgement E;φ ⊢ C V can be used to express the
specification of the constraint solver. Let C be a closed constraint.
The solver is correct: if the solver, applied to C, succeeds and
produces a value V , then the judgement ∅; ∅ ⊢ C V holds,
i.e., C is satisfiable and V can be viewed as a correct description of
the solution. The solver is complete: if there exists a value V such
that ∅; ∅ ⊢ C V holds, then the solver, applied to C, succeeds
and produces a value V ′7.

B. On redundant quantifiers

B.1 The issue

The last rule of Figure 9, read in the special case where~b is~a, states
that such the constraint let x = λα.C1 in C2 produces a triple
of the form (Λ~a.V1, ∀~a.T, V2). We pointed out earlier (§A) that
abstracting the type variables ~a in the value V1 is necessary, as all
of these variables may appear in V1. However, it could happen that
some of these variables do not occur in the type T , which means
that the type scheme ∀~a.T exhibits redundant quantifiers.

In other words, simplifying the last rule of Figure 9 by forcing
a coincidence between~b and ~a would make good sense, but would
lead to an inefficiency.

For instance, consider the ML term:

let u = (λf.()) (λx.x) in . . .

The left-hand side of the let construct applies a constant function,
which always returns the unit value, to the identity function. Thus,
intuitively, it seems that the type scheme assigned to the variable u
should be just unit. However, if one constructs the contraint-with-
a-value that describes this term (as per Figure 8) and if one applies
the rules of Figure 9 in the most general manner possible, so as to
determine what value this constraint produces, one finds that, at the
let construct, one must introduce a type variable a, which stands
for the type of x. In this case, the vector ~a consists of just a. The
value V1 is the explicitly-typed version of the function application,
that is:

(λf : a → a.()) (λx : a.x)

The type T of this term is just unit. We see that the binder “Λa” in
Λa.V1 is essential, since a occurs in V1, whereas the binder “∀a”
in ∀a.T is redundant, since a does not occur in T . The translation
of our ML term in System F is as follows:

let u = Λa.(λf : a → a.()) (λx : a.x) in . . .

The type of u in System F is ∀a.unit (which is not the same as
unit). In the right-hand side (. . .), every use of u must be wrapped
in a type application, which instantiates the quantifier a. But, one
may ask, what will a be instantiated with? Well, naturally, with

7 We cannot require V ′ to be V , because the judgement E;φ ⊢ C V is
non-deterministic: when E and C are fixed, there may be multiple choices
of φ and V such that the judgement holds. In practice, a reasonable con-
straint solver always computes a most general solution φ and the value V
that corresponds to it. One might wish to build this guarantee into the state-
ment of completeness.

another type variable, which itself will later give rise to another
redundant quantifier, and so on. Redundant quantifiers accumulate
and multiply!

This is slightly unsatisfactory. In fact, formally, this may well
violate our claim that the constraint solver has good complexity
under the assumption that “type schemes have bounded size” [12].
Indeed, a plausible clarification of McAllester’s hypothesis is that
“all type schemes ever inferred, once deprived of their redundant
quantifiers, have bounded size”, and that does not imply that “all
type schemes ever inferred, in the absence of redundant quantifier
elimination, have bounded size”.

B.2 A solution

We address this issue by allowing the vectors ~b and ~a to differ
in the last rule of Figure 9. In general, ~b is a subset of ~a (second
premise) that the variables in~b may occur in T while those in ~a \~b
definitely do not occur in T (first premise). All of the variables ~a
are needed to express the solution of C1 (third premise), hence all
of them may appear in the value V1. Thus, one must abstract over ~a
in the value V1. But the solver examines the constraint C2 under
the assumption that x has type scheme ∀~b.T , where the redundant
quantifiers have been removed (last premise).

We can now explain in what way the Advisor’s informal code
(§1) was misleading. In the Advisor’s discourse, ∀~β.θ is supposed
to be a canonical form of a (raw) constraint abstraction, or in
other words, a principal type scheme. Certainly it is permitted to
assume that it does not have any redundant quantifiers. So, ~β there
corresponds to ~b here. When the Advisor suggested Λ-abstracting
over ~β, he was wrong. This is not enough: one must Λ-abstract
over ~a, or one ends up with dangling type variables.

Naturally, the potential mismatch between ~a and ~b means that
one must be careful in the construction of an explicitly-typed term.
When viewed as ML type schemes, ∀~a.T and ∀~b.T are usually
considered equivalent; yet, when viewed as System F types, they
most definitely are not.

For this reason, it does not make sense to translate the ML term
“let x = t1 in t2” to the System F term “let x = Λ~a.t′1 in t′2”.
The subterm Λ~a.t′1 has type ∀~a.T , but the subterm t′2 is constructed
under the assumption that x has type ∀~b.T . Thus, one must adjust
the type of x, by inserting an explicit coercion:

let x = Λ~a.t′1 in let x = (x : ∀~a.T :> ∀~b.T) in t′2

This coercion is not a primitive construct in System F. It can be
encoded via a suitable series of type abstractions and applications.
The function coerce used at the end of Figure 8 (whose definition
is omittted) performs this task. This function can be made to run in
time linear in the size of ~a and can be made to produce no code at
all if the lists ~a and~b are equal.

The need to introduce a coercion may seem inelegant or curious.
In fact, it is a phenomenon that becomes more plainly obvious
as the source language grows. For instance, several real-world
languages of the ML family have a construct that simultaneously
performs pattern matching and generalization, such as “let (x, y) =
t in u”. It is clear that the quantifiers of the type scheme of x
(resp. y) are in general a subset of the quantifiers that appear in the
most general type scheme of the term t. Furthermore, upon closer
investigation, one discovers that the type of the translated term t′ is
of the form ∀~α.(τ1×τ2), whereas deconstructing a pair in System F
requires a term of type (∀~α1.τ1) × (∀~α2.τ2). Thus, a coercion
is required in order to push the universal quantifiers into the pair
and get rid, within each component, of the redundant quantifiers.
In System F, such a coercion can be encoded, at the cost of an
η-expansion. In an extension of System F with primitive erasable
coercions, such as Cretin and Rémy’s [1], this cost is avoided.

	Prologue
	Constraints: a recap
	Constraints with a value
	Solving constraints with a value
	Parameters
	Low-level interface
	High-level interface

	Elaborating ML into System F
	Representations of type variables and binders
	Translation

	Conclusion
	Semantics of constraints with a value
	On redundant quantifiers
	The issue
	A solution

