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Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia
and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data
mining. Practically, diffusion modeling provides fundamental support for many downstream applications
(e.g., public opinion monitoring, rumor source identification, and viral marketing.) Tremendous efforts have
been devoted to this area to understand and quantify information diffusion dynamics. This survey investi-
gates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified
information diffusion concept in terms of three components: information, user decision, and social vectors,
followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy
adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of compara-
tive studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods,
and pros and cons. We further summarized representative diffusion modeling in special scenarios and sig-
nificant downstream tasks based on these elementary models. Finally, open issues in this field following the
methodology of diffusion modeling are discussed.
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1 INTRODUCTION

The vigorous development of SNS (Social Network Service) has shifted the way humans use the
Internet from simple information retrieval to the construction and maintenance of online social
relationships, as well as the creation, communication, and sharing of online information. SNS seeps
into every aspect of social life and has a profound impact on it. According to the statistical report
published by official institutes[21], the number of SNS users in China reached 762 million in 2020,
accounting for 95.6% of Internet users. The number of Facebook’s monthly active users hits 2
billion, doubled in less than five years [28].Millions of users make SNS powerful inmanyfields (e.g.,
business marketing, social governance). However, the risks of social networks cannot be neglected.
Scholars have proven that fake news spread faster and wider than real news in social networks
[184]. If malicious people utilize social networks to spread harmful information such as terrorism
and rumors, it will cause a massive menace to social stability, such as Chinese salt scramble in 2011
[89], Arab Spring revolution [91], and the manipulation of political elections [6].
Facing the opportunities and challenges brought by SNS, many scientists are devoted to studying

the information diffusion in SNS, and information diffusion modeling is the basis of these studies.
Information diffusion models aim at capturing the dynamics of information diffusing in social net-
works. It is of great significance to model the information diffusion process in both academia and
practice. Academically, diffusion modeling involves multiple disciplines (e.g., statistics, complex
networks, sociology, machine learning). Moreover, diffusion-related data itself is easily accessible,
which in turn promotes the development of related disciplines. Practically, they are the basis of
many downstream applications such as popularity prediction, influence maximization (IM), source
identification, network inference, and social recommendation (see details in Section 4.2). Employ-
ing these applications in various social tasks (e.g., marketing, rumor source identification, and
trending topics detection) makes society run more efficiently.
Overall, there are two main schools in the information diffusion modeling history: time-series

and data-driven. For the former, researchers analyze the data to summarize the diffusion laws,
and then use explicit mathematical expressions to model the dynamics of information diffusion
over time. They mainly include difference/differential-based and stochastic-based models for vol-
ume prediction, progressive and non-progressive for individual adoption prediction, and likelihood
maximization models for propagation relationship prediction. Each part of these models, including
their input and output, has a clear physical meaning, which is the primary approach of classical
diffusion modeling. For the latter, researchers expect that machine learning (ML) algorithms can
learn diffusion laws from data to capture diffusion dynamics. Benefiting from the explosion of data
resources and computing power, these models have been developed considerably. Especially, with
the development of related technologies such as Natural Language Processing (NLP) and Reason-
ing, content semantics that difficult for traditional model processing can be directly learned from
data, which means that a new era for information diffusion modeling is heralding.
Although there are several surveys [48, 48, 61, 82, 111, 116, 163, 195, 217, 230, 239] on informa-

tion diffusion, this survey is distinct in the following aspects. Fisrt, surveys [82, 116, 195] focus
on the downstream applications of diffusion models (e.g., worm propagation, source identifica-
tion, IM, and popularity prediction) rather than introducing underlying diffusion models. Surveys
[48, 61, 111, 163, 217, 230] do not involve relationship inference models (see details in Section 3.3)
and non-progressive models (see details in Section 3.2.2) models. Second, the commonly used clas-
sification criteria (e.g., predictive/explanatory [61], topology-based/non-topology-based [61, 116])
are no longer applicable, because emergingmodels blur the original classification boundary. For in-
stance, an explanatorymodel [47], which embeds information and users into a unified Euclidean se-
mantic space, can predict the future diffusion trajectory based on geometrical relationships among
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information contents and users. Some classical non-topology-basedmodels [66, 187] that introduce
topology factors. Obviously, previous classification criteria may narrow readers’ thoughts. Third,
the information diffusion process is driven by users’ social behaviors. Information, social vectors,
and users are an interactional and indivisible whole. However, the majority of existing models
only focus on information diffusion actions and ignore other parts. With the development of NLP
and other related technologies, information diffusion modeling has great academic and practical
potentialities. Finally, although data-driven models can automatically learn the diffusion charac-
teristics, they hardly introduce the knowledge of classical (Time-series) modeling techniques. In-
troducing the knowledge of time-series techniques can help model optimization, such as reducing
the search space. Some scholars are already doing this meaningful work [16, 17, 23, 200]. There-
fore, we have summarized the typical extension roadmaps of time-series models, hoping to raise
readers’ inspiration.
This survey consists of four main parts. First, we present preliminary and research methodol-

ogy, including elementary notations, the unified diffusion modeling concept, and basic processes
of information diffusion modeling. Second, we propose a new taxonomy of elementary diffusion
models and classify them into three categories: Diffusion Volume Models, Individual Adoption Mod-

els, and Relationship Inference Models. Besides, comparative studies on assumptions, methods, as
well as pros and cons are organized by these categories to help readers acquire comprehensive
knowledge of information diffusion models. Third, we summarized representative diffusion mod-
eling in special scenarios as well as downstream applications based on these elementary models.
Last, we discuss open issues following the methodology of diffusion modeling.
We summarize our analysis of existing models below:

• Information diffusion scenario can be decomposed into three components: information, user,
and topology. The information diffusion process is not isolated, as the three layers interact
with each other. However, current research does not unify these three components.
• Existing diffusion models mainly describe the diffusion process from three levels of gran-
ularity: volume, individual, and propagation relationship. Under the granularity-oriented
taxonomy, each type of model is classified into two categories: time-series and data-driven.
• Time-series individual adoption models (see details in Section 3.2.1 and Section 3.2.2) can
not be used for propagation relationship inference directly, because they are the models
with many-to-many propagation relationships. They can infer the propagation probabilities
between users by likelihood maximization, and select corresponding relationships to con-
struct a propagation network.
• Data-driven models avoid the intrinsic process of devising precise mathematical diffusion
models, making them easier to utilize new features. However, their difficulties are extracting
representative and comprehensive features.
• These two approaches should be mutually reinforcing. Time-series models can provide in-
spiration for the design of deep learning models, and the Data-driven model can explore new
diffusion characteristics to improve the mathematical expression of Time-series models.

The rest of the article is organized as follows. Section 2 introduces the methodology and basic
knowledge used in this article. We further provide a thorough review of elementary information
diffusion models in Section 3. Section 4 summarizes and discusses some scenario-specified diffu-
sion modeling and downstream applications. Section 5 discuss open issues of diffusion modeling.
Finally, we present the conclusion in Section 6.
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Fig. 1. The skeleton of Section 2.

2 PRELIMINARY AND METHODOLOGY OF INFORMATION DIFFUSION

We introduce the notions and methodology of information diffusion modeling to help readers gain
a rudimentary knowledge of it. For readability, the skeleton of this section is shown in Fig. 1.

2.1 Notions

2.1.1 Information Diffusion. Fig. 2(a) is an abstract representation of the information diffusion
process in social networks, and it has the following facts:

• Three components in diffusion process: information, users (or user behavior), and social vectors

(i.e., transmission media). Social vectors consist of users with their social friendships.
• Diffusion process is unified. Information, users, and social vectors influence each other in
the diffusion process. As shown in the right part of Fig. 2(a), users perceive information
and others’ opinions from their social neighbors or other channels, and then decide how to
interact with it. After that, their social actions drive information propagation (e.g., retweet,
comment) and social network evolution (e.g., follow, unfollow).
• Information content affects diffusion process. For a particular piece of information, acceptance
of different users’ is various. For instance, boyswho play basketball are obviously more likely
to share NBA-related messages than girls who do not.
• Individual user social behaviors are diversified. The dynamics of information diffusion can
only be captured by users’ social actions (action 4 and 5 in the right part of Fig. 2(a)), and
the interval between social actions are not fixed (timestamps in the left part of Fig. 2(a)).
In addition, the information can not only be transmitted via social links in single social
networks, but also "jump" across multiple social networks with the help of the physical
world friendships (diffusion path D�

1
→ D1→ D2→ D�

2
in the left part of Fig. 2(a)). Moreover,

one user may share the same information to more than one social networks (diffusion path
D�
5
→ D5→ D�

5
in the left part of Fig. 2(a)).

• Social vectors are heterogeneous. One user can possess multiple social accounts, and friends
in the physical world may not have social links in SNS-based networks. Furthermore, differ-
ent SNS-based networks have various communication ways. For example, Twitter users can
browse all the public information, while WhatsApp users can only access their friends.
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Fig. 2. Illustrations of information diffusion process and diffusion modeling methodology. (a) describes the

information diffusion in social networks. The le� part illustrates the information can not only be propagated

via social links in single SNS-based networks, but also "jump" across multiple SNS-based networks with the

help of the physical world friendships. The right part illustrates users’ interactive behaviors in the informa-

tion diffusion process. We can capture the information diffusion dynamics by monitoring observable social

actions. (b) describes the research methodology of information diffusion modeling. The methodology is it-

erative and can be summarized as five steps: data collection and processing, diffusion mechanism analysis,

diffusion modeling, feature extraction, and evaluation. A�er collecting data, we analyze the diffusion mecha-

nisms from three scopes: information, user (behavior), and social vectors. They guide the following diffusion

modeling and feature extraction. The model performance is evaluated and then fed back to the mechanism

analysis.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2020.



111:6 Huacheng, Chunhe, and Tianbo, et al.

Table 1. Definition of Basic Parameters

Symbols Definations

� (+ , �,, ) social network topology with the user set+ , the edge set �, and the edge weight set,
C cascade set
2 a piece of cascade
F2 (C) weight of cascade 2
) last time C of observable cascade
C2
:

infection time of :-th forwarding in the cascade 2
D2
:

the :-th forwarding user in the cascade 2
# (C) count of users at time C
( (C) count of susceptible (or inactive) users at time C
� (C) count of infected (or active) users at time C
N(C) total population of available users in social network at time C
S(C) susceptible (or inactive) user set at time C
I(C) infected (or active) user set at time C
Δ� (C) count of newly infected (or activated) user at time C
ΔI(C) newly infected (or activated) user set at time C
�8=D (C) incoming neighbor set of user D at time C
�>DCD (C) outcoming neighbor set of userD at time C
�D (C) neighbor set of user D at time C
?2DE (C) propagation probability or transmission rate of cascade 2 from userD to E at time C
?DE (C) propagation probability or transmission from user D to E at time C
A(C) matrix of transmission rate at time C
38=D (C) in-degree of the user D at time C
3>DCD (C) out-degree of the user D at time C

f
(<)
D feature vector of user D about the topic/message<

Herewe have to distinguish meanings of thesewords: ‘propagation,’ ‘transmission,’ ‘diffusion,’
and ‘dissemination.’ Propagation and transmission are usually used to describe information
transmitted between two users, while diffusion and dissemination refer to the information
spreading to other peoples. Therefore, we use propagation probability and transmission rate in-
stead of diffusion probability or diffusion rate to denote the possibility that information is trans-
mitted between two users.

2.1.2 Information Cascades. According to [61], all users who share the message �=5 >8 constitute
the cascade 28 , and their motivation can be either their interests or peer influence. The cascades
C consists of many single cascade 28 . It records the information contents as well as the user’s
interactive behavior and time. As shown in the “Data Collection & Processing” of Fig. 2(b), the
user D�

6
is the original poster of �=5 >1 at time C0. Then users D�

3
, D�

5
, D�

1
, and D�

8
retweet the �=5 >1

at time C1, C2, C3, and C4, respectively. Notable, the interval between two adjacent time ticks may be
different.

2.1.3 Diffusion Modeling. For computation convenience, researchers usually regard users as pure
nodes, and use “inactive/susceptible” and “active/infected” to distinguish whether a user receives
the information. Symbols commonly used in this paper are listed in Table 1.
Given a social network as � (+ , �,, ), with user-set + , social link set �, and edge weight set

, , information diffusion model M aims at capturing information diffusion dynamics in social
networks. For a specific message �<4BB064 , only some of users I(0) ⊆ + adopt the message �<4BB064
initially, denoted as seed users I(0). As time elapses, the message �<4BB064 spread out by seed users
through social links randomly, and the modelM captures this process.

2.2 Research Methodology

As shown in Figure. 2(b), the process of information diffusion modeling is iterative, and it can be
divided into five steps: Data Collection & Processing, Diffusion Mechanism Analysis, Diffusion
Modeling, Feature Extraction, and Model Evaluation. These five steps are described as follows:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2020.
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Fig. 3. Comparison of real-world and synthetic data. (a) Real-world Facebook dataset downloaded from

SNAP [128]. (b) Block Two-Level Erdos-Renyi graph of Facebook generated by DARPA GRAPHS [98, 99, 156,

157]. (c) Erdos-Renyi graph of Facebook generated by networkx (Python package for network analysis). (d)

Degree distributions of real-world, Block Two-Level Erdos-Renyi, Erdos-Renyi graphs. (e) Real-world Arxiv

collaboration network dataset downloaded from SNAP [105]. The meanings of (f), (g), (h) are similar to (b),

(c), (d).

