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ABSTRACT
In this paper we provide a comprehensive, memory-centric charac-
terization of the SPEC CPU2017 benchmark suite, using a number of
mechanisms including dynamic binary instrumentations, measure-
ments on native hardware using hardware performance counters
and OS based tools.

We present a number of results including working set sizes, mem-
ory capacity consumptions and, memory bandwidth utilization of
various workloads. Our experiments reveal that the SPEC CPU2017
workloads are surprisingly memory intensive, with approximately
50% of all dynamic instructions being memory intensive ones. We
also show that there is a large variation in the memory footprint
and bandwidth utilization profiles of the entire suite, with some
benchmarks using as much as 16 GB of main memory and up to
2.3 GB/s of memory bandwidth.

We also perform instruction execution and distribution analysis
of the suite and find that the average instruction count for SPEC
CPU2017 workloads is an order of magnitude higher than SPEC
CPU2006 ones. In addition, we also find that FP benchmarks of the
SPEC 2017 suite have higher compute requirements: on average, FP
workloads execute three times the number of compute operations
as compared to INT workloads.

KEYWORDS
SPEC CPU2017; Memory Characterization; Performance Analysis;
Benchmarks

1 INTRODUCTION
The study of computer architecture and system design depends on
the availability of newworkloads that are able to faithfully represent
the contemporary and future applications of a given vertical. In the
CPU design domain Standard Performance Evaluation Corporation
(SPEC) has been releasing the SPEC CPU suite for close to three
decades now, starting in 1992. These benchmarks have become
the standard for any researcher or commercial entity wishing to
benchmark their architecture or design against existing ones.

The latest offering of SPEC CPU suite, SPEC CPU 2017, was
released in June 2018 [8], ending a decade long wait for a new
set of CPU benchmarks – the version before this was released in
2006. SPEC CPU 2017 retains a number of the benchmarks from
previous iterations, but has also added many new ones to reflect
the changing nature of applications. The 2017 suite has added a

1A condensed version of this work was published in ICPE 2019 [25]
(https://doi.org/10.1145/3297663.3310311).

lot of excitement in the community with researchers already work-
ing on characterizing the set of workloads to figure out system
bottlenecks [21, 24].

In the last decade, main memory, typically made of Dynamic
Random Access Memory (DRAM) in most contemporary systems,
has become a first class component of the compute system design
space. The last decade has seen a renewed interest in the architec-
tural design space exploration of main memory, including novel
additions to the existing interfaces and architecture (JEDEC, DDR3,
DDR4, DDR5) [4, 13, 22, 26]. Not only this, exploration of emerging
memory technologies like Phase Change Memory, MRAM etc., to
find their space in the memory hierarchy has also been carried
out [17, 20]. To that end, a number of works have carried out these
explorations for using emerging memories in both the cache and
main memory architectures [6, 19, 28–30].

SPEC 2006 [14] has played a very important part in these explo-
rations. The SPEC suites have had a set of memory intensive work-
loads (e.g. mcf). Innovations to cache and memory hierarchies have
been tested using these workloads by either (i) selecting individual
workloads from the suite, or (ii) creating workload mixes, with vary-
ing types of memory behavior (also known as multi-programmed
workloads). This was made possible by the already characterized
memory behavior patterns of different workloads in the SPEC 2006
suite [16].

However, with SPEC CPU2017 being a relatively new offering,
there is no existing work that characterizes the memory hierarchy
behavior of the suite. In this work, we wish to bridge this existing
gap in literature. As a result, we make the following important
contributions in this paper:

(1) Across the SPEC CPU2017 suite, we provide a holistic char-
acterization of the dynamic instruction execution profiles
of different workloads, for both Rate and Speed categories,
and observe that most workloads have a large number of
memory related operations: close to 50% across the suite. We
also provide an opcode level classification of workloads.

(2) Most importantly, we provide a detailed analysis of the mem-
ory behavior of various benchmarks, using a combination
of dynamic instrumentation tools (Pin/Pintools), hardware
performance counters and operating system level tools to
report the overall working set size, memory bandwidth con-
sumption and memory resident working set sizes of different
workloads, respectively.

