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Abstract—It is of paramount importance to uncover influential
nodes to control diffusion phenomena in a network. In recent
works, there is a growing trend to investigate the role of the
community structure to solve this issue. Up to now, the vast
majority of the so-called community-aware centrality measures
rely on non-overlapping community structure. However, in many
real-world networks, such as social networks, the communities
overlap. In other words, a node can belong to multiple commu-
nities. To overcome this drawback, we propose and investigate
the “Overlapping Modularity Vitality” centrality measure. This
extension of “Modularity Vitality” quantifies the community
structure strength variation when removing a node. It allows
identifying a node as a hub or a bridge based on its contribution
to the overlapping modularity of a network. A comparative
analysis with its non-overlapping version using the Susceptible-
Infected-Recovered (SIR) epidemic diffusion model has been per-
formed on a set of six real-world networks. Overall, Overlapping
Modularity Vitality outperforms its alternative. These results
illustrate the importance of incorporating knowledge about the
overlapping community structure to identify influential nodes
effectively. Moreover, one can use multiple ranking strategies
as the two measures are signed. Results show that selecting the
nodes with the top positive or the top absolute centrality values
is more effective than choosing the ones with the maximum
negative values to spread the epidemic.

Index Terms—Complex Networks, Centrality, Overlapping
Community Structure, Influential Nodes, SIR model

I. INTRODUCTION

Amidst the decisiveness of curbing the spread of epidemics,
improving marketing and awareness campaigns, or maintain-
ing network connectivity, identifying influential nodes in the
dynamics of networks is a challenging issue. Centrality mea-
sures are one of the main approaches to rank nodes accord-
ing to their importance in the network. Classical centrality
measures rely on local or global information on the network
topology [1]. For example, Degree centrality measures the
number of links of a node. It relies only on the knowledge of

the node’s neighborhood. In contrast, Betweenness centrality
uses information of the whole network. Indeed, it measures
the frequency of a node lying in the shortest paths between
all other nodes. Generally, local measures are computationally
efficient but less accurate, while it is the opposite for global
measures. These two types of measures are also combined to
get the best of both worlds [2], [3].

The modular organization of real-world networks is one
of the essential topological features. They are formed with
modules of densely connected nodes that have rare connec-
tions with the other modules. Nonetheless, nodes can belong
to several modules. Indeed, many networks, such as social,
collaboration, biological, and infrastructural networks, are
characterized by an overlapping community structure [4]–
[7]. In these networks, the overlapping nodes may have
multiple functions. For example, a person may adhere to sev-
eral organizations. A scientist may conduct interdisciplinary
research with various scientific groups. A protein may have
several functions in different complexes. Also, an airport may
have internal and external flights. Indeed, an overlapping
community structure is frequent in many real-world situations.

Even though real-world networks are generally modular,
classical centrality measures discard this important feature.
Most of the centrality measures proposed in the literature
are agnostic about the community structure, such as Degree
centrality, Betweenness centrality, and k-core [8]–[11]. A new
emergent research area exploits the community structure to
identify influential nodes [12]–[19]. They quantify the local
and global influence of a node through its intra-community
links and inter-community links [20]. The former connects
nodes in the same community, while the latter connects
nodes in different communities. Nonetheless, these measures
consider that a node belongs to a unique community. For
example, Community-based Mediator [15] targets influential
nodes based on the entropy of their intra-community links
and inter-community links. There are no overlapping nodes.
Indeed, if a node is overlapping, its centrality measure needs
to be evaluated depending on its multiple communities. One
can build various strategies accordingly. Another example is
Comm Centrality [16]. It targets hubs and bridges simul-
taneously but gives more weight to bridges. Here too, a
node belongs to one and only one community. Few works
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have shown that incorporating information on the overlapping
community structure results in identifying influential nodes
more effectively [21]–[23].