2.2.1 Data Collection & Processing. The first step of research is to obtain sufficient data. Social
data can be processed into three categories: cascades, social topology, and user-related data.Cascades
records the diffusion dynamics of mass social information. It is the ground truth of the diffusion
process, and we can evaluate the model performance based on it. Social topology consists of users
with their social relationships. Evidence shows that it affects the range and speed of information
diffusion [143, 209]. Commonly, they are major elements in predicting the information diffusion
process.User-related data includes user-profiles and their interactive social records. These data can
be used to infer user preference. Combined with the information content, the user’s interest in the
information can be calculated, and the range of candidate users can be further narrowed, thereby
improving the prediction accuracy.With the development of Deep Learning and NLP technologies,
as well as the growth of computing power and data resources, this type of data has great potential
in diffusion modeling. Notably, these three types of data must be time-related, because the time
factors in the data can reflect the dynamics of information dissemination.
Datasets can be categorized into either synthetic and real-world data. The synthetic data are gen-

erated by programs following social analysis principles (e.g., power-law [131]). This type of data
is mainly a variety of network topologies, such as Kronecker [104], Block Two-Level Erdos-Renyi
[156], and Uncorrelated Scale-Free Networks [20]. They are indispensable because researchers
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can control the complexity of the propagation scenarios [141]. For example, topics can be set as
irrelevant in synthetic networks in terms of topic-related diffusion models, which reduces the mod-
eling difficulty. The real-world data are collected from social platforms (e.g., online social networks,
email networks, academic collaboration networks). They contain more detailed information such
as comments and user-related data, which provides rich contextual semantics for diffusion model-
ing. With the thriving of machine learning, this type of data has become the preferred one. Besides
crawled by selves, these data also can be downloaded from dataset websites [106, 175, 183]. Com-
parison of real-world and synthetic data is shown in Fig. 3. Some synthetic data are similar to real
data in terms of statistical laws.

2.2.2 Diffusion Mechanism Analysis. After collecting and processing data, the second step is to an-
alyze the mechanism of diffusion processes, guiding the diffusion modeling and feature extraction.
The mechanism can be analyzed from three aspects in accordance with the individual interaction
scenario shown in the right part of the Fig. 2(a): social vector-scope,user (behavior)-scope, and
information-scope. The social vector-scope analysis focuses on studying the impact of underlying
network structure on information diffusion. First, users in different locations play divergent roles
in the propagation process [7, 119, 215]. Second, different platforms may lead to various diffusion
dynamics. For example, the same story spread faster on Digg, but spread more widely on Twitter,
and the network of Digg is denser [103]. Third, the research shows that social actions will promote
the evolution of the social networks [110, 169], and social network evolution does impact user’s
social behaviors [3]. The user (behavior)-scope analysis concentrates on predicting the individ-
ual behavior (e.g. like, retweet, and follow) in terms of specific information. What decision the
user will make, depends on the match of the user cognition and information semantics. Although
the brain’s decision-making process is extremely complicated [5, 164], it is definite that analyz-
ing user decision-making processes can promote the accuracy of information diffusion modeling.
The information-scope analysis is commonly carried out from two levels: statistical characteris-
tics (e.g. the number of hashtags/pictures [168]) and semantics (e.g., topic distribution, sentiment,
emotion. ) Generally, researchers usually analyze information content and user behavior together.
As shown in the right part of Fig. 2(a), the above three components affect the diffusion pro-

cess and shape each other. First, users perceive the social information and others’ attitudes from
social vectors (The “Receiving Information" and “Peer Influence” processes). Social vectors de-
termine which information the user can receive, and whose the user can communicate. Second,
they decide which kind of social action to take (The “Decision” process). Third, social actions can
drive information propagation and social network evolution (The “Information Propagation” and
“Network Evolution” processes). Generally, researchers should consider information, users, and
network structures as a unification.

2.2.3 Diffusion Modeling. From the perspective of modeling techniques, researchers adopt time-

series and data-driven approaches. In the early stage of modeling researches, time-series ap-
proaches are meanstreams. Their modeling concepts are using explicit mathematical expressions
to model the dynamics of information diffusion over time. Fitting, simulation, and likelihood max-

imization are the three primary research directions. Fitting models attempt to fit the curve of the
diffusion volume over time. Simulation ones try to imitate the information diffusion process based
on social network topology. Compared with the above two methods, likelihood maximization ones
construct a likelihood function based on the diffusion history and tries to infer the underlying
diffusion networks. However, an inevitable defect of these time-series approaches is that the in-
trinsic diffusion dynamics are difficult to be expressed with formulas. Therefore, many researchers
have shifted their focuses to data-driven approaches. Data-driven ones do not need to give spe-
cific expressions and use machine learning algorithms to get the prediction result automatically.
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More intrinsically, data-driven approaches show how to learn diffusion models, rather than give
mathematical diffusion models explicitly. Researchers can manually extract diffusion features, or
directly learn features from raw diffusion data in “end-to-end” approaches.
To align with various modeling requirements, the outputs of information diffusion models in-

clude three levels of granularity: volume, individual, and the propagation relationship between two
individuals, as shown in Fig. 2(b) Volume models only capture changes in the diffusion volumes
over time, and do not care about who is infected. Individual adoption models attempt to identify
every infected user. Relationship inference models aim at inferring the information diffusion track
among those infected users. The above three levels of granularity models will be discussed in
Section 3.

2.2.4 Feature Extraction. The fourth critical step of the information diffusion research is to extract
representative and comprehensive features from the collected data for the established model. Com-
monly used features can be divided into four categories: structural, temporal, content, and user-
related. Researchers found that not all features play an equal role in diffusion prediction. Chen et

al. [25] verified that when structural features and temporal features are used in combination, the
prediction accuracy can reach more than 70%. Besides, experiments performed in [10] show that
the prediction accuracy of the topic-aware model is 28% higher than that of the topic-blind model.
Some representative features are summarized in Appendix 8.
Structural: Network topology is the medium of information diffusion, which affects the tra-

jectory and range of information diffusion. Existing structural features contain two types of cate-
gories: network structure, and cascade structure.

• Network structure features describe characteristics of social vectors (i.e., network topology),
such as degree distribution [70], density [123], and the fraction of users forming triangles
[124].
• Cascade structure features refer to the characteristics of diffusion dynamics in social net-
works, involving retweet tree depth [25], number of diffusion hops [210], retweet ratio [180],
and so on.

Temporal: Temporal features indicate the speed of information diffusion in social networks.
They are mainly composed of Sequential features and statistical features.

• Sequential features describe numerical changes of some indicators over time during the diffu-
sion process. These indicators can be the number of reposts/comments/views [25, 202, 210],
time elapsed between the current and previous post [25, 70], and so on.
• Statistical features are secondary processing of sequential features, aiming to find some
potential diffusion laws. Scholars usually analyze time-series features from macroscopic
perspectives, such as the similarity between two time-series [1], the shape of time series
[42, 101], and so on.

Content: Information content can naturally affect the information diffusion process. At present,
scholars extract content features from both statistical and semantic aspects.

• Statistical features mainly related to message forms, such as the number of hashtags/URLs
[168], language [25], and terms frequency [135].
• Semantic features refer to the deep semantics of a message, including topics [70], sentiment
[41], emotions [146], self-disclosure [220], and so on. Most of these features need to be ex-
tracted using Natural Language Processing (NLP) and multi-modal techniques.

User-related:Currently, user-related features are mainly composed of two parts: static features
and dynamic features.
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• Static features also can be called user profiles, mainly refer to user’s inherent attributes, such
as age, gender, country, and education background.
• Dynamic features are mainly extracted from user interaction history, including preference
[222], participation engagement [168], and the probability of his tweet to be retweeted [70].

2.2.5 Model Evaluation. As shown in Fig. 2(b), the diffusion model is either regression or classifi-
cation model. Commonly used evaluation indicators are also applicable here. Due to space limita-
tions, we will not describe it in detail here.

3 TAXONOMY OF ELEMENTARY DIFFUSION TECHNIQUES

In this section, we thoroughly review techniques for information diffusion modeling and discuss
their pros and cons. The existing diffusion models are essentially classified into three categories:
diffusion volume models, individual adoption models, and relationship inference models. Diffu-
sion volume models aim at predicting the overall diffusion volume, ignoring whether a specific
user will receive the message. Individual adoption models attempt to identify future active users.
Relationship inference models hope to clarify the propagation relationship between two active
users. These three types of models can be established via time-series and data-driven approaches.
The taxonomy is shown in Fig. 4.

Information

Diffusion

Models 

Diffusion

Volume

Models 

Individual

Adoption

Models 

Relationship

Inference

Models 

Time-series 

Data-driven 

Likelihood Maximization models 

Diffusion Embedding models 

The problem to

be addressed: 
Taxonomy: 

Difference/Differential-based models 

Stochastic-process-based models 

ML-based models 

Progressive models 

Non-progressive models 

ML-based models 

Time-series 

Data-driven 

Time-series 

Data-driven 

How many users will take  
part in the diffusion

process up to time  ?

Whether the user  will

participate in the diffusion

process at time ? 

How is the information  

disseminated among  

active users?

Fig. 4. Taxonomy of current information diffusion models.

3.1 Diffusion Volume Models

Existing diffusion volumemodels fall into three categories: difference/differential-based, stochastic-
process-based, and ML-based models. These three types of models will be discussed as follows.

3.1.1 Difference/differential-based Models. These models are the earliest diffusion models bor-
rowed from Epidemics [141]. They divide the population into several compartments (or classes,
status) such as S (Susceptible), I (Infected), R (Recovered), according to the different user statuses
in the diffusion process. Next, difference or differential equations are used to describe the evolution
of user proportions among each compartment.
Assumptions: Difference/differential-based models are premised on that the total population

is known, and each user connects with others effectively at each time unit.
Methods: The universal idea is to divide users into different compartments, and then build dif-

ference/differential equation models based on the user’s social connectivities to describe the evolu-
tion of each compartment. Common transition rules of compartments include Susceptible-Infected,
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Susceptible - Infected - Susceptible [138], Susceptible - Infected - Recovered [138], Susceptible-
Exposed-Infected-Recovered [112], and Susceptible-Exposed-Infected-Removed [72], etc. There
are corresponding transition probabilities between different compartments. For example, SIR can
be sketched in Algorithm. 1. All users are divided into different  groups according to their social
connectivities (e.g., node degree [12, 142], friendship hops [187], and connectivity [205]). ?: and
@: are infectious rate and recovery rate of :-th group, respectively. K: (C) denotes the probability
that any given edge is connected to an infected user in :-th group. Generally, the form of K: (C)
is related to the network topology, such as degree distribution [12, 142, 205], and distribution of
friendship hops [187].

Algorithm 1: Basic Ideas of the SIR

Input: % (:), : ∈ [1,  ]: Distribution of node connectivity,  is the maximum level of
connectivity; ?: : Infectious rate; @: : Recovery rate; ) : Deadline

Output: (: () ), �: () ), ': (C): Proportions of different class of users
1 (: (0), �: (0), ': (0) ⇐ Initialize user distribution with % (:);
2 C = 0;
3 while C < ) do
4 // Update user proportions;
5 (: (C + 1) = −?:(: (C)K: (C) ;
6 �: (C + 1) = ?:(: (C)K: (C) − @:': (C);
7 ': (C + 1) = @:': (C);
8 C = C + 1;
9 end

Classical Epidemic models assume that all users are homogeneous. Therefore, the transition
probability of any user in the same transition schema (i.e., the source compartment and target
compartment are the same respectively) is identical. For example, as the elementary Epidemic
model, SIR [138], the number of newly infected people at time C , Δ� (C), equals the infection rate
multiply the number of connections among susceptible and infected users. In other words, they
are special cases of universal difference/differential-based models, where  = 1 and K: (C) is the
proportion/number of infected users.
Besides these elementary difference/differential expressions, researchers developmany extended

models, as shown in Table 2. Yang et al. [214] considered a generalized infection probability in a
multi-virus competing scenario because linear infection rates may cause the diffusion volume over-
estimation. Matsubara et al. [126] introduces dynamic infection rate and periodicity to describe the
six types of “rise and fall” patterns in social networks [212]. They employed the Sine function to
model the periodicity. Stai et al. [165] introduced external exposure which makes susceptible users
become infected from other platforms (e.g., TV news), accelerating information diffusion process.
Notably, user payoffs models divide users into different groups according to their social strate-

gies. They assume user social strategies are determined by payoffs (e.g., how many fans will be
attracted if they forward the message?). The payoff can be computed based on the payoff ma-
trix associated with social links. And then, game theory can be employed to model interactions
among different groups. Jiang et al. [79, 80] believed that the payoff matrix is symmetrical because
they held the view that if a user adopting a forwarding strategy meets a user who takes a non-
forwarding strategy, each of them will get the same payoff. Also, they modeled the information
diffusion process using the evolutionary game-theoretic framework. Users with new information
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are regarded as mutants, and the diffusion process can be considered as mutant dissemination in
the network. Thus the model can predict the final stable state of the network. Cao et al. [19] clas-
sified user neighbors into two categories: known types, and unknown types. For neighbor users D
and E , if E does not know D, payoff matrices of E have nothing to do with D, and vice versa.