The rest of the paper is organized as follows. Section 2 gives
a background of CPU2017 benchmarks. Section 3 proposes the
methodology used to characterize the benchmarks. Section 4 and
5 analyses the benchmarks at an instruction and memory level,
respectively. Section 6 discusses the benchmarks which are newly
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Table 1: SPEC CPU2017 Benchmarks

Benchmark Domain Inputs
perlbench Perl Interpreter Interprets SpamAssassin, MHonArc, and an internal script

gcc GNU C Compiler C source code file compiled with different optimizations
mcf Route Planning Solves large-scale minimum cost flow problem

omnetpp Discrete Event Simulation Simulates a 10 Gb Ethernet network
xalancbmk XML to HTML Conversion XML documents to HTML, text, and other XML types

x264 Video Compression Compresses portions of Blender Open Movie Project’s "Big Buck Bunny"
deepsjeng Artificial Intelligence Plays Chess variants employing alpha-beta tree search

leela Artificial Intelligence Computer Go featuring Monte Carlo tree search
exchange2 Artificial Intelligence Recursively solves 27 9x9 Sudoku puzzles

xz General Data Compression Tar archive, database of ClamAV signatures and a file with text and image data
bwaves Explosion Modeling Simulates blast waves in 3D

cactuBSSN Physics: Relativity Uses BSSN formulation of Einstein equation and employs finite differencing in space
namd Molecular Dynamics 92224 atom simulation of Apolipoprotein A-I
parest Biomedical Imaging 3D reconstruction of interior of a body using multiple 2D observations
povray Ray Tracing Renders a 2560x2048 pixel image of a chess board with pieces
lbm Fluid Dynamics Simulates flow of an incompressible fluid in 3D
wrf Weather Forecasting Simulates the January 2000 North American Blizzard

blender 3D Rendering and Animation Simulates reduced version of the Weybec Crazy Glue shot 3 data set to image
cam4 Atmosphere Modeling Atmospheric Component of the NCAR Earth System
pop2 Wide-scale Ocean Modeling Ocean Component of the NCAR Earth System

imagick Image Manipulation Performs various transformations on input images
nab Molecular Dynamics Models molecules with varying number of atoms

fotonik3d Computational Electromagnetics Employs finite-difference time-domain method for the Maxwell equations
roms Regional Ocean Modeling A free-surface, hydrostatic, primitive equation model

added to the SPEC CPU suite. Finally, we discuss the related works
in Section 7 and conclude in Section 8.

2 SPEC CPU2017
SPEC CPU is a widely acknowledged suite of compute intensive
benchmarks, which tests processor’s, memory system’s and com-
piler’s performance. A number of versions of SPEC have been re-
leased over the years, with the latest version, released in 2017,
and aptly named, SPEC CPU2017. CPU2017 [1] considers state-of-
the-art applications, organizing 43 benchmarks into four different
sub-suites: 10 rate integer (INTRate), 10 speed integer (INTSpeed),
13 rate floating point (FPRate) and 10 speed floating point (FPSpeed).
The speed and rate suites vary in workload sizes, compile flags and
run rules. SPECspeed measures the time for completion by running
a single copy of each benchmark, with an option of using multiple
OpenMP threads. Hence, speed is a measure of single thread per-
formance, typically measured by metrics like IPC (Instructions Per
Cycle). On the other hand, SPECrate measures the throughput of
the overall chip, with possibly multiple cores, by running multiple,
concurrent copies of the same benchmark with OpenMP disabled.
Most applications have both rate and speed versions (denoted as
5nn.benchmark_r and 6nn.benchmark_s, respectively), except for
namd, parest, povray and blender, which only have the rate ver-
sions, and pop2, which only has the speed version. Similar to SPEC
CPU2006, SPEC CPU2017 has been provided with three input sets:
test (to test if executables are functional), train (input set built us-
ing feedback-directed optimization and used for training binaries),
and ref (timed data set of the real applications, which is intended
for a reportable run).