A recent work investigates the behavior of a set of non-
overlapping community-aware centrality measures. Results
show that Modularity Vitality [12] outperforms its alter-
natives. This signed community-aware centrality measure
quantifies the modularity variation when one removes a node
in the network. It can pinpoint bridges or hubs depend-
ing on the ranking scheme. Indeed, eliminating hubs in
a community decreases modularity. In contrast, removing
bridges between communities increases the modularity. As
it has proved to be quite effective, we propose to extend
it to networks with an overlapping community structure.
The SIR infectious spreading model is used to evaluate the
performance of "Overlapping Modularity Vitality" compared
to its non-overlapping version. Simulations are performed
on six real-world networks originating from three domains:
infrastructural networks, collaboration networks, and online
social networks. Results demonstrate that Overlapping Mod-
ularity Vitality outperforms its non-overlapping counterpart.
Moreover, when considering the absolute value of both mea-
sures (i.e., targeting hubs and bridges simultaneously), the
difference in the performance of the two measures version is
even higher.

The paper is organized as follows. The non-overlapping
and overlapping versions of Modularity Vitality are given in
section II. The data and the tools used in the evaluation pro-
cess are presented in section III. In section IV, experimental
results are given. A discussion is developed in section V.
Finally, section VI concludes the article.

II. NON-OVERLAPPING AND OVERLAPPING MODULARITY
VITALITY

In this section, we present the definitions of non-
overlapping Modularity Vitality based on Newman’s modular-
ity and its overlapping version. First, suppose that G(V,E)
is an undirected and unweighted graph where V is the set
of nodes of size N = |V | and |E| is the total number of
edges. The connections between the nodes are described in
the graph’s adjacency matrix A. The graph G is partitioned
into C = {c1, c2, ..., ck, ...c|C|} communities where ck is k-th
community and |C| is the total number of communities. In
a network with a non-overlapping community structure, node
vi can belong to one and only one community. In a network
with an overlapping community structure, node vi can belong
to several communities. That being said, its strength of
belonging differs from one community to another. Hence,
each node vi is characterized by a belonging coefficient
vector (αvi,c1 , αvi,c2 , ..., αvi,ck , ..., αvi,c|C|) and assuming the
following conditions hold: 0 ≤ avi,ck ≤ 1;∀vi ∈ V ;∀ck ∈ C
and

∑
ck∈C

avi,ck = 1.

A. Non-overlapping Modularity Vitality

Modularity Vitality [12] is based on Newman’s modularity
[24]. A lot of community detection algorithms use this

property as an objective function [25]–[28]. It measures the
difference between the actual connections within a commu-
nity to the connections with wiring at random. The larger the
value of modularity, the stronger the community structure.
Hence, developing a community-aware centrality measure that
is directly related to the community structure strength is ideal.
Newman’s modularity is defined as follows:

Q(G) =
∑
ck∈C

[
|Ein

ck
|

|E|
−
(

2|Ein
ck
|+ |Eout

ck
|

2|E|

)2
]

(1)

where:

• |Ein
ck
| = 1

2

∑
vi,vj∈ck

Avi,vj , the intra-community edges of

ck
• |Eout

c | =
∑

vi∈ck

∑
vj∈C−ck

Avi,vj , the inter-community

edges of ck
Using the above definition of modularity, Modularity Vi-

tality can distinguish hubs from bridges based on their con-
tribution to the overall modularity of a network. Indeed, hubs
increase the modularity while bridges decrease it. It is defined
as follows:

αMV (vi) = Q(G)−Q(G \ {vi}) (2)

where:

• Q(G) is the network’s modularity based on Newman
• Q(G \ {vi}) is the network’s modularity based on New-

man after the removal of node vi
Since Modularity Vitality is signed, we can use three ranking
strategies. The first ranking strategy ranks nodes in decreasing
order from the highest positive to the lowest negative value.
This strategy targets hubs first. The second orders nodes from
negative to positive centrality values. Consequently, it targets
bridges first. Finally, nodes are ordered according to their
absolute centrality value. It allows targeting hubs and bridges
simultaneously based on their contribution to the network’s
overall modularity.

B. Overlapping Modularity Vitality

Several extensions to Newman’s modularity for overlap-
ping community structures have been proposed. One can
divide them into two groups: fuzzy modularity and non-
fuzzy modularity [29], [30]. In the former, a node belongs
to several communities based on a belonging coefficient. In
the latter, the relationship is binary. This paper uses a simple
fuzzy version of modularity to quantify the quality of the
overlapping community structure. It is defined as follows:

avi,ck =
1

Ovi

(3)

where Ovi is the number of communities shared by node
vi. In other words, if a node belongs to one community, its
belonging coefficient is 1. Node shared by two communities,
gets a belonging coefficient of 0.5 for each of the communi-
ties, and so on.