Table 2. Summary of Difference/differential-based Models

Extentions Articles Approaches Descriptions

Dynamic
Infection Rate

[126, 214] ?D =⇒ 5D (C)
Make the infection rate decays in an exponential distribution
[126], or turn the linear transition rate into a twice continuously
differentible function [214]

Periodicity [126] 5 period = 1 − 1

2
%0 (sin( ·))

Design a function of periodicity based on the Sine function.
%0 is strength of periodicity.

External
Exposure

[165]
3� (C )
3C = � (C)( (C)?1 (C)
+( (C) + ?2 (C)

Import time-varying external exposure probability ?2 (C) .

User
Payoffs

[19, 79, 80] 3�8 (C )
3C

= i8 (C) − i (C)
Divide users into different groups based on their social
strategies. And then, use game theory to model the evolution
dynamics on these groups. i8 and i are the average payoffs of
group 8 and total population, respectively.

Pros and Cons: Difference/differential-based models are straightforward, efficient, extendable,
and conforming to some real-world physic laws [141]. They first define the user state transition
pattern in diffusion modeling. Especially, since they do not involve specific individuals, they per-
form well in macroscopic diffusion modeling. For example, PDE [187] reflects that the density
of infected users decreases as the friendship distance increase. SpikeM [126] captures the power-
law fall pattern and periodicities, and avoids the divergence to infinity. On the one hand, this
abbreviation reduces the modeling complexity and makes these models indispensable. Taking SIS
as an example, the epidemic threshold of homogeneous networks is the inverse of the average
node degree [36], while the threshold is absent in Scale-Free networks [142]. On the other hand,
they do not consider the heterogeneity of user activity [75], which makes them difficult to use for
individual-level tasks. In addition, Iribarren et al. [75] considered that oversimplified models can
not accurately model the information diffusion process because they are difficult to reflect user
heterogeneity.

3.1.2 Stochastic-process-basedModels. Comparedwith difference/differential-based models, stochastic-
process-based ones estimate the diffusion contribution made by each reshare event or each user.
Assumptions: These models assume that the intensity of social events (e.g., message arrival,

or user posting/resharing message) occurring at each time C can be characterized by stochastic
processes. Suppose there are � (C) events that occurred as of time C (i.e., there are � (C) users reshare
the item). The intensity is the conditional probability that an event occurs in the time interval
[C, C + ΔC] on the condition that it does not happen until time C . Moreover, the diffusion volume
can be calculated by integrating the intensity at each time C . Let the random variable, g , denote
the waiting time until an expected event occurs. The intensity can be expressed as Eq. 1 based on
Survival analysis [96].

_ (C) = lim
ΔC→0

% (C < g < C + ΔC |g ≥ C)
3C

(1)

Methods: Every model can be decomposed into three parts: basic intensity, decay, and exciting.
The basic intensity indicates the most basic diffusion intensity, which can be implicitly represented
as a part of the model. It can reflect some diffusion phenomena, such as intrinsic infectiousness,
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Table 3. Summary of Stochastic-process-based Models

Mechanisms Models
Simplified

Expressions
Articles Parameters

Decay

Power-law ( C−C8
2
)−(1+\ ) [46, 97, 130, 228]

[100, 149]
2: bounded term of minimum
time difference
\, \

′
: model parameters

Φ: CDF of the Normal
distribution

Exponential 4−\ (C−C8 ) [8, 9]

Rayleigh 4−\
(C−C8 )2

2 [186]

Log-Normal 1 − Φ( ln(C−C8 )
f
) [158]

Weibull 4−(
C−C8
\ )\

′
[219]

Exciting
Poisson

∑9=:
9 4−V 9 [46, 158] 9 , :: 9 , :-th retweet events

q (C − C 9 ): decay function
U 9 : branch factor (i.e., triggering
strength of each forwarding)
V:model parameter. If 14C0 = 0,
it is Linear exciting function.

Hawkes
∑9=:
9 V 9q (C − C 9 )

[8, 9, 97, 130, 228]
[100, 149]

Periodicity Sine V sin( 2c
q
(C + B)) [8, 97]

V: strength of periodicity
q : phase of periodicity
B: phase shift of periodicity

External
Influence

Sine V sin( 2c
q
(C + B)) [8] U, V: strength of periodicity

q : phase of periodicity
B: phase shift of periodicity
I:impulse function
B̄ (C):number of observable
external influence

Impluse
function

UI [C = 0] + VI [C > 0]
+B̄ [C] [149]

periodicity, and external influence. The decay function indicates that the item’s influence decrease
with time. It can also be understood as human reaction time [228]. The exciting function enables
each previous forwarding to have a continuous impact on the following interactive behaviors,
shedding light on the “richer-and-richer” phenomena [30]. We summarized the motivations of
these models and organized them into Table 3.
For decay functions, the power-law model is often used to indicate the long-tails in social net-

works [52]. Other models will perform better in some datasets, such as Exponential in microblog
[8, 9], Log-Normal in citation network [158], and Rayleigh in epidemiology [186]. Especially, Yu
et al. [219] found that the Weibull distribution can preserve the minor and early-stage dominance
better.
Commonly used exciting mechanisms are Poisson and Hawkes, as shown in Eq. 2 and 3,

respectively. The exciting component of Hawkes-based models implicitly represented by
∑

.

_ (C) = _10B4 53420~ ( ·)64G28C ( ·) (2)

_ (C) = _10B4 +
# (C )
∑

8=1

53420~ ( ·) (3)
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ForPoisson-process-basedmodels, Shen et al. [158] assumed that the excitement of each event
is identical, and adopted the number of attentions the message received as the Linear exciting func-
tion. Gao et al. [46] applied exponential to capture the decay effective of previous retweet. How-
ever, these methods stay at the level of activation index, instead of involving specific activation
time. Hawkes-based models provide the self-exciting mechanism, and the triggering strength
can be calculated based on the activation time interval. SEHP (Self-Excited Hawkes Process) [9]
uses the exponential expression to compute the base intensity and decay effects. Moreover, ISEHP
(Influence-based Self-Excited Hawkes Process) [8] incorporates the periodicity using sin function.
Zhao et al. [228] models the time-varying infectiousness and the arriving time of each post are
modeled by two Hawkes processes, respectively. It is able to identify at each time point whether
the cascade will be "explosive" or "tractable" according to whether its infectiousness is above or
below a critical threshold. Kobayashi et al. [97] thought that the final cascade size can be achieved
by integrating the future retweet rate _̂(C) which is calculated based on the average number of
followers and the infectious rate. Mishra et al. [130] used a predictive layer on top of the MHP
(marked Hawkes process) to make predictions with the combination of user social influence, so-
cial memory, and tweet quality. Marian et al. [149] introduced the external influence modeled by
impulse function, which allows their model to fit complex situations. They also proved that the
intensity _(C) is identical to the infection probability ? after marginalizing out recovery events,
and they proposed the HawksN model with finite population [100].
Generally, the modeling process of stochastic-process-based models is roughly divided into the

following basic steps, as shown in Algorithm 2. First, model the distribution of influence decay
53420~ (C) with reference to decay functions. Second, devise the intensity _(C) based on Survival the-
ory and 53420~ (C). In this step, we can add some other features to the model. Third, estimate model
parameters via optimization methods such as E-M (Expectation-Maximization). Fourth, compute
the influence of each social event by integrating the intensity _(C) from start to end. Last, the final
diffusion volume can be calculated with the function Φ(·). (The last step is optional according to
model requirements.)

Algorithm 2: Basic Ideas of Stochastic-process-based Models

Input: 2 = {(D1, C1); (D2, C2); . . .}: A piece of cascade;) : Last time C of observable cascade
Output: �2 () ′): Final cascade size of the cascade 2

1 53420~ (C) ⇐ Model the distribution of influence decay ;
2 _(C) ⇐ Devise the intensity of social events;
3 8 = 0;
4 for 8 < |2 | − 1 do
5 X8 = C8+1 − C8 ;
6 [8 = C) − C8 ;

...
7 end

8 _(C) ⇐ {{X8 }, {[8}, . . .} // Parameter estimation;
9 for 8 ∈ { 9 |C 9 < ) and D 9 ∈ 2} do
10 '(8) =

∫ )

C0
_(C)3C // Compute the influence of each social event;

11 end

12 �2 () ′) = Φ({'(8)}) // Compute the final cascade size prediction;
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Pros and Cons: Stochastic-process-based models are straightforward and exhibit some natu-
ral diffusion phenomenons. These models show multiple decay effects which describe that the
influence of one information decreases over time, including Power-Law [46, 130, 228], Exponen-
tial [8, 9], Log-Normal [158], and Oscillation [97]. Furthermore, exciting functions reflect that past
events will promote the event occurring in the future. The introduction of time factors makes
model performance improve around 30% [97]. Moreover, whether the content will be popular is
related to exogenous sensitivity, and endogenous response [30, 149].
Notably, if the intensity involves every specific user, the next infected user can be predicted

with the help of likelihood maximization inference [77]. Nevertheless, there are few such models,
so that we will not be separately discussed. Besides, these models require sophisticated parameter
estimation. Although complex parameter estimation is needed, the time complexity ofmost models
is still close to linear [219, 228].

3.1.3 ML-based (Volume) Models. Compared with the first two categories that mainly adopt time-
series approaches, data-driven models use learning algorithms to model the diffusion process with-
out any preset model expression. They take a series of features possibly relevant to the diffusion
process (see details in Section 2.2.4) as input and output the popularity prediction.
Assumption: As far as we know, ML-based models relax almost all unrealistic assumptions in

diffusion scenarios. However, their performance depends on whether the algorithm can effectively
learn the propagation characteristics.
Methods: Data-driven models can be divided into two stages: feature-based and deep learn-

ing. Feature-based models mainly adopt native machine learning techniques, taking a series of
elaborate hand-craft features as input and output cascade prediction results. These models include
Generalized Linear Model [168], Linear Regression [211], Support Vector Machine [125], Decision
Tree [123, 124], Random Forest [4, 37], Neural Networks [38], and so on. Some literature [25, 31, 48]
have shown that features affect prediction performance more than learning algorithms. They also
found that temporal and structural features are critical predictors of cascade size. In addition, many
researchers have considered features of early diffusion, especially some of the characteristics of
the original reposters, which also have great help in the final popularity prediction. Furthermore,
in the initial stage, it is diffusion breadth, rather than depth, that has a more significant on large
cascades [25].
With the vigorous development of deep learning, researchers have gradually turned to end-to-

end models, which can automatically learn sophisticated diffusion features. Representative models
are introduced in Table 4. Comparedwith feature-based models using native methods, deep learn-
ing models usually design new frameworks to utilize diffusion features better. The overall model
framework is divided into four major steps: embedding data as vectors, using neural network mod-
els to learn diffusion features, aggregating features, and prediction. Generally, researchers adopt
MLP (Multi Layer Perceptron) to predict diffusion volume. The key lies in the first three compo-
nents of the framework.
For temporal features, RNN (Recurrent Neural Network)-type technologies can model temporal

dependency. Gou et al. [57] converted the retweeting time series to different perspectives (e.g.,
Frequency, Slope) with the help of time windows, then applied LSTM [69] to learn sequential
temporal features, and used Pooling mechanism to extract high-level sequential features.
For content and user-related features, publisher and multi-modal data can be unified represen-

tation via deep learning first, and then use the tensor operation technologies to learn correlation
among these data. Zhang et al. [226] utilized VGGNet [162], LSTM [69], andmatrix operation to ob-
tain a unified representation of visual, textual, and personalized information. Then the hierarchical
attention mechanism is adopted to learn the features and correlations of multi-modal information.
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Table 4. Summary of Deep Learning (Volume) Models

Scopes Key Components Contributions Articles

Temporal
LSTMIC

(LSTM+ Pooling)

LSTM: Embed the sequential features.
Pooling: Extract high-level sequential
patterns.

KAIS 2018 [57]

Content &
User-related

UHAN
(Embedding +

Hierarchical Attention)

Embedding: Embed visual, textual,
and publisher (user) by VGGNet,
LSTM, and Matrix Embedding
, respectively.
Hierarchical Attention: Compute
textual and visual embedding as
well as their importance by intra
and inter attention, respectively.

WWW 2018 [226]

MOOD
(Hierarchical Attention

Embedding
+ Tensor Factorization)

Hierarchical Attention Embedding:
Obtain the word-level
representation for diffusion
context (e.g., organizor, location).
Tensor Factorization: Compute
the joint influence of different
components of diffusion context.

DASFAA 2018 [193]

Structural
& Temporal

DeepCas
(Random Walk +
GRU + Attention)

Random Walk: Sample multiple
sequences from a cascade graph
GRU: Encode sequence to a
(hidden) vector
Attention: Aggregate sequence
hidden representations to
represent cascade graph

WWW 2018 [107]

DeepHawkes
(Embedding

+ GRU
+ Sum Pooling)

Embedding: Embed user
GRU: Encode cascade path.
Sum Pooling: Integrate decay effect

CIKM 2017 [17]

CasCN
(GCN + LSTM)

GCN: Embed sub-cascade graph
by CasLaplacian.
LSTM: Model the temporal
dependency of cascades.