CPU2017 benchmarks and their input sets are described in Ta-
ble 1. Benchmarks from perlbench to xz are integer, while the rest
are floating point applications. Workloads are modified to compress
I/O operations other than file read/write as the intent is to measure
the compute intensive portion of a real application, while minimiz-
ing I/O, thereby focusing on the performance of the CPU, memory
and the compiler. SPEC CPU benchmarks are distributed as source

Table 2: System Configuration

Model 40-core Intel Xeon E5-2698 v4
CPU Frequency 2.2GHz

L1i cache 8-way, 32 KB
L1d cache 8-way, 32 KB
L2 cache 8-way, 256 KB
L3 cache Shared 20-way, 50 MB

Cache line size 64 Bytes
Main Memory 505 GB, DDR4

Dynamic Frequency Scaling On

code and must be compiled, which raises the question that how
must they be compiled? There exists many possibilities ranging
from debug, no-optimize to a highly customized optimization. Any
point in between would result in different results than others. For
CPU2017, SPEC has chosen to allow two points in the range: base,
where all modules of a given language in a suite must be compiled
using the same flags, in the same order and peak which allows
greater flexibility in order to achieve better performance. For peak,
different compiler options may be used for each benchmark, and
feedback-directed optimization is allowed.

3 METHODOLOGY
To study the characteristics of CPU2017 workloads, we used a num-
ber of tools to analyse their behavior. The analysis in this paper
is based on the x86_64 instruction set. The binaries for the work-
loads were created using the default, SPEC recommended compiler
flags [2] (gcc -O3), using compilation scripts which ship with
CPU 2017. Speed workloads are compiled to use 4 OpenMP threads,
while rate workloads were executed with a single instance of the
benchmark. We use Pin [23], a dynamic binary instrumentation
framework available for both 32 and 64 bit versions of the instruc-
tion set. Pin provides a rich set of APIs that can be used to study
various characteristics of program behavior at the Instruction Set
Architecture (ISA) level. These APIs are used to create a number of
tools, called Pintools, with each capable of carrying out a certain
type of analysis. In this study, we use the following pintools: ldst
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Figure 1: Dynamic Instruction Count. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

(dynamic register/memory operand pattern profiler), opcodemix
(dynamic opcode mix profiler), and dcache (a functional simulator
of data cache).

For gathering information about workload behavior with real
hardware, we use perf, a performance analysis tool [9], and ps [3],
an OS utility to collect process level memory related data for various
workloads. Table 2 presents the configuration of the machine used
to run experiments for Pin-based, hardware-counter and system-
level experimentation and data collection. All the benchmarks were
executed till completion. 627.cam4_s faced a runtime error and
hence is deprecated from this study.

4 INSTRUCTION PROFILE
Analysis of the instruction profiles is a good mechanism for under-
standing a benchmark’s behavior and locating potential sources of
bottlenecks in hardware and software. To that end, we first study
the dynamic instruction count, instruction distribution and the
runtime performance of CPU 2017 workloads.

Dynamic Instruction Count: Figure 1 depicts the dynamic instruc-
tion count for each benchmark in the suite. Each benchmark is
divided into its various input workloads, and presented in order of
their sub-suites, with an indication of sub-suite average at the end.
These results have been obtained using perf’s hardware event in-
structions. We note that the average instruction count for the SPEC
CPU2017 is 22.19 trillion (1.4 Quadrillion in total) which is about
an order of magnitude higher than the SPEC CPU2006 [14, 16]. It is
observed that the FPSpeed suite have massive dynamic instruction
count with respect to others, with bwaves_s reaching as high as
382 trillion. In general, Speed workloads have 1.5-10 times more
instructions than the corresponding Rate ones, and floating point
(FP) workloads have 3-17 times than the integer (INT) workloads.