Based on the belonging coefficient vector for each node vi,
this information can be incorporated within |Ein

ck
| and |Eout

ck
|,

where:

|Ein
ck
| = 1

2

∑
vi,vj∈ck

avi,ck + avj ,ck
2

Avi,vj (4)

|Eout
ck
| =

∑
vi∈ck

∑
vj∈C−ck

avi,ck + (1− avj ,ck)

2
Avi,vj (5)

Hence, the main difference between the overlapping version
and the non-overlapping version is that the adjacency matrix
(Avi,vj ) contains the weights of the average of belonging
coefficients of the nodes. Indeed, it has been shown that
the definition of modularity holds for a non-binary adjacency
matrix [31]. The Overlapping Modularity Vitality is defined
as follows:

αOMV (vi) = Qo(G)−Qo(G \ {vi}) (6)

where:
• Qo(G) is the network’s overlapping modularity
• Qo(G \ {vi}) is the network’s overlapping modularity

after the removal of node vi
Similar to its non-overlapping version, Overlapping Modu-

larity Vitality is also signed. Consequently, we also consider
three ranking strategies as defined for its non-overlapping
counterpart.

III. DATA AND TOOLS

This section presents the real-world networks used, the
community detection algorithms, as well as the SIR evaluation
process, and the subsequent evaluation criterion to compare
the community-aware centrality measures.

A. Data

We perform a comparative evaluation on six real-world
networks originating from three domains: infrastructural, col-
laboration, and online social networks. Table I reports their
basic topological characteristics.

1) Infrastructural Networks: We consider two air trans-
portation networks, EU Airlines [32], and U.S. Airports [33].
In these networks, the nodes represent European and U.S.
airports, respectively. The nodes are connected if there’s a
direct flight between them.

2) Collaboration Networks: The AstroPh [34] network is
extracted from the e-print arXiv. Nodes represent authors who
have submitted their papers to the Astrophysics category.
The nodes are connected if two people have co-authored
a paper. In New Zealand Collaboration [32], the nodes are
scientific institutions in New Zealand such as universities and
organizations. If Scopus lists a minimum of one publication
with authors in any two institutions, the nodes are connected.

3) Online Social Networks: Hamsterster [33] is an online
social pet platform. Nodes represent users of the platform, and
connections represent online friendships. In the DNC Emails
[32], nodes represent members of the Democrat National

Committee. If the members have exchanged emails, they are
connected.

B. Community Detection Algorithms

As the network’s community structure is unknown, one
uses a community detection algorithm to uncover it. Infomap
[35] reveals non-overlapping communities while Speaker-
Listener Label Propagation Algorithm (SLPA) [36] unveils
overlapping communities. These influential algorithms have
proved their effectiveness in estimating the mesoscopic scale
[37]–[39].

1) Infomap: extracts a non-overlapping community struc-
ture by minimizing the description of a random walk. Densely
connected modules that are sparsely connected characterize
many real-world networks. Therefore, it is likely for a random
walker to stay longer within the modules than jumping from
one module to another. One uses Huffman coding with a
prefix code and a suffix code. The prefix code refers to the
module. The suffix code is assigned to a node within the
modules. The compression of the description of the random
walker unveils the community structure.

2) SLPA: extracts overlapping communities. It is inspired
by how humans acquire and spread opinions. As a start, each
node has a unique label. Then, each node acts as a listener
and selects one of the labels sent to it from its neighbors (i.e.,
speakers). The listener updates its memory based on the label
frequency it listens to. When all the nodes are visited, the
label frequency in their memory is converted to a probability
distribution. This distribution characterizes the membership
degree for each of the communities. The distribution of the
membership of each node is further processed to extract the
communities. A threshold r allows discarding the membership
to a specific community if it is below the threshold. In the
experiments, we set its value to 0.01.