ICDE 2019 [24]

VaCas
(Spectral Graph Wavelet

+ Bi-GRU + VAE)

SGW: Embed cascade subgraph
GRU: Embed temporal information
VAE: Model diffusion uncertainty

INFOCOM 2020
[231]

Temporal &
Content

DTCN
(Embedding + LSTM

+ Attention)

Embedding: Obtain the unified
representation of Multi-modal
social sequences.
LSTM: Learn sequential and temporal
coherence of a single cascade.
Attention: Infer the correlation
among multiple cascades.

IJCAI 2017 [199]

DFTC
(LSTM + attention CNN
+ Hierarchical Attention
Network + Embedding+

Temporal Attentive Fusion)

LSTM+attention CNN: Embed global
trend and local fluctuation of
temporal features, respectively.
HAN: Embed the content.
Embedding: Embed meta-data.
Attentive Fusion: Integrate multiple
features.

AAAI 2019 [117]

Wang et al. [193] adopted the hierarchical attention mechanism to obtain the word-level represen-
tation of diffusion context (e.g., organizor, location), and then used tensor factorization to compute
the joint influence of different components of diffusion context.
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For structural and temporal features, researchers first embed the cascade graphs to learn struc-
tural features, and then utilize the RNN -like models to model sequential temporal features. Cheng
et at. [107] sampled individual cascade graph by Random Walk, and utilized GRU [69] to encode
variable-length diffusion sequences as hidden representations. Finally, the attention mechanism
is used to fuse these hidden representations for prediction. Cao et al. [17] implemented the decay
mechanism via sum pooling, and Islam et al. [76] utilized conditional intensity [39] to predict user
activation time. Chen et al. [24] developed CasLaplacian (a variety of spectral GCN [34]) to em-
bed cascade graphs, and utilized LSTM [69] to model the temporal dependency. Besides modeling
structural and temporal dependency, Zhou et al. [231] introduced VAE [94] to model the diffusion
uncertainty.
For temporal and content features, researchers first embed multi-modal social content and use

RNN-like technologies to model temporal features. Then the attention mechanism is used to fuse
these representations. Wu et al. [199] employed ResNet [64] and FNN (Feed-forward Neural Net-
work) to generate unified representations ofmulti-modal social data. And then, they adopted LSTM
[69] to model neighboring and periodic temporal context. Finally, a multiple time-scale temporal
attention method is proposed to implement cascade prediction. In addition, Liao et al. [117] devel-
oped Attentive Convolution Neural Network (CNN) to capture the short-term fluctuation caused
by external influence, and added a temporal decay factor to the loss function.
Pros and Cons: Compared with the above time-series models, data-driven ones focus on utiliz-

ing representative and comprehensive features rather than devising complex mathematical expres-
sions. They enormously reduce the difficulty of diffusion mechanism analysis and diffusion mod-
eling. In addition, they almost remove any preset assumptions, and they can get more than 95% ac-
curacy in multiple scenarios [23, 117]. Especially, since there are no input restrictions, data-driven
methods can discover useful features easier than time-series ones. However, their defects are ob-
vious. First, ML-based models require computational expensive feature engineering or learning
representation. Second, their performance is highly dependent on the feature quality and quantity.
Thus it is difficult to quantify the performance of these learning techniques with certainty. Third,
existing works show that the prediction performance may be more sensitive as time goes on [101].

Table 5. Summary of Diffusion Volume Models

Targets Assumptions
Explicit

Expressions
Key Factors

Time-series

Difference/
Differential

-based

Δ� (C) : Number of
newly infected users

at time C

Mean-Field
Theory

√
Rationality of
hand-crafted

stochastic modelStochastic-
process
-based

_D (C) : Intensity of
diffusion event
occurrence

Human
Behavior
Laws

√

ML-based
Regression

� (C) : Number of total
active population

at time C
- - Features extracted

from datasets

Classification
� (C) > g : Whether the
diffusion volume at time
C hits the threshold

- -
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3.1.4 Analysis and Discussion. The summary of diffusion volume models is shown in Table 5.
Difference/differential-based models are straightforward, and their calculation efficiency is ex-
tremely high. It is noteworthy that their design philosophies (e.g., node state classification, and
state transition rules) arewidely adopted by other diffusionmodels. Comparedwith difference/differential-
based models, which rely on the mean-field assumption, stochastic-process-based ones model the
intensity of diffusion event occurrence. In other words, they model the influence of each user’s
forwarding on subsequent diffusion. Time-series models are interpretable, but it is challenging to
devise appropriate mathematical expressions. ML-based approaches extract various features and
use machine learning algorithms to predict the diffusion process. This characteristic allows them
to mine more potential features. However, their predictive performance heavily depends on the
quality of the extracted features, and whether their prediction performance is as stable as time-
series models remain to be determined.

3.2 Individual Adoption Models

Individual-level models are essential because predicting the diffusion volume alone is not enough
for specific user-involving scenarios such as viral marketing. They aim at predicting who will join
the cascades, and all of them belong to classification task models.

3.2.1 Progressive Models. Similar to the SI model, progressive models divide all users into inac-
tive and active groups. Active users will follow the rules specified by the model and infect their
neighbors according to the social network topology.
Assumptions: Progressive models believe that messages are propagated through social links

from active users to inactive users, and active users will never be inactive again.

Algorithm 3: The Basic Idea of IC/LT Models

Input: � = (+ , �): Social topology; I(0): Seed users; ) : Deadline
Output: I(T): User activation records from C = 0 to C = )

1 S = {D |D ∈ + ∧ D ∉ I(0)} // Initial susceptible user set C = 0;
2 while C < ) and |S| > 0 do

3 C = C + 1;
4 for D in S do

5 if Φ(D, C) > 0 then
6 // Determine whether the user D is activated I(C) = I(C) ∪ {D};
7 S = S − {D};
8 end

9 end

10 end

Methods: Independent Cascade (IC) [51] and Linear Threshold (LT) [58] are two early and ele-
mentary progressive models. They all assume that the network topology is static and propagations
only occur at discrete-time synchronously. In addition, the user who is activated at time C only has
one chance to infect all its neighbors at time C +1. Algorithm 3 the sketch of the basic idea of IC/LT
models. .
Model difference is mainly reflected by the activate function Φ(D, C). In IC model, if the number

of active neighbors of user E at time C − 1 is<, the probability of user E will be activated at time C
is

?E (C) = 1 −
∏

D∈ΔI (C−1)∧D∈#8=E

(1 − ?DE ) (4)
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The user E will be activated at time C with the probability ?E (C). In the LT model, propagation
probability can be thought of as the influence weight. Every user E is associated with a threshold
\E . The user E will be activated if the Eq. 5 is satisfied.

∑

D∈N� (E)
?D,E ≥ \E (5)

The IC/LT reflects some crucial characteristics of information diffusion. Typically, users D and
E discuss the information �<4BB064 only once, and the user E may not agree with the user D. If the
user E adopts �<4BB064 , he may forward it to his neighbors. However, the two models neglect many

indispensable factors, such as delay time, topic, and network topology evolution. For these deficiencies,
there are a large number of extensions of those two models. We briefly summarize the extensions
in Table 6 and discuss them in detail in the following context.

Table 6. Summary of IC/LT-based Extension Models

Extensions Articles Approaches Descriptions

Delay [60, 152] A
34;0~
DE =⇒ ΔI(C + ⌈A34;0~DE ⌉) Add delay parameters A

34;0~
DE for each

edge. Therefore, user activation is not re-
stricted to consecutive steps

Activation
Pattern

[22, 59, 191, 192] I(pD (C)) =⇒ 5 (pD (C), rD (C), · · · ) Define more ’detailed’ probabilities (i.e.,
reading probability, meeting probability)
and modify the form of the activate func-
tion.

User Class [81, 155] ΔI(C) =⇒ ∑

S(C ) I(C) ±
∑

I (C ) I
′ (C) Introduce more user classes. Then add the

number of users who have switched from
other classes to infected, and minus the
number of users who have switched from
infected to others.

Semantic [10, 65, 108, 120] ?DE =⇒ ?2DE Assign topic distribution to each user and
edge. Only topic-matched information can
be propagated through the social link.

Dynamic
Topology

[40, 88, 204, 221] ?DE =⇒ ?DE (C) Make the network topology evolves with
information diffusion.

Multi-
channels

[134, 151, 224]
5 (pD (C)) =⇒ 5 (?1

D (C))⋄, . . . , ⋄5 (?BD (C))
⋄ ∈ {∨,∧, +, . . .} Consider information spread across multi-

ple platforms.

Delay: Extensions for delay make propagations be no longer restricted to discrete consecu-

tive time ticks. In addition, the user activated at time C is modified to ΔI(C + ⌈A delayDE ⌉). AsIC
(Aysnchronous Independent Cascades) and AsLT (Aysnchronous Linear Threshold) [152] add de-

lay parameters A34;0~DE to each edge (D, E). Compared with IC/LT, various delay parameters allow
the user’s neighbors to be activated at different time C . T-Basic (Time-Based Asynchronous Inde-
pendent Cascades) [60] expands fixed delay parameters into time-dependent functions, which can
describe the dynamics of diffusion processes more accurately.
Activation Pattern: Extensions of activation patterns aim at devising a more elaborate activation

function. Kempe et al. [88] proposed General Threshold (GT) Model which defines a general ac-
tivation function 5E (# 8=

E , () for each user E , instead of using an identical accumulative approach
like the LT model. Chen et al. [22] introduced the “meet probability” A<44CDE to indicate the possibil-
ity of contact between two users. The user will become active with the joint probability of “meet
probability” A<44CDE and the activation probability ?DE. The activate function is defined as
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?E (C) =
{

1 If A0=31 > ?DE ∧ A0=32 > A<44CDE , . . .

0 Otherwise
(6)

In addition, there are some other similar improvements (e.g., reading probabilities [59], message
notification, and message-forgetting mechanisms [191, 192]) can be seen as the refinement of Eq.
6. The target user will be activated when all these conditions are satisfied.
User Class: User class extensions introduce new user classes based on IC/LT models compatible

in some specified scenarios. Such as rumor spreading, since some susceptible users may become
anti-rumors after receiving a rumor. Serrano et al. [155] proposed a rumor spreading model and
they defined four types of users: neutral (initial state, inactive), infected (believe the rumor, active),
vaccinated (believe the anti-rumor before being infected), and cured (believe the anti-rumor after
being infected). It assumes that neutral users may become vaccinated with probability ?"0:4�4=84ADE ,

and vaccinated users attempt to cure or vaccinate their neighbors with probability ?�224?C�4=~DE .
Jiang et al. [81] assumed that every susceptible user (S) can be infected (I) by their neighbors with
probability ?DE, and then be recovered (R) with probability @D (C). To more precisely describe user
states in rumor spreading, they introduced two sub-state of infected users: ‘contagious’ (Con) and
‘misled’ (Mis). An infected user first becomes contagious and then transits to be misled the next
time C . This mechanism can reflect the sequence of user infection during the rumor spreading,
which is essential for source identification. Therefore, at time tick C , the actual number of newly
infected users should not include those who switched from infected into other states.
Semantic: Existing semantic extensions primarily consider the impact of topics on the diffusion

process. For different topics, the main idea of these models [10, 65, 108, 109, 120] is to assign topic

distributions to each user and topic-related propagation probability to each edge. For example, Zhu
et al. [237] assumed that every user E adopts each piece of the information with equal probability.
He et al. [65] thought that every user has three states, 8=02C8E4 , 02C8E4+ , and 02C8E4−, with two
independent threshold, positive \+E and negative threshold \−E . Each edge (D, E) has two weights,
positive F+DE and negative weight F−DE. For every inactive user E , two types of influence are accu-
mulated separately. If

∑

D∈N� (E) F
+
DE ≥ \+E is satisfied, the user E will switch to 02C8E4+ , otherwise

will switch to 02C8E4−. Com-IC [120] introduces the reconsideration mechanism in which one user
may adopt the opinion � if he has adopted the complementary opinion�. Li et al. [109] utilized the
payoff matrices to calculate user’s payoffs, thereby deciding social choice for each piece of infor-
mation. It should be noted that although these studies focus on the diffusion of multiple pieces of
information, the majority of them stipulate that the user will not adopt the opposite information
after they have been activated.
Dynamic Topology: It has been confirmed that information diffusion will promote network evolu-

tion [110]. Dynamic topology extensions change propagation probability between user-pair from
?DE (fixed) to ?DE (C) (time-varying). Decreasing Cascades (DC) [88] thinks that the probability be-
tween users D and E diminish as their active neighbor number increases. Zarezade et al. [221] used
Hawkes process to model users’ behavior adoption intensity (probability). The _D (C, 02C) defines
the intensity of action 02C taken by the user D at time C , and it can be expressed as _D (C, 02C) =
_D (C) 5D (02C |C). The _D (C) represents the intensity of the action taken by the user D at time C , and
5D (02C |C) represents the intensity that the user D takes the action 02C on the premise of time C .
DynaDiffuse [204] models the dynamic characteristics in an ingenious way. If a new connection
appears, it assigns a small positive value to the newly created link.When the edge rate exceeds this
positive value, the edge (re)emerges, and conversely, the edge disappears. When all edges of a user
disappear, the user can be considered as removed. In recent years, scholars introduced user inter-
action in network evolution. Co-Evolve [40] considers two types of events: tweet/retweet events,
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4A , and link creation events, 4; as triplets:

4A or 4; := (D, B, C)