Dynamic Instruction Count: Figure 1 depicts the dynamic instruc-
tion count, a count of total number of instructions executed by the
workload. Each benchmark is divided into its constituent work-
loads, depending on the input set. These results were collected
using perf’s hardware event instructions. We note that the average
instruction count for SPEC CPU2017 workloads is 22.19 trillion
(1.4 quadrillion in total) which is an order of magnitude higher

than the SPEC CPU2006 [14, 16]. We also observe that the FPSpeed
suite has a much larger dynamic instruction count with respect
to others sub-suites, with bwaves_s executing as many as 382 tril-
lion instructions. In general, Speed workloads have 1.5-10 × more
instructions than the corresponding Rate ones, and floating point
(FP) workloads have 3-17 times than the integer (INT) workloads.
These observations point to the general increase in the complexity
of SPEC CPU workloads over the years.

Instruction Distribution: To better understand the distribution
of instructions that access memory, we present the instruction
distribution for workloads in Figure 2a. These experiments were
conducted using the ldst Pintool. Some benchmarks like perlbench,
x264, bwaves and a few others have multiple input files, which
are executed in succession to complete the run. We report the
results of each of these runs individually, leading to multiple bars
for a benchmark. To keep the discussion simple, we divide the
instructions into four broad categories: instructions that do not
refer memory (called ALU Only in the figure), instructions that
have one or more source operands in memory (called MEM_R),
instructionswhose the destination operand is inmemory (MEM_W),
and instructions whose source and destination operands are in
memory (MEM_RW)1.

This broad classification allows us to compare the types of in-
structions that are executed by each benchmark, and provides a
first order insight into the memory behavior of these benchmarks.
We make a few interesting observations. First, irrespective of the
input sets provided, the instruction distribution of a benchmark,
across these four buckets doesn’t change drastically. This is ev-
idenced by the instruction distributions of all benchmarks that
have multiple input files (perlbench, gcc, x264, xz, bwaves). Also,
the instruction distribution across the four buckets doesn’t change
significantly, irrespective of whether the speed or the rate version
of the benchmark is being examined.

Most benchmarks have a fairly balanced percentage of instruc-
tions that fall under either one of the MEM_R/ MEM_W/ MEM_RW
or the ALU_Only buckets. However, a few exceptions like exchange2

1Memory-to-memory instructions like movs in x86 are billed under the MEM_RW
bucket.
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(a) Instruction Distribution

(b) Opcode Distribution

Figure 2: Instruction Profile. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

Figure 3: IPC. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

(AI) and pop2 (Ocean Modeling) exist where the contribution of
ALU_Only operations is fairly significant at 79.6% and 73.5%, re-
spectively. Floating point workloads also exhibit a lot of compute
activity, with ∼60% ALU_Only instructions. However, on an aver-
age across the benchmark suite, SPECInt sub-suite exhibits executes

more memory related instructions than the SPECFP one. Our obser-
vations are consistent with the earlier versions of SPEC: CPU2006
and CPU2000 [16].

In order to get insights regarding the type of operations done by
these instructions, we profile the benchmarks to report instruction
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Figure 4: Memory Reference Size

level classification. Results, collected with the help of opcodemix
pintool, are presented in Figure 2b. The results for one benchmark
were averaged across all their input files. We observe that FP work-
loads, have approximately three times the number of arithmetic
operations than the INT workloads. In addition, we observe that
a majority of the memory operations in both integer and floating
point sub-suites are dominated by their respective move opera-
tions. We also observe that memory instructions for both Int and
FP benchmarks are predominantly read-only, which is consistent
with the high-level results obtained in Figure 2a.

Performance: We report the performance of the workloads in
terms of instruction per cycle (IPC) in Figure 3, on the system
outlined in Table 2. IPC is calculated as the ratio of the hardware
events instructions and cpu-cycles, obtained using perf. To account
for variations in execution time due to variables that cannot be con-
trolled, each experiment is run three times and the average values
are reported. Order of benchmark execution is shuffled between
repetitions to mitigate measurement bias. Rest of the experiments
in the paper are not repeated. We observe that FP workloads have
better IPC than INT ones. However, we do note that applications
that execute a significant number of memory related operations (e.g.
cactuBSSN_s, lbm_s, xz_.cld.tar-1400-8 and mcf ) and have larger
working sets, requiring more accesses to the memory hierarchy,
have lower IPCs.

5 MEMORY BEHAVIOR
5.1 Spatial Locality Behavior
Next, we observe the spatial locality characteristics of theworkloads
by observing benchmarks using opcodemix Pintool. Opcodemix
helps analyse of the amount and size of data touched by anymemory
operation that requires to traverse the cache and memory hierarchy.
We classify the instructions based on the amount of data that they
access during these operations. In the interest of space, we present
results averaged across the suites in Figure 4. There is a broad range
of data size granularities accessed by instructions, from 1 Byte to
64 Bytes, with the latter being the cacheline size as well. However,
two important figures stand out. First, the majority of the accesses
(64%) are for an exact 8 Byte granularity. Second, 99.5% of accesses
(reads and writes) are for 8 Bytes or smaller access granularities.
The number of accesses to larger data granularities is extremely
small, and holds true across the suite. This indicates limited spatial
data locality at the individual instruction level.

5.2 Working Set Sizes
The working set size of an application and its sensitivity to cache ca-
pacity can be inferred by examining changes in cache performance
of a system with its cache size. For each benchmark, we conduct a
cache sensitivity analysis to obtain their working set size. Follow-
ing the methodology from [16], we modeled a single, shared cache
with 64Byte line size and LRU replacement policy, which varied
as follows: direct mapped 32KB, 2-way 64KB, 4-way 128KB, 8-way
256KB, and so on till a 1024-way 32MB cache. The experiments
are conducted using dcache, a functional cache simulator Pintool.
Due to dynamic instruction counts in orders of 100 trillion and an
effective slowdown incurred by simulation on dcache, benchmarks
belonging to the FPSpeed suite couldn’t be completed and hence
are deprecated from the working set size analysis. We consider only
one input set for each benchmark.

Our results for cache sensivity analysis are presented in Figure 5.
We plot cache size in megabytes (MB) on x-axis and misses per
kilo instructions (MPKI) on the y-axis. We observe that not all
workloads perform well within the range of cache sizes. Based on
the working set sizes, we divide the workloads into two group. The
first group consists of applications like povray, imagick, nab, and
perlbench have a limited need for the cache capacity, and can be
well executed without the need to regularly refer the main memory.
On the contrary, applications like cactuBSSN, lbm, and mcf fail to
accomodate within the range of cache sizes, and hence have large
working set sizes. The large working sets are often the consequence
of the program’s algorithm that operates on large amount of data.
For example, cactuBSSN executes a computational model to employ
finite differencing in space using the Einstein equations, while lbm
simulates an incompressible fluid in 3D. With working set sizes
larger than the cache capacity, these applications refer the off-chip
memory and hence affect the bandwidth.

Figure 5 reveals that most workloads exhibit a smooth exponen-
tial decrease in the MPKI value as the cache size increases. How-
ever, the suite comprises of some workloads where incrementally
increasing cache size gives no significant improvements in cache
performance, until a point of saturation is reached. At this step,
a sudden drop in the MPKI is observed. Such behavior is evident
in applications like bwaves and lbm, and signifies the working set
of the workload. Benchamrks like xalancbmk, nab, fotonik3d, and
lbm illustrate multiple such points, implying that they have mul-
tiple working set sizes. Most workloads suffer from cache misses
even with a reasonable 32MB cache size, implying that memory
hierarchy research, for both on-chip and off-chip components will
remain important for these workloads.