The triplet indicates that the event when the source user B propagates a message to the target
user D or establishes a friendship link with the target user D at time C . Next, researchers designed
a multivariate Hawkes process to capture the intensity of user boosted by a previous diffusion
process, and modeled the link creation using the survival process. After that, they coupled the
intensity of link creation with retweeting events.
Multi-channels: Multi-channels extensions attempt to study information diffusion in multiple

social platforms. Because the “closed-world” restriction is far from reality as users can receive in-
formation from various channels such as TV and telephone. Myers et al. [134] thought that the
arrival time of external exposures for each user follows a binomial distribution. Finally, the user
activation probability is multiplied by the probability of the user is activated by internal and ex-
ternal influences. Muse (Multi-source Multi-channel Multi-topic diffUsion SElection) model [224]
studies the information diffusion across online Enterprise Social Networks (ESN) and offline orga-
nizational structure. Information propagates through online, offline, and hybrid (online and offline)
diffusion channels among employees. Different diffusion channels will be weighted based on their
importance learned from the social activity log data with optimization techniques. The user E will
become activated if the intensity he receives from these three channels meets the activation thresh-
old. Sahneh et al. [151] embeds the diffusion process in multi-layer networks where all networks
have the same users but different edges. Moreover, they applied the GEMF (Generalized Epidemic
Mean-Field) approximation to reduce the state space. Generally, Muse [224] can be thought of as
a particular LT model applied in multi-channels, because a user will become activated once the
total threshold is exceeded. In comparison, Myers et al. [134], and GEMF [151] are the IC model
applied in multi-channels, as a user will be activated as long as he is activated at any layer.
Pros and Cons: Progressive models are intuitive to expand. They only need to know the net-

work topology to predict the information diffusion process. Furthermore, their monotonicity and
submodularity [87] make them widely used in some downstream application tasks, such as in-
fluence maximization and source identification. However, limitations of progressive models are
apparent. First, their computational efficiency is very low. Despite progressive models omit many
details of diffusion, such as the interaction of multiple pieces of information, the IM problem based
on progressive models is NP-hard [87]. Second, their performance is highly dependent on the com-
pleteness and accuracy of network topology, which is almost impossible to be satisfied in the
real world. Finally, the predictive performance of these models depends on the description of user
interaction behavior. For example, Correlated Cascades [221] achieved significant performance
improvements on multiple datasets by considering the interaction between users and the propaga-
tion process. Myers et al. [134] found that found that external links activated at least 29% of users
by analyzing the URLs forwarded by users. As more social behavior characteristics are discovered,
it means that such models have enormous space for improvement.

3.2.2 Non-progressive Models. Progressive models assume that the user remains active after being
activated without regret. However, in the real world, people may change their minds after commu-
nicating with friends. Therefore, non-progressive models introduce the re-adoptionmechanism,
and they are similar to SIS models.
Assumptions:Comparedwith above progressive models, in non-progressive models, a user can

be activated again by another piece of information �
′
<4BB064 after he was activated by the �<4BB064 .

Methods:Algorithm 4 is the basic idea of non-progressive models. Supposing there are topics,
the probability that user D adopts topic 2 at time C is determined by the user’s payoff:
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Algorithm 4: Basic Ideas of Non-Progressive Models

Input: � = (+ , �): Social topology; I 〉 (C): User set with i-th opinion at time C ;) : Deadline;
Output: I() ): Opinion distribution at time )

1 for D in + do
2 Initialize D’s opinion;
3 end

4 C = 0;
5 while C < ) do

6 for D in + do
7 Choose one of D’s neighbors to update his opinions based on payoffs ;
8 end

9 end

?2D (C) =
?0~> 5 5 2D (C)

∑

8 ∈ ?0~> 5 5
8
D (C)

The payoff refers to the attention, retweeting, reputation, and other things that the user expects
to get after re-sharing/rejecting the message.
Voter model [27] is an early typical non-progressive model in which the proportion of neigh-

bors’ opinions determines the user’s payoff. In other words, the user E randomly selects one of
his neighbor D to communicate and turns his point of view into that of the user D’s. Li et al. [115]
divided user neighbors into positive and negative ones (e.g., enemy, foe). Therefore, at each step,
users are more inclined to adopt the opinions of the majority of users. The authors proved that
under different network structures, the steady-state (opinion) of distribution is different. Kimura
et al. [93] introduced temporal decay into voter models. Specifically, when computing the proba-
bility that the user D chooses the 8-th opinion at time C , it is necessary to consider the influence
of all opinions of the neighbor adopting within a certain time window. And the influence can be
modeled via decay functions (e.g., power-law, exponential). In fact, game theory can also be used
to calculate user payoffs [79, 80]. However, due to its high complexity, researchers usually assume
that a group of users use the same revenue matrix.
Friedkin and Johnsen (F-J) [43] considered user stubbornness (or self-persistence) into opinion

dynamics. Initially, each user D is assigned with a opinion GD (0). During each round of social
interaction, the user may update the opinion from neighbors with probability \D , or stick to the
original opinion with probability 1 − \D . Ghaderi et al. [49] expressed the user’s opinion as a
value between 0 and 1. And they derived that the convergence bound depends on the network
structure, the location of stubborn users, and their stubbornness. Tian et al. [178] believed that
path-dependent (i.e., repeatedly arising or interdependent) topic might achieve consensus, and the
opinion evolution will enhance the network connectivity.
Most of the above models assume that an individual user will only hold a single opinion simul-

taneously. However, in the real world, vast opinions or topics are not black and white, such as
the centrist phenomenon [150]. Researchers considered that users could hold multiple opinions si-
multaneously to improve model generality. Generally, these opinions have different strengths and
satisfy a particular distribution. For example, Nayak et al. [136] utilized the Dirichlet distribution
to describe opinion distributions of users, and the Bayesian method was employed to update the
opinion distribution after receiving new messages.
Pros and Cons: Compared with progressive models, non-progressive ones introduce the “re-

adoption” mechanism, making them more suitable for modeling multiple pieces of information
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Table 7. Summary of Non-Progressive Models

Extensions Update Explanations Articles

Voter
(Original) ?

8←9
D (C) = 3

9
D (C )
3D (C )

User update their opinions based on the proportion
of neighbors’ opinions.

[27]

Voter
(Signed
Network)

GD (C) =
∑

9∈+
�+D 9
3D

G 9 (C − 1)
+∑9∈+

�−D 9
3D
(1 − G 9 (C − 1))

Divide users into positive and negative groups.
When the user 8 receives more positive influence,
he will become positive, and vice versa. GD (C) is the
probability that the user D is positive at time C .

[115]

Temporal
Decay

?:D (C) =
1+∑9∈� (D) |": (C,9 ) |
 +∑9∈� (D) |": (C,9 ) |

Divide users into  groups according to their opinions.
": (C, 9 ) is the set of past opinion :’s influence that the
user 9 receive at time C . ?:D (C) is the probability that the
user D adopts the opinion : at time C .

[93]

F-J
GD (C) = \DGD (C)
+(1 − \D )GD (0)

During each interaction, the user D is stubborn to his
initial opinion with probability 1 − \D .

[49, 178]

Bayesian ?:D (C) = VD?:D (C) + WD=:D (C)
Users can have multiple opinions, and these opinions
follows the Dirichlet distribution. User’s opinion can
be updated based on Bayesian method.

[136]

diffusion scenarios. The authenticity is enhanced. However, these models do usually take more
time to reach convergence than those progressive ones. Further, due to the introduction of the
“re-adoption” mechanism, non-progressive models do not have monotonicity and submodularity,
whichmeans that the infected user set’s influencemay diminish as its size increases. Roughly, voter
models reflect the fact that the majority population influences the user’s opinion, and to some ex-
tent, demonstrates the process of user opinion evolution [161]. In the short term, the signed social
vectors will increase the spreading speed by 20% to 40% [115]. Unlike influence maximization, if
the initial infected users are randomly selected, the volume of infection will become smaller as the
opinions evolve [136]. Non-progressive models are essential to the research of opinion evolution,
and have broad prospects.

3.2.3 ML-based (Individual) Models. Comparedwith ML-basedmodels introduced in Section 3.1.3,
models in this section aim at predicting which user will be infected.
Assumption: Similar to models in Section 3.1.3, ML-based (individual) ones relax almost all

unrealistic assumptions. Nevertheless, their performance depends on whether the algorithm can
effectively learn the propagation characteristics.
Methods: Generally, modeling techniques can be roughly divided into two groups: feature-

based and deep learning. For feature-based models, besides the native machine learning algo-
rithms introduced in Section 3.1.3, the collaborative filtering techniques in the recommendation
system can also be used to predict individual adoption, such as matrix factorization [32, 78, 83, 121,
122], tensor decomposition [67, 68, 84], and transfer learning [85]. In essence, these models try to
find out the retweet matrix ' based on user matrix* and message matrix + where

' ≈ *)+

Tensor ',* , and + are learned from historical interaction records.
Similar to deep learning (volume) models in Section 3.1.3, the framework of deep learning

(individual) ones consists of four major components: embedding data as vectors, using neural
network models to learn diffusion features, aggregating features, and prediction, Generally, the
differences between these two types of models are summarized as follows. First, volume models
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Table 8. Summary of Deep Learning (Individual) Models

Scopes Key Components Contributions Articles

Content &
User-related

UA-CNN
(CNN + Attention
+ Similar Matrix)

CNN: Embed tweet contents
Attention: Embed user interest
Similar Matrix: Compute the probability of
user retweet

CIKM 2016 [225]

Structural
& Temporal

Topo-LSTM
(Embedding
+ Topo-LSTM

+ Mean Pooling)

Embedding: Embed static preference and
dynamic context of sender in cascade graph
Topo-LSTM: Learn activation relationships
among senders and receivers.
Mean Pooling: Fuse multiple senders

ICDM 2017 [188]

DeepDiffuse
(CAN + CPN)

CAN: Embed cascades through the
combination of LSTM, Attention and other
components
CPN: Predict the next active user and its
activation time through LSTM, FFN,
and Softmax

ICDM 2018 [76]

DeepInf
(Embedding +
GCN + GAT)

Embedding: Embed users (include social
influence locality [222])
GCN/GAT: Embed social network structure

KDD 2018 [148]

DMT-LIC
(GAT + Bi-LSTM
+ Shared-Gate)

GAT + Bi-LSTM: Embed cascades graph from
cascade-level (structural) and user-level
(sequential), respectively
Shared-Gate: Fuse user importance, sequential,
and structural features

SIGIR 2019 [23]

FOREST
(GCN + GRU + RL)

GCN: Embed structural context
GRU: Model sequential cascades data
RL: Guide user-level prediction by predicted
cascade size

IJCAI 2019 [208]

CoupledGNN
(State GNN +
Influence GNN)

State GNN: Model the user activation state
Influence GNN: Model the interaction
between users

WSDM 2020 [18]

NDM
(Embedding +

Attention + CNN)

Embedding: Embed users
Attention: Learn the activation relationships
among active users
CNN: Capture the decay effect of users
activated at different positions

TKDE 2021 [207]

Temporal
& Content &
User-related

MMVED
(MLP + LSTM)

MLP: Encode multi-modal information for
variational inference
LSTM: Encode and decode sequential cascades

WWW 2020 [203]

Structural
& Content &
User-related

DiffNet
(Embedding + MLP
+ Influence Diffusion

Layer)

Embedding: Embed users and items
MLP: Fuse associated features
Influence Diffusion Layer: Embed user
influence by diffusion process

SIGIR 2019 [200]

Inf-VAE
(VAE +

Positional Encoding +
Co-attentive Fusion)

VAE: Model social homophily
Positional Encoding: Model temporal influence
Co-attentive Fusion: Fuse the above two
features to generate future cascade

WSDM 2020 [153]
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use MLP to predict the diffusion volume � (C), while individual ones mostly use the Softmax clas-
sifier to get the activation probability of each user UDE (C). Second, these models must be able to
learn individual-level features, while volume ones do not need to meet this requirement. Even if
user-related features are required, only the content publishers are needed [193, 226].
For content and user-related features, Zhang et al. [225] integrated attention mechanism and

CNN to learn relationships among user interests and content, and utilized the similarity matrix to
infer future forwarding users. Xie et al. [203] employed MLP as VAE (Variational Auto Encoder)
[201] to generate the hidden representations of multi-modal information, and taken cascade se-
quence and social information hidden representations as input into LSTM [69] to predict the future
active users. Wu et al. [200] devised a layer-wise model to track user latent embeddings evolving
as the social diffusion process continues, and predicted user adoption probability with the fusion
of users and items features. Sankar et al. [153] modeled users’ social homophily and temporal fea-
tures by VAE and Positional Encoding [181], respectively. And then, they developed a co-attentive
fusion mechanism to fuse the above two types of features.
For structural and temporal features, roadmaps can be roughly classified as follows: NodeEm-

bedding+RNN, GNN+RNN, NodeEmbedding+GNN, and others. For NodeEmbedding+RNN

models, they aim to make forwarding prediction directly through the encoding and decoding of
the cascade graph through the Encoder-Decoder architecture. Wang et al. [188] proposed Topo-
LSTM, which takes node embedding and cascade graphs as input to learn cascade structural and
temporal features. GNN+RNNmodels extract the structural features of cascade graph or network
topology through the GNN model, and then learn the sequential features through the RNN model.
Chen et al. [23] embedded cascade graph (structural) and user-level sequential (temporal) features
via GAT (Graph Attention Networks) [182] and Bi-directional LSTM, respectively. The shared-gate
mechanism is developed to fuse user importance, cascade-level, and user-level features. Yang et al.
[208] introduced reinforcement learning, guiding individual prediction through the macro volume
prediction. ForNodeEmbedding+GNNmodels, they predict future forwarding through user rele-
vance. Qiu et al. [148] modeled the strengths of neighbor relationships via social influence locality
[222]. After that, GCN [95] and GAT [182] are employed to learn network structural features for
user relevance extraction. In this article, temporal features are implicitly encoded in the social
influence locality. Cao et al. [18] devised StateGNN and InfluenceGNN to model user states and
activation influence, respectively. In this way, through the graph neural network propagation and
aggregation mechanism, the interplay of the two graphs is realized to "simulate" the information
propagation, and temporal features can be captured through iterative interaction. Besides, Yang
et al. [207] utilized the attention mechanism [181] to learn user activation relationships, coupling
the CNN to capture the decay effect of active users.
Pros and Cons: Similar to the advantages and disadvantages of volume ML-based models, indi-

vidual ML-based ones do not need to design complexmathematical expressions, while they require
computational expensive feature engineering or learning representation to extract features. Com-
pared with the volume models, the individual model needs more fine-grained features. Taking
user-related features as an example, volume models only need publisher features [193, 226], while
individual models require features of all potential retweet users. Besides, their model performance
is highly dependent on the quality and quantity of features. The model’s prediction performance
with whole-structure (friendship networks and cascade structure) input [148, 208] is an order of
magnitude higher than that of the model with partial structure (cascade structure) input [153, 207].