5.3 Memory Footprint
SPEC CPU2006 had a target memory footprint of 900MB for the
benchmarks [11, 15]. Since then, the memory size has tremendously
increased. We observe the Resident Set Size (RSS), the amount of
memory allocated to a process in the main memory, sampled every
second, using the Linux ps utility. RSS does not include swapped out
memory. However, it does include memory from shared libraries
as long as the pages from those libraries are actually in memory. A
large RSS on an active system means that the process touches a lot
of memory locations.
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(a) perlbench (b) gcc (c) mcf (d) omnetpp

(e) xalancbmk (f) x264 (g) deepsjeng (h) leela

(i) exchange2 (j) xz (k) bwaves (l) cactuBSSN

(m) namd (n) parest (o) povray (p) lbm

(q) wrf (r) blender (s) cam4 (t) imagick

(u) nab (v) fotonik3d (w) roms

Figure 5: Working Set Size

Figures 6,7 plot the time-varying main memory consumption in
MB, and indicates that all of the Rate benchmarks, both integer and
floating point, still have main memory consumption well below
900MB. However, Speed workloads have large RSS, with peak con-
sumption as high as 16 GB. On average, Speed benchmarks have
∼10× more memory footprint than their corresponding Rate ones.
Floating point benchmark suite have memory consumption of ∼3×
more than the integer suite. Based on the average footprint through-
out the execution, we order the benchmarks from extremely low

to extremely high memory consumption. Benchmarks exchange2,
povray, leela, namd, wrf, nab, and xalancbmk have low RSS values,
which indicates negligible access to the main memory. Therefore,
these benchmarks are expected have lowworking set sizes, which is
evident from Section 5.2 results. On the contrary, bwaves_s, roms_s,
fotonik3d_s, cactuBSSN_s and xz_s exhibit extremely large memory
footprints. Furthermore, we observe that ∼90% of the workloads
have main memory consumption below 5 GB, resulting in an aver-
age memory footprint of 1.82 GB.
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(a) 500.perlbench_r (b) 502.gcc_r (c) 505.mcf_r (d) 520.omnetpp_r

(e) 523.xalancbmk_r (f) 525.x264_r. (g) 531.deepsjeng_r (h) 541.leela_r

(i) 548.exchange2_r (j) 557.xz_r. (k) 600.perlbench_s. (l) 602.gcc_s.

(m) 605.mcf_s (n) 620.omnetpp_s (o) 623.xalancbmk_s (p) 625.x264_s

(q) 631.deepsjeng_s (r) 641.leela_s (s) 648.exchange2_s (t) 657.xz_s

(u) 503.bwaves_r (v) 507.cactuBSSN_r (w) 508.namd_r (x) 510.parest_r

(y) 511.povray_r (z) 519.lbm_r (aa) 521.wrf_r (ab) 526.blender_r

Figure 6: Main Memory Footprint
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(a) 527.cam4_r (b) 538.imagick_r (c) 544.nab_r (d) 549.fotonik3d_r

(e) 554.roms_r (f) 603.bwaves_s. (g) 607.cactuBSSN_s (h) 619.lbm_s

(i) 621.wrf_s (j) 628.pop2_s (k) 638.imagick_s (l) 644.nab_s

(m) 649.fotonik3d_s (n) 654.roms_sFigure 7: Main Memory Footprint

5.4 Memory Bandwidth
Next, we measure the off-chip bandwidth across the SPEC CPU2017
workloads. We collect the hardware events LLC-load-misses and
LLC-store-misses using perf at regular intervals of 1 second, on test
system described in Table 2. Memory bandwidth is calculated as
the product of the total LLC misses per second with the cache line
size. Figures 8-10 plots the time-varying memory bandwidth results
in Megabytes per second, for each workload.

Our experimental results indicate a large variety in memory
bandwidth usage patterns from various benchmarks. CPU2017 con-
sists of workloads with average bandwidth as low as 0.2 MB/s to
workloads with peak bandwidth of 2.3 GB/s. leela, exchange2, namd,
povray, and nab_r have modest bandwidth usage, with consump-
tion within 10 MB/s during the entire execution period. Workloads
parest, wrf_r, nab_s and perlbench.diffmail exhibit low bandwidth
usage with short sudden irregular bursts of high data transfer rates.
While applications like xalancbmk and imagick have input sets
which fit within on-chip memory, and hence these applications do
not refer the off-chip memory after initiation. All the above dis-
cussed benchmarks have very little off-chip bandwidth usage. This
is in line with the conclusions drawn from Sections 5.2 and 5.3, as
these workloads have low working set sizes and hence low memory
footprint.