3.2.4 Analysis and Discussion. The summary of individual adoption models is shown in Table 9.
There are four main characteristics of progressive and non-progressive models. First, both rely on
social topology as they all assume that information is spreading on social networks via social links.
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Table 9. Summary of Individual Adoption Models

Assumptions
Monotonicity &
Submodularity

Explicit

Expressions
Key Factors

Time-series
Progressive ( → �

√ √
Model rationality

& Network topologyNon-progressive ( → � → ( -
√

ML-based
Classification - - -

Features extracted
from datasets

Second, progressive models assume infected users remain stable once they were infected without
any regrets. On the contrary, any user may shift his grounds multiple times based on his payoffs
in non-progressive models. Third, in each activation iteration of progressive models, only those
inactive can be selected as a newly active user, whereas every user should be considered under non-
progressive models. Finally, non-progressive models’ monotonicity and submodularity are broken
because of their re-adoption mechanism. Although the time complexity of non-progressive models
is higher, they are more in line with real-world diffusion scenarios, capturing opinion evolution
dynamics.
In terms ofML-basedmodels, their advantages and disadvantages are similar to those illustrated

in Section 3.1.

3.3 Relationship Inference Models

Generally, researchers can infer the user-to-user propagation relationship by likelihoodmaximiza-
tion (Time-series) and diffusion embedding approaches (Data-driven). Representative works are
introduced as follows.

3.3.1 Likelihood Maximization Models. These models devise likelihood functions to infer propa-
gation relationships among users based on their interaction history of cascades.

Table 10. Summary of Likelihood Maximization

Types Articles Approaches Explanations

Discrete
Time

[53, 55, 63, 206]

! (A; C) =
∏

2∈C
% ()A44;2)

=

∏

2∈C

∏

(8,9 )∈)A44
%2 (8, 9)

% ()A44;2) : The probability that the diffusion
trajectory of the cascade 2 is a tree pattern)A44 .
?2 (8, 9) : The propagation probability between
the user 8 and 9 .

Continuous
Time

[52, 54, 132]
[189, 190]

! (A; C) =
∏

2∈C

∏

C2
8
≤)2

Γ
+
8 (t2 )

×
∏

2∈C

∏

C2
8
≤)2

Γ
−
8 (t2 )

t2 : The vector recording the time of cascade 2 .
) 2 : Last time tick of the observable cascade 2 .

Γ
+/−
8 : The probability that all active (inactive)
users was activated (not activated) before time) 2

Assumptions: To simplify the inference problem, researchers make two basic assumptions: 1)
a user gets infected only once, 2) all the infections are conditionally independent.
Methods:As shown in Table 10, these models craft likelihood functions based on the observable

cascades via discrete-time and continuous-time approaches, and maximize the likelihood function
to infer the underlying diffusion relationships.
NetInf [53] and MultiTree [55] adopt discrete-time approaches to infer the propagation rela-

tionship through submodular optimization. They both build a retweet tree for every cascade, and
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then select :-edges network based on these trees. The probability of observing cascade 2 propa-
gating in a particular tree structure )A44 can be written as:

% (2 |) A44) =
∏

(8,9 )∈)A44
?2 (8, 9) (7)

The propagation probability ?2 (D, E) can be computed by three well-known models: Exponential,
Power-law, and Rayleigh, with the time difference between user infection time Δ = C2D−C2E as param-
eters. After building retweet trees for each cascade, NetInf will find one most likely retweet
tree and select : optimal edges from the tree as the diffusion network. However, if the
number of observable cascades is small, we may not find the appropriate retweet tree. Therefore,
MultiTree selects : optimal edges from all possible retweet trees. Xu et al. [206] regards
network structure as a simple log-linear, edge-factored directed spanning tree. After that, an unsu-
pervised, contrastive training procedure is utilized to infer the network structure. Han et al. [63]
devised amutual-information-based score criterion to find the propagation relationships, inferring
the most probable diffusion network.
CONNIE (ConvexNetwork Inference) [132] andNetRate [52] adopt continuous-time approaches,

and convert the network inference problem to convex optimization problem. They all build a two-
part likelihood function based on cascade records with the help of Survival theory. To expose the
complicated concepts, we summarize the skeleton of continuous-time relationship inference mod-
els in Algorithm 5. First, for every infected user E who was infected at time C2E , they compute the
probability that at least one previously infected user has infected him. Second, they compute the
probability that none of the infected users activated him for every uninfected user. After that, net-
work structure matrix A can be inferred by maximizing the likelihood function. NetRate utilizes
survival theory to build the likelihood function and only considers infected users. As a result, Ne-
tRate models diffusion as a spatially discrete network of continuous, conditionally independent
temporal processes.
Compared with NetInf and MultiTree, CONNIE and NetRate can infer the link strength in ad-

dition to the existence of link. However, the above four models can merely infer static network
structures, and only the time factors are considered. Corresponding to the above problems, there
are some improvement solutions based on NetRate, including InfoPath [54], MoNet [189], MMRate
[190]. InfoPath makes transmission rate ?D,E varying over time, and introduces cascades weights
F2 (C) based on the time interval to adjust by the cascade influences. These improvements make
InfoPath support dynamic network inference problems. MoNet integrates the additional fea-

tures f
(8)
D associated with each user into NetRate. For feature f(8)D , if usersD1,D2,D3 join the cascade

at time C1, C2 and C3, and C1 < C2 < C3, then the Eq. 8 is satisfied.

| |CD3 − CD2 | | + | |fD3 − fD2 | | > | |CD3 − CD1 | | + | |fD3 − fD1 | | (8)

MMRate [190] focuses on the information diffusion in multi-aspects(e.g., topics). User links
have different strengths under different topics due to the variety of users’ interests [176]. Hence,
the transmission rate ?D,E and network topology�; should be different under different topics.
Pros and Cons:MultiTree [55] and NetInf [53] only care about the existence of the propagation

relationship, and the edge number : is determined by experience. Compared with them, CONNIE
[132] and NetRate [52] infer the existence and strength of link. Specifically, they do not need to
set the number of edges. If ?DE → 0 is satisfied, it implies that there is no propagation relationship
between userD and E . But in terms of running time, MultiTree and NetInf are almost orders of mag-
nitude faster than NetRate and CONNIE [55]. Subsequently, the stochastic-gradient optimization
speeds up almost 10-100 times of continuous-time approaches [54]. Besides, the introduction of
individual characteristics will double the prediction performance [189]. Significantly, the greater
the propagation probability between users, the higher the inference accuracy [63]. However, these
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Algorithm 5: Basic Ideas of Continuous Time Models

Input: C = {21, . . . , 2" }: Cascade set; 2= =
{

(D=
1
, C=
1
); (D=

2
, C<
2
); . . . ;

}

: The n-th cascade ;)= :
Observable last time of the n-th cascade

Output: A = {U8, 9 }: Matrix of transmission likelihood
1 5 (C=9 |C=8 , U8, 9 ) ⇐ Devise conditional likelihood of transmission between the user 8 and 9 in

the n-th cascade;
2 ( (C=9 |C=8 ;U8, 9 ) = 1 − � (C=9 |C=8 ;U8, 9 ) // Survival function: the probability that user 9 is not

activated by user 9 by time C 9 in the n-th cascade;

3 � (C=9 |C=8 ;U8, 9 ) =
5 (C=9 |C=8 ,U8,9 )
( (C=9 |C=8 ;U8,9 )

// Harzard function: instantaneous activate rate from the user 8

to user 9 in the n-th cascade ;
4 5 (t=;A) = ∏

C=9 ≤)=
∏

C=<>)= ( ()= |C=9 ;U 9,<) ×
∏

::C=
:
<C=9

( (C=9 |C=: ;U:,9 )
∑

8:C=8 <C
=
9
� (C=9 |C=8 ;U8, 9 ) //

Likelihood of the n-th cascade;
5 minimizeA −

∑

2∈C 5 (t2 ;A) // Likelihood of cascade set
6 for 2 in C do
7 forall (i,j):C28 < C29 do

8 Update U8, 9
9 end

10 end

Table 11. Summary of Diffusion Embedding Models

Types Articles Approaches Explanations

Probabilistic
Inference

[16, 238] %2D,E = 5
2 (ID , IE)

%2D,E : The possibility that the user E forward
the message 2 published by the user D, and
the function 5 2 (·) can be learned from data.
ID : The embedding of the user D.

Space
Geometry

[15, 47, 167] ID +F2 ≈ IE
ID : The embedding of the user D.
F2 : The embedding of the message 2 .

models rely on assumptions of independent and sole activation. Whether these assumptions are
reasonable still needs to be verified.

3.3.2 Diffusion Embedding Models. The design philosophy of diffusion embedding models is to
map the users and the observable information diffusion records into a unified and continuous
semantic space. After that, space geometry knowledge is applicable to infer propagation relation-
ships.
Assumptions: Similar to the above ML-based models, diffusion embedding ones relax almost

all unrealistic assumptions. Furthermore, their performance heavily depends on the quality of data
and feature representation.
Methods: Existing diffusion embedding models can be classified into either probabilistic in-

ference and vector operation models. For probabilistic inference models, they embed users
into a unified semantic space, and the propagation probability of every user pair (D, E) is computed
by non-linear function 5 (ID , IE). After that, the Independent Cascademodel simulates the diffusion
process, and propagation relationships can be inferred via likelihood maximization. Bourigault et
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al. [16] projected users into a continuous latent (euclidean) space, and used the Sigmoid function to
calculate propagation probabilities. Finally, EM (Expectation-Maximization) algorithm is applied
to infer the propagation relationship. Zhuo et al. [238] embedded uses via GAN (Generative Ad-
versarial Nets) [56], avoiding complicated sampling with the help of generative-discrimination
architecture.
For space geometrymodels, they embed users as well as messages into unified semantic space,

and infer propagation relationships based on geometrical vector operations. Bourigault et al. [15]
projected users into a geometric manifold space where the source user is at the center of space,
and other users are arranged in space according to their propagation relationships. Denoting em-
bedding vectors’ location of sender, receiver, and information as ID , IE and F2 , the propagation
relationship can be inferred based on the heat diffusion kernel

5 (ID ,F2 , IE, C) = (4cC)
=
2 4−

| |ID+F2−IE | |2
4C

. where= is dimension. Gao et al. [47] introduced TransE [14] approach, which allows the inference
can be achieved directly through vector operations as follows, omitting the design of diffusion
kernel.

52 (ID , IE) = | |W2,DzD +w2 −W2,EzE | |;−=>A<
where the information-specific matricesW2,D ∈ R:×: identify the correlation between user D and
information content 2 . Su et al. [167] embedded contents and users into heterogeneous informa-
tion networks, and proposed the meta-path-similarity-based HWalk method to infer the diffusion
network. The propagation probability between two nodes can be computed by the softmax func-
tion:

? (D, E) = 5 (ID , IE)
∑

9 ∈�AD 5 (ID , I 9 )

where the 5 (ID , IE) is the path similarity measurement, and �AD is node type.
Pros andCons:Comparedwith probabilistic models, vector operation ones are easier to do end-

to-end training. And theymake better use of the semantic-related features by embedding users and
information into a unified space. However, similar to the ML-based models introduced before, the
performance of diffusion embedding models relies on the data quantity and quality. Notably, the
model performance decreases with the increment of content variance. According to the synthetic
experiments, as the words of content increased from 5 to 50, model performance decreased by
nearly 60%. Moreover, this phenomenon cannot be solved simply by increasing the number of
dimensions. Many researchers [15, 238] have confirmed that blindly increasing the dimensionality
may cause performance degradation due to overfitting.