CPU2017 also comprises of many benchmarks with large mem-
ory bandwidth utilizations. For example, cactuBSSN_s, and lbm_s
have peak bandwidth utilization of 2.3 GB/s (0.9 GB/s on average).

Similarly, mcf, xz_s, cactuBSSN_r, and fotonik3d_s have also large
off-chip traffic, and can be used to test bandwidth optimization
techniques.

6 NEW ADDITIONS TO THE SPEC CPU SUITE
In the current iteration of SPEC CPU, many new benchmarks have
been added to cover emerging application domains. In the INT cate-
gory, artificial intelligence (AI) has been extensively represented by
a total of three benchmarks, with exchange2 being the new addition
to the group. CPU2006 [14] integer benchmarks h264ref, sjeng and
gobmk have been renamed to x264, deepsjeng and leela respectively
due to changes in their functionality or inputs, while still maintain-
ing the application domain. Additionally, bzip2 has been replaced
by xz to represent the general compression domain. exchange2 (re-
cursive solution generator), the new addition to INT suite, has the
lowest percentage of memory instructions and hence, justifiably
the lowest memory footprint and lowest bandwidth consumption
in the CPU2017 suite. Interestingly, all the three AI benchmarks in
the suite have extremely small working set sizes and consequently,
low off-chip accesses.

In the FP category, eight new benchmarks have been added:
parest, blender, cam4, pop2, imagick, nab, fotonik3d, and roms. Cli-
matology domain has been extensively represented here with three
new additions of benchmarks, simulating different components of
the NCAR Earth System. cactusADM has been changed to cac-
tuBSSN. parest’s implementation relies on dealII libraries from

8



(a) 500.perlbench_r.checkspam (b) 500.perlbench_r.diffmail (c) 500.perlbench_r.splitmail (d) 502.gcc_r.gcc-pp.opts-O3

(e) 502.gcc_r.gcc-pp.opts-O2 (f) 502.gcc_r.gcc-smaller.opts-O3 (g) 502.gcc_r.ref32.opts-O5 (h) 502.gcc_r.ref32.opts-O3

(i) 505.mcf_r (j) 520.omnetpp_r (k) 523.xalancbmk_r (l) 525.x264_r.run_000-1000_pass1

(m) 525.x264_r.run_000-1000_pass2 (n) 525.x264_r.run_0500-1250 (o) 531.deepsjeng_r (p) 541.leela_r

(q) 548.exchange2_r (r) 557.xz_r.cld.tar-160-6 (s) 557.xz_r.cpu2006docs.tar-250-6e (t) 557.xz_r.input.combined-250-7

(u) 600.perlbench_s.checkspam (v) 600.perlbench_s.diffmail (w) 600.perlbench_s.splitmail (x) 602.gcc_s.gcc-pp.opts-O5_-fipa-pta

(y) 602.gcc_s.gcc-pp.opts-O5_-fl_1000 (z) 602.gcc_s.gcc-pp.opts-O5_-fl_24000 (aa) 605.mcf_s (ab) 620.omnetpp_s

Figure 8: Memory Bandwidth
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(a) 623.xalancbmk_s (b) 625.x264_s.run_000-1000_pass1 (c) 625.x264_s.run_000-1000_pass2 (d) 625.x264_s.run_0500-1250

(e) 631.deepsjeng_s (f) 641.leela_s (g) 648.exchange2_s (h) 657.xz_s.cpu2006docs.tar-6643-4

(i) 657.xz_s.cld.tar-1400-8 (j) 503.bwaves_r.bwaves_1 (k) 503.bwaves_r.bwaves_2 (l) 503.bwaves_r.bwaves_3

(m) 503.bwaves_r.bwaves_4 (n) 507.cactuBSSN_r (o) 508.namd_r (p) 510.parest_r

(q) 511.povray_r (r) 519.lbm_r (s) 521.wrf_r (t) 526.blender_r

(u) 527.cam4_r (v) 538.imagick_r (w) 544.nab_r (x) 549.fotonik3d_r

(y) 554.roms_r (z) 603.bwaves_s.bwaves_1 (aa) 603.bwaves_s.bwaves_2 (ab) 607.cactuBSSN_s

Figure 9: Memory Bandwidth
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(a) 619.lbm_s (b) 621.wrf_s
(c) 628.pop2_s

(d) 638.imagick_s

(e) 644.nab_s (f) 649.fotonik3d_s (g) 654.roms_s

Figure 10: Memory Bandwidth

CPU2006, which also underlines the dealII benchmark. In gen-
eral, Speed versions of these benchmarks are scaled up in order
to highly exercise both memory and computation. For example,
xz achieves this by differing in its data compression levels, roms
vary its grid size and simulation time steps, while fotonik3d alters
its problem size, frequencies, time steps, and boundary conditions.
At the same time, benchmarks x264, leela and exchange2 use al-
most similar workloads for both Rate and Speed and hence, we
discern very similar instruction and memory behavior from them,
as depicted throughout the Sections 4 and 5.

7 RELATEDWORK
A number of studies have been carried out recently regarding char-
acterization of SPEC CPU2017 workloads, however, to the best of
our knowledge, this paper presents the first systematic study of the
memory behavior of the SPEC CPU2017 suite.

SPECCPU2017 Characterization: Bucek et al. [8] present an overview
of CPU2017 suite and discuss its reportable execution. Limaye and
Adegbija [21] use hardware performance counter statistics to char-
acterize SPEC CPU2017 applications with respect to several metrics
such as instruction distribution, execution performance, branch
and cache behaviors. They also utilize Principal Components Anal-
ysis [10] and hierarchical clustering to identify subsets of the suite.
Similarly, Panda et al. [24] characterize the CPU2017 benchmarks
using perf, and leverage statistical techniques to identify cross ap-
plication redundancies and propose subsets of the entire suite, by
classifying multiple benchmarks with similar behaviors into a sin-
gle subset. Further, they also provide a detailed evaluation of the
representativeness of the subsets. Amaral et al. [5] propose the
Alberta Workloads for the SPEC CPU2017 benchmark suite hoping
to improve the performance evaluation of techniques that rely on
any type of learning, for example the formal Feedback-Directed
Optimization (FDO). Additionally, in order to ameliorate large sim-
ulation times, Wu et al. [27] analyze the program behavior and
consequently propose simulation points [12] for the suite.

Memory Characterization ofWorkloads: Jaleel [16] determined the
memory system requirements of workloads from SPEC CPU2000
and CPU2006 using binary instrumentation. Henning [15] discussed
the memory footprints of CPU2006 workloads, while Gove [11]

analysed their working set sizes. Bienia et al. [7] present memory
behavior of PARSEC benchmark suite. John et al. [18] discusses a
taxonomy of workload characterization techniques.

8 CONCLUSION
In this paper, we provide the first, comprehensive characteriza-
tion of the memory behavior of the SPEC CPU2017 benchmark
suite. Our working set analysis shows that many workloads have
a working set much higher than 32 MB (maximum cache size as-
sumed in our experiments), implying the continued importance of
cache hierarchies for benchmark performance. We also show that
Rate benchmarks, both INT and FP, still have main memory con-
sumption well below 900 MB, which was target memory footprint
for CPU2006. Almost 90% of the workloads have main memory
consumption below 5 GB, with the average across the suite being
1.82 GB. However, workloads have extremely varying peak memory
bandwidth usage, with some benchmarks requiring as little as 0.2
MB/s, to others utilizing upto 2.3 GB/s.

In addition, our experiments have revealed some interesting
results with respect to dynamic instruction counts and distributions.
The average instruction count for SPEC CPU2017 workloads is
22.19 trillion, which is an order of magnitude higher than the SPEC
CPU2006. In addition, we find that FP benchmarks typically have
much higher compute requirements: on average, FPworkloads carry
out three times the number of arithmetic operations as compared
to INT workloads.
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