3.3.3 Analysis and Discussion. Diffusion embedding models excellently integrate semantics of
users and information. They can automatically determine the relevance of users and information.
Compared with those time-series models that can only infer the past information propagation
trajectory, diffusion embedding models can predict future propagation relationships because they
mine relationships between users and information semantics. However, the network topology fac-
tors have not been introduced into diffusion embedding models. It should be noted that cascade
records inputted into diffusion embedding models must include sender and receiver because the
diffusion embedding models need to arrange the users’ location in the latent semantic space based
on these observable forwarding relationships. In contrast, likelihood maximization models only
need receivers. The summary of relationship inference models is shown in Table 12. The more
data the model needs, the stronger the model’s inference capacity is.
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Table 12. Summary of Propagation Relationship Inference

Models
Input Support Inference

Time
User

Attribute
Information
Content

Transmission
Relationship

Transmission
Rate

Dynamic
Transmission

Rate

Content-aware
Transmission

Rate

NetInf [53] X X

MultiTree [55] X X

CONNIE [132] X X X

NetRate [52] X X X

InfoPath [54] X X X X

MoNet [189] X X X X

MMRate [190] X X X X X X

DSTs [206] X X X X

CSDK [15] X X X X X

ECM [16] X X X X X

IDEP [47] X X X X X

DiffusionGAN [238] X X X X X X

HUGE [238] X X X X X

4 SCENARIO-SPECIFIED DIFFUSION MODELING AND DOWNSTREAM

APPLICATIONS

As shown in Fig. 5, in this section, we will discuss diffusion modeling in some specific scenarios,
and downstream applications based on those universal diffusion models (i.e., they are not highly

relevant to diffusion scenarios.) introduced in Section 3.
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Fig. 5. Specific diffusion scenarios and downstream applications based on these diffusion models.

4.1 Diffusion Modeling in Specified Scenarios

4.1.1 Hetergeneous/Multiplex Networks. In the real world, users have diverse social relationships,
and they form multiplex/heterogeneous social networks. For example, users can have Twitter and
Facebook accounts, which means that the user is in two relatively isolated social circles at the
same time. As shown in Fig. 2(a), there are intersections among different network layers, and
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information can be propagated across various networks via these intersections. Obviously, the in-
formation spread on different networks affects each other. When studying heterogeneous network
information diffusion modeling, researchers usually assume that the network �ℎ4C4A is composed
of !-layer networks�; with same nodes but different edges, denoted by�ℎ4C4A = {�1,�2, . . . ,�!},
�; = (+ , �; ). �; denotes the edges in the ;-th layer of the network. The diffusion process consists
of intra-layer diffusion and inter-layer diffusion.
Universal models can be adapted in the following three manners to capture the diffusion dynam-

ics in heterogeneous networks. One approach is the extended cascade. If the user E is infected
at 8-th layer, he will try to infect his corresponding position in other networks with probability
W . In this way, a user remains susceptible unless he is not infected in all layers. Li et al. [114]
described the intra-layer and inter-layer diffusion processes by bond percolation and cascading
failure. And they proved that the inter-layer interactions could speed up the information diffusion
process. Wang et al. [194] introduced the interplayer recovery mechanism, which allows users to
be infected and recovered across layers. Experiments on synthetic networks show that the inter-
player recovery mechanism can promote the diffusion process, and the optimal recovery rate can
be calculated by deriving the diffusion equations. Zheng et al. [229] defined states for each layer of
the user. The user’s states at eachmoment can be expressed as a combination of all layer states, and
a global transmission tree can be constructed according to combined user states. However, if there
are too many layers, it will cause a state explosion. Sahneh et al. [151] employed first-order mean-
field approximation to reduce state space from exponential to polynomial. Li et al. [113] studied
the diffusion of semantic-related information in multiplex networks. They added an “acceleration”
factor U to indicate the competition or cooperation relationship among different information. It
is shown that if two pieces of information are competitive, they will hinder each other during
their diffusion process, and vice versa. Another approach is extended threshold. Zhang et at.

[224] assigned the activation threshold \D for each user D. The user’s activation impact on each
network will accumulate, and will be activated if the threshold is exceeded. A third approach is
coupling. Nicosia et al. [140] established connections among different layer diffusion processes
through parameters correspondence. Specifically, the changes of user states in the 8-th layer will
lead to adjustments of activation function parameters in other layers. This mechanism can induce
some collective phenomena such as spontaneous explosive synchronization and heterogeneous
distribution of allocations.

4.1.2 Privacy Constraints. In addition to structural characteristics, privacy settings also affect user
diffusion capability. Generally, without forwarding, messages posted by Whatsup/Wechat users
can only be browsed by their friends, while messages posted by Twitter users are accessible for
almost everyone. Moreover, they can also control some other users’ access by configuring privacy
settings [71].
The main idea of existing privacy-aware diffusion models is to classify different users accord-

ing to privacy settings, and define corresponding state transition rules. Zhu et al. [233] separately
defined the privacy policy of users and connections. They divide user privacy levels into three
categories: public, private, and rigorous, representing access rights for everyone, only friends, and
only themselves. And there are three types of relationships: bi-directional, semi-directional, and
non-neighbor. Based on these assumptions, they proposed DMPS, an extended SI model. The key
to DMPS is that users can choose to propagate information publicly or privately. Simulation results
show that the privacy settings slow down the diffusion speed. Livio et al. [11] divides users into
multiple different privacy classes, and the probability that a user E belongs to level 9 is denoted as
V 9 ∈ [0, 1]. V 9 can be understood as the possibility for the user to participate in the diffusion pro-
cess. In other words, it scales back the propagation capability in a privacy protection environment.
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Besides, George et al. [50] proposed a distributed algorithm, RIPOSTE, which achieves the social
property of plausible deniability. It can infer information popularity and user attitudes through
parameterized methods.

4.1.3 False Information Diffusion. False information refers to texts, images, and other contents
that are meant to manipulate people in society, such as rumors, false news, hoax, and so on [129].
Their diffusion dynamics is a well-studied researched area, including diffusion dynamic analysis,
diffusion modeling, containment, source identification, and detection. In this scenario, infected users
can become recovery during the interaction with other users [33]. For example, when two false
information spreaders meet, they may lose interest in spreading the rumor any further, or stop
spreading if fact-checkers debunk them.
Many researchers have comprehensively analyzed the characteristics of false information dif-

fusion, such as user behavior, network structure, and steady-state analysis. Vosoughi et al. [184]
found that fake news is more attractive due to its novelty, which leads to more forwarding. Even
worse, false information can guide public perceptions [160, 166]. Wang et al. [196] found that the
trust mechanism reduces the maximum rumor influence and its diffusion speed. Jie et al. [86] de-
picted the relationship of promotion, suppression, and independence among multiple rumors by
defining interaction factors. Yang et al. [232] discovered that the density of final infected users is
related to the network topology, and random networks have higher infection densities than scale-
free networks. In addition, researchers studied false information diffusion in many other specific
situations, such as time-varying networks [81], delay [236], behavior uncertainty [235], noise in-
terference [234], message evaluation [159].
Generally, the mainstream approaches of diffusion modeling are first to define the states and

transition rules, and then adopt analytical or simulationmethods to capture false information
diffusion dynamics. Similar to Epidemic models, states and transition rules are intend to de-
scribe the users behavior patterns in rumor diffusion, for example, SIS (Susceptible - Infected - Sus-
ceptible) [142], SIR (Susceptible - Infected - Recovered) [127], SEIR (Susceptible-Exposed-Infected-
Removed) [72], SHIR (Susceptible - Infected - Hibernator - Removed) [227].Analytical approaches
are primarily mean-field difference/differential-based approaches, deriving equations to describe
the proportion changes of different classes. Simulation approaches design progressive or non-
progressive models according to the transition rules, conducting simulations of diffusion process
based on the network topology.
Containment of false information can be addressed by network obstruction or counterbalance.

Network obstruction block critical social accounts, and counterbalances locate fact-checkers (i.e.,
they verify the correctness of information) or deliver correct information at critical locations
[139, 179]. Obviously, counterbalances are more moderate and effective [213]. Tambuscio et al.

[174] discovered that the effectiveness of fact-checkers depends on the gullibility and forgetting
probability. Further, in case of a low forgetting rate, network segregation canmakemisinformation
speed faster. Otherwise, the effect is not apparent. However, in some cases, such as urban legends,
the fact-checker mechanism does not seem to be effective [173]. Young et al. [218] verified video
is more effective in rectifying public misperceptions. Nekmat et al. [137] thought that skeleton of
mainstream media and fact-checking will promote the diffusion of non-mainstream media.
Source identification refers to inferring the source of rumors based on the results of rumors

diffusion. It is a downstream application based on diffusion models, which will be discussed in
Section 4.2.3. Current detection mainly adopts machine learning or NLP approaches, which are
beyond the scope of this article. Readers can refer to this literature [129, 239].

4.1.4 Impact of Lurkers on the Information Diffusion. As shown in Fig. 2(a), the user’s interac-
tive behaviors promote information diffusion. However, 90% of social network users are lurkers,
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who only browse or reshare contents posted by others and do not contribute to the community
[26]. Researchers have conducted research in various fields, including lurker behaviors analysis,
ranking of lurkers, and delurking.
For lurkerbehaviors analysis, most researchers aim to study the impact of lurker behaviors on

information diffusion. Tagarelli et al. [171, 172] systematically analyzed the interactive behaviors of
lurkers. They found that the temporal trends of lurkers’ time-consuming actions present sharper
shifts and more noisy clusters. And the average response period of lurkers seems to be at least
twice that of active ones. Taking lurkers’ behaviors into consideration, Fu et al. [44] proposed
SEAIR (Susceptible - Lurker - Super - Normal - Recovered) model to capture diffusion dynamics
of super spreaders and lurkers.
Ranking of lurkersmethods are used tomining silent members in social networks. The topology-

based analysis is an important method, which identifies lurkers based on the structural character-
istics of users, such as the ratio of in/out-degrees [170]. Subsequently, they proposed varieties of
ranking approaches, including time-aware ranking [171], learning-to-rank [145], and multiplex
network ranking [144].
Delurkingmethods aim to engage lurkers in contributing via information propagation, which

can be considered as the particular case of targeted influence maximization [73, 74]. Further, many
researchers have explored some factors that affect the interactive behavior of lurkers, such as the
structure of product-review network [26], and argument quality [2]. These factors are critical to
discovering potential users in marketing.

4.2 Downstream Applications

4.2.1 Popularity Prediction. Popularity prediction is of practical significance in many areas. For
example, the government can analyze the popularity of some sensitive information (e.g., rumors,
terrorism information), and predict whether there will be an outbreak or extinction. As shown in
Figure. 5, difference/differential-based, stochastic-process-based, and ML-based (Diffusion Volume
and Individual Adoption) models are commonly used in popularity prediction. As these models are
either diffusion volumemodels or data-driven individual adoptionmodels, sophisticated individual
interaction behaviors can be ignored. In addition, thesemodels are easier to exhibit some principles
of the diffusion process, such as K-SC [212], steady rates of change and interrupted by sudden
bursts [133].
If the other models are to be applied to predict popularity, there are many complicated problems.

First, there is plenty of information diffusing in social networks, and the interrelation among these
pieces of information should not be ignored. Second, accurate prediction requires a precise under-
standing of the user’s re-sharing mechanisms (including user’s cognition, herd behavior), which
is a challenge of all time. Third, with the enhancement of privacy protection, it is difficult to ob-
tain a complete network topology, and we also need to consider the network evolution during
the information diffusion process. Finally, we do not know how the external influence (from other
platforms) affects the information diffusion on the observed platform. It means that the diffusion
is almost restricted to the closed-world, far from the real world.

4.2.2 Influence Maximization. Given a social network topology � (+ , �) and the diffusion model
M,  users are selected from the user set + as the seed set I(C), which maximize the expected
number of active users at the end of the diffusion process. IM has been a research hotspot since
it was proposed because of its wide range of applications, such as marketing and public opinion
control.
Currently, solutions to the IM problem are primarily based on the greedy algorithm, as shown in

Algorithm 6. The total round number is , and in i-th round, the most influential inactive userD∗ is
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moved to the seed set. Obviously, the accuracy and efficiency of the influence function, f (·), is the
deterministic factor of the algorithm’s efficiency. Existing IM algorithmsmainly rely on time-series
individual adoption models, more precisely, progressive models. Compared to the non-progressive
models, their monotonicity and submodularity make them more efficient. However, f (·) costs a
lot of resources. Kempe [88] proved that f (·) based on IC/LT is #P-hard, and IM algorithms based
on IC/LT are NP-hard. The computing complexity will be higher if other individual-level models
are adopted. Readers can refer to relevant literature [116] for further understanding.

Algorithm 6: Greedy( ,f)[116]

Input:  : The number of seed users; f (·):Influence Function; + : User set
Output: I(0): Seed Set

1 I(0) ← ⊘;
2 8 = 0;
3 while 8 <  do

4 D∗ ← argmaxD∈+ \I (0) (f (I(0) ∪ {D}) − f (I(0)));
5 I(0) ← I(0) ∪ {D∗};
6 8 = 8 + 1;
7 end

4.2.3 Source Identification. Source identification tasks attempt to locate the origin of the informa-
tion. It is different from the IP traceability in computer networks, which usually only identifies one
of the many propagation participants. Moreover, it does not mean that the found one is the actual
origin of the information. Source identification has very vital practical significance, especially for
rumor source identification.
Similar to IM, source identification techniques also rely on time-series individual adoption mod-

els. The solution consists of two steps. First, it measures user influence using time-series individual
adoption models. Next, it finds the most appropriate users according to the metrics, such as Jordan
centrality [62], and Eigenvector centrality [13]. Deterministic factors of source identification are
similar to influence maximization ones. Many researchers have done detailed investigations in this
field [82, 129], and we will not discuss them in details due to space constraints.

4.2.4 Network Inference. Network inference tasks aim at inferring the propagation relationships
in social networks. In addition, they can also be used to complete the network structure. Re-
searchers often assume that information flows through edges between users in a social network.
However, it is almost impossible to obtain a complete network topology due to privacy protection
and network evolution. Relationship inference models can be used in network inference, and we
summarize them in Table 12.
Since other models are “many-to-many” activation relationships, they can hardly be used di-

rectly to infer diffusion networks. Diffusion volume models do not involve individual interactions,
so that they are not suitable for inferring diffusion networks. Individual adoption models can only
determine the propagation relationship among I(C) and I(C + 1). For example, in terms of the
IC model, we can only know that an active user is activated by at least one of his neighbors, but
cannot figure out a particular neighbor user. Regarding the LTmodel, the propagation relationship
is related to the input order. For instance, given user E with an activation threshold \E = 0.5, if the
threshold accumulated until time C is 0.4, the activation contributions of the two newly activated
neighbors D1 and D2 are 0.1 respectively. Therefore, it is impossible to determine whether D1 or D2
is the actual activator.
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Fig. 6. Open issues and challenges.

4.2.5 Social Recommendation. Social recommendation, or personalized recommendation, intends
to recommend items that users may interest in based on their interaction records. Consequently,
data-driven models are applicable for the social recommendations. Generally, filtering-based and
deep-learning-based are primary approaches used in social recommendation. Filtering-based ap-
proaches encode the social context (e.g., user-item interaction records, item attributes, and user
attributes) into matrices. And then, they recommend items through filtering algorithms, such as
matrix factorization or similarity calculation. Deep-learning-based approaches generate the recom-
mendation results through the end-to-end classifier [92]. There is enormous commercial potential
in this area, and these models are comprehensively reviewed in literature [35, 92, 177].

5 CHALLENGES AND OPEN ISSUES

In this section, challenges and open issues of diffusion modeling techniques are discussed corre-
sponding to the methodology in Section 2.2. Fig. 6 is an overview of chanlleges and open issues.
1) Data Collection & Processing

Challenge :The activity of data collection faces restrictions. Recently, crimes of user privacy (e.g.,
fraud, harassment, and personal information selling) make people and enterprises attach great
concern over privacy protection. The enhancement of privacy protection is a gospel for ordinary
users. However, it offers challenges for researchers. For example, the announcement of Twitter
[197] says that it is not allowed to redistribute or syndicate Twitter datasets if they contain tweets.
Facebook prevents access to the ID of users participating in public forums [154]. Although not
many companies have performed relevant policies, it may block some researchers who lack data
with the enhancement of privacy protection policy.

Solution: Researchers can choose datasets from similar platforms to substitute, or crawl by
themselves following platform policies.
2) Diffusion Mechanism Analysis

Challenge: How information affects user behavior remains unclear. Different users will show
various behaviors when facing information. In early times, many classical models (e.g., SI [90], IC
[51], and LT[58]) think that all users are homogeneous, which means that the effect of information
on each user is indistinguishable. These assumptions are far from the real world. Subsequently, re-
searchers assigned social attributes to each user make users exhibit various responses to the same
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information. Social attributes can be topological (e.g., friendship hops [187],social connectivity
[66], and social role [215]) and user personal characteristics (e.g., user interests [67, 225], user
authority [123, 125], and user identity [118, 222, 223]). These personalized characteristics can be
encoded into vectors or numerical values for propagation prediction. However, for a particular
piece of information, how does it affect a user’s social behavior? How strong will it affect every-
one? How will a user modify the information? User’s social actions depend on the match of their
thinking and information semantics. These problems may require further study in combination
with human cognition.

Open Issue 1: How to analyze user adoption behavior in combination with human cognition?

3) Diffusion Modeling

Challenge: Information diffusion modeling is usually isolated. As shown in Fig. 2(a), user inter-
active behaviors are roughly divided into five parts in the information diffusion process, including
observable and invisible actions. Current diffusion models almost only focus on the fourth part,
information propagation, ignoring other behaviors. However, the information diffusion process is
a complex system, and multiple behaviors affect information diffusion together. For example, the
news is that a star was arrested for a crime, which may cause his fans to stop paying attention
to him. Second, the user re-share behavior may cause him to be more intimate (distant) with a
friend, or attract strangers to follow him. Researchers also have proven that information diffu-
sion will drive the network evolution [198]. Third, users may append their comments to the tweet
when forwarding it, which will shift the semantics of the original information. At present, some
researchers have published their work in this field, such as the Time-driven model [88] Corre-
lated Cascades [221], Co-Evolve [40], and DynaDiffuse [204]. However, these works seem only to
introduce topological evolution.
Open Issue 2: How to model the information diffusion process in a unified framework?

Challenge: Few data-driven models refer to time-series modeling experience. Time-series models
design a series of mathematical expressions for diffusion scenarios. These achievements include
user interaction status and transition rules [44, 72, 127], user behavior laws (e.g., delay [60, 152], dis-
tribution of user behaviors [219], opinion adoption [136]), the intensity of social event occurrence
[158, 228], periodicity [8, 97, 126], etc. The effectiveness of these mathematical models has been
verified in multiple scenarios. Some articles involve these mechanisms [17, 23, 24, 202]. Although
neural networks have strong approximation capabilities, we believe that introducing the knowl-
edge of time-series techniques can help model optimization, such as reducing the search space.
We believe that this knowledge can help improve the module architecture and the aggregation of
module outputs.
Open Issue 3: How to introduce prior knowledge in data-driven models?

4) Feature Extraction

Challenge: There are still many features that can be exploited to be discovered. For the moment,
hundreds of four types of features are used for diffusion prediction. However, there are still some
scopes that are not involved. First, current network structural features are mostly static features
(e.g., local features [222, 223], global features [18], and retweet graph [25]), but do not include
dynamic features such as network evolution. Second, user-related features are mainly focused
on individual-level features. However, with the in-depth research, researchers have discovered
that user behavior becomes gradually similar as the interaction process progresses [29]. These all
indicate that there are still many features that are worth being extracted. Representative features
enable diffusion models to have a better performance.
Open Issue 4: How to extract novel and representative diffusion features?

5) Evaluation
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Challenge: Evaluation metrics are imperfect. Generally, the evaluation of these models is from
both macroscopic and microscopic perspectives. Researchers use macroscopic metrics (e.g., RMSE,
MAE, and MAPE) to verify the correctness of the overall diffusion volume, and use microscopic
metrics (e.g., Precision, Recall, and F1-score) to evaluate the individual prediction accuracy. These
evaluation indicators are not comprehensive. For example, few people consider the length of the
propagation path. Qin et al. [147] discovered that the cascade depth predicted using IC models is
dozens of times greater than actual situations. From this survey, at least, stability (i.e.,multi rounds
experiments) and robustness (i.e., across multiple datasets) should be considered.
Open Issue 5: How to devise evaluation systems to cover all diffusion characteristics?

6 CONCLUSION

In this article, we presented a thorough review of information diffusion modeling. Firstly, we state
basic notions and the methodology of diffusion modeling. Secondly, we categorized representa-
tive diffusion models into three classes and analyzed them from three perspectives: assumptions,
methods, and pros and cons. Thirdly, some scenario-specified diffusion modeling and downstream
applications are summarized. Finally, conforming to modeling methodology, challenges and open
issues are discussed.
We think that diffusion mechanisms analysis and diffusion modeling deserve more attention.

Moreover, both time-series and data-driven models should be valued, and they should promote
each other to obtain better predictive capabilities. Besides, it is meaningful to develop more com-
prehensive evaluation metrics to measure the performance of diffusion models. With the explosion
of data resources and computing power, researchers should combine other disciplines such as NLP
and neural science to conduct in-depth researches on information diffusion modeling. Hopefully,
this survey can be used as a reference and guideline for future research.
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8 APPENDIX I

Table 13. Structural Features

Types Features Definations

Network =>34_346A44 Node degree [25, 37, 45, 101]
Network 6A0?ℎ_34=B8C~ Graph density [45, 101, 123, 125]
Network 4364_F486ℎC Edge weight [123, 125]
Network =D<_1A>03_DB4A The number of border users [45, 123, 125]
Network DB4A_2>==42C User connectivity (e.g., ratio between the number of con-

nected components and the number of nodes) [123, 125]
Network 2;DBC4A8=6 Network clustering [45, 67]
Network A428?A>28C~ Benefit and investment between users [45, 220]
Network =>34_0DCℎ Node authority [123]
Network CA80=6;4B Users form triangles [123, 185]
Cascade >A86_DB4A_BCAD2 Structural features of the original user (e.g., degree) [25,

37]
Cascade 40A;~_DB4A_BCAD2 Structural features of early adopters (e.g., degree) [25, 37]
Cascade 02C_2>==42C Connections between active users (i.e.,

{

(E8 , E 9 ) |(E8 , E 9 ) ∈ �, 0 < 8 < 9
}

) [25]
Cascade 34?Cℎ The depth of the retweet tree [25]
Cascade A4CF_?0Cℎ Retweet path of cascades [17]
Cascade =D<_ℎ>?B Number of hops in diffusion process [210]
Cascade 20B2034_6A0?ℎ Diffusion cascade graph [24, 188]
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Table 14. Temporal Features

Types Features Definations

Sequential 8=C_C8<4 Time ticks of social interactions [67, 84, 216]
Sequential 5 A4@D4=2~ Tweet frequency [168]
Sequential C8<4_8=C4AE0; Time elapsed between the 8-th and 9 -th reshare [25, 38,

45, 70]
Sequential 4G?_BCA4=6Cℎ Number of users who saw the tweet per unit time [25]
Sequential A4Bℎ0A4_BCA4=6Cℎ Number of users who reshare the tweet per unit time

[25, 123, 125]
Statiscical 2ℎ0=64_A0C8> Change ratio of forwarding number in consecutive time

windows [180]
Statiscical 02C_C8<4_38BC Distribution of active time [25, 70]
Statiscical C8<4_Bℎ0?4 Shape of time series [101]
Statiscical C8<4_3420~ Time decay effect [17, 216]
Statiscical C8<4_0AA8E4 Time taken for first : retweet to arrive [45]

Table 15. Content Features

Types Features Definations

Statistical ℎ0B_20?C8>= Whether the posted media with a caption [25, 37]
Statistical ;0=6D064 The language of the tweet [25]
Statistical >A8=_C~?4 The type of the origin post (e.g., web page) [25]
Statistical C4GC_2>D=C The length of the text or caption [25, 38, 180]
Statistical =D<ℎ0BℎC06 The count of hashtags [38, 78, 168]
Statistical =D<DA; The count of URLs [123, 125, 168]
Statistical A4CF44C_A0C8> The ratio of views and reposts of the tweets posted by

early reshare users [25, 37]
Statiscical =D<_<4=C8>= Number of specified users in the tweet [78, 123, 125, 168]
Semantic <4380_C>?82 The possibility that the posted video or image having a

specific topic [25, 37, 38]
Semantic 4<>C8>=_B4=C8<4=C Emotion or sentiment of the tweet [25, 101, 180]
Semantic C>?82_?>? Virality (popularity) of topic or tweet [68? ]
Semantic C>?82_38BC Topic distribution of tweet content [70]
Semantic C4GC_344?_5 40CDA4B Deep text features extracted by deep learning models

[38]
Semantic <4380_<D;_<>3 Multi media features extracted by deep learning models

[38, 203]
Semantic 2>=C4=C_B8< Content similarity [84, 225]
Semantic B4; 5 _38B2;>B Level of self-disclosure of tweet content [220]
Semantic ℎ0BℎC06_2>=C4=C Hashtag content [101, 123, 125, 180]
Semantic ;>20C8>= Location hashtag [180]
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Table 16. User-related Features

Types Features Definations

Static >A86_DB4A_0CCA Attributes of the original user (e.g., age, gender) [25]
Static 40A;~_DB4A_0CCA Attributes of early adopters (e.g., age, gender) [25, 37]
Static >A86_DB4A_5 >;;>F4A Users who follows the original user [25, 101, 180]
Static >A86_DB4A_5 >;;>F44 Users that the original user is following [25, 180]
Static DB4A_8=5 User influence (e.g., the number of fans, interest) [17]
Static DB4A_B8< User similarity [84, 216, 225]
Static DB4A_?A4 5 4A User preference [216]
Static DB4A_0DCℎ User authority [123]
Dynamic DB4A_BDB24? Susceptibility of users to be infected [68]
Dynamic >A86_DB4A_BC0CDB User social activity (i.e. tweets published by the user)

[101, 168]
Dynamic >A86_A4CF44C_A0C8> The ratio of views and reposts of the tweets posted by

the original user [25, 70, 102, 180]
Dynamic 40A;~_A4CF44C_A0C8> The ratio of views and reposts of the tweets posted by

early adopters [25, 37, 102]
Dynamic A4B?>=B8E4=4BB Responsiveness of the user to tweets [220]
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