C. Susceptible-Infected-Removed Model

One uses the epidemiological model Susceptible-Infected-
Recovered (SIR) [40] to assess the effectiveness of the
community-aware centrality measures. In this model, nodes
can be in either of these states: Susceptible (S), Infected (I),
or Recovered (R). Initially, all nodes are susceptible except
for a given proportion (fo) of the top nodes ranked according
to a specific centrality measure. These nodes are infected.
Each infected node can infect its susceptible neighbor with a
probability λ. Simultaneously, each infected node can recover
with a probability γ. The propagation proceeds until all nodes
are either recovered or still in the susceptible state. At this
point, one computes the outbreak size, which is the number of
nodes in the recovered state (R). This outbreak size dictates
the spreading effectiveness of a specific centrality measure for
each fo considered. Centrality measures aim to maximize this
value. In the experiments, 100 SIR simulations are performed
and averaged for each fraction of initially infected nodes (fo)
for the community-aware centrality measures under study.



TABLE I
BASIC TOPOLOGICAL PROPERTIES OF THE NETWORKS. N IS THE NUMBER OF NODES. |E| IS THE NUMBER OF EDGES. < k > IS THE AVERAGE DEGREE. ζ
IS THE TRANSITIVITY. Q IS THE NON-OVERLAPPING MODULARITY. Qo IS THE OVERLAPPING MODULARITY. on(%) IS THE FRACTION OF OVERLAPPING
NODES. m IS THE AVERAGE NUMBER OF COMMUNITY MEMBERSHIPS OF THE NODES. THE OVERLAPPING PROPERTIES ARE BASED ON THE COMMUNITY

STRUCTURE UNCOVERED BY SLPA. * MEANS THE LARGEST CONNECTED COMPONENT OF THE NETWORK IS TAKEN IF IT IS DISCONNECTED.

Network N |E| < k > ζ Q Qo on(%) m
EU Airlines 417 2,953 14.16 0.304 0.109 0.741 0.062 2.154
U.S. Airports 500 2,980 11.92 0.351 0.161 0.731 0.118 2.152
DNC Emails* 849 10,384 24.46 0.548 0.416 0.593 0.285 2.004
New Zealand* 1,463 4,246 5.80 0.063 0.401 0.524 0.364 2.163
Hamsterster* 1,788 12,476 13.49 0.090 0.391 0.648 0.251 2.247
AstroPh* 17,903 196,972 22.00 0.317 0.563 0.208 0.569 2.669

D. Evaluation Measure

We use the Degree centrality as a baseline to compare
the spreading outbreak size of community-aware centrality
measures. The relative difference is defined as:

∆R =
Rc −Rb

Rb
(7)

where:
• Rc denotes the outbreak size using a specific

community-aware centrality measure c
• Rb represents the outbreak size using the baseline Degree

centrality
If the community-aware centrality measure is more effec-

tive than the baseline, ∆R is positive. Otherwise, ∆R is
negative.

IV. EXPERIMENTAL RESULTS

This section reports the comparative evaluation of the
effectiveness of the non-overlapping Modularity Vitality and
its overlapping version.

A. Targeting Hubs

First, we examine how Modularity Vitality in its non-
overlapping and overlapping versions compare when the
fraction of initially infected nodes (fo) is chosen based on
the ranks ordered from the highest positive centrality values.
In other words, initially infected nodes are local hubs as they
contribute positively to modularity. The left column of figure
1 shows the relative difference of the outbreak size (∆R) as a
function of the fraction of initially infected nodes (fo) where
the nodes are ranked based on the top positives (hubs-first).
One observes three typical behaviors.

The first case is illustrated by EU Airlines, U.S. Airports,
Hamsterster, and AstroPh. In these networks, Overlapping
Modularity Vitality (αOMV ) outperforms its non-overlapping
version (αMV ). However, the outperformance of αOMV starts
after infecting 9% of the nodes in EU Airlines and AstroPh
and after 5% in U.S. Airports and Hamsterster. This behavior
demonstrates that infecting local hubs is more beneficial than
infecting hubs located in the overlap when resources are
limited. Above this fraction, the outperformance of αOMV

compared to αMV can reach up to 5%. In this situation,

hubs in the overlap matter. The second typical behavior is
illustrated by DNC Emails. In this network, the curves of
the relative difference of the outbreak size (∆R) for both
αOMV and αMV essentially intersect when fo > 0.10. In
other words, αOMV and αMV perform similarly. Finally, the
third behavior is illustrated by the New Zealand Collaboration
network. In this network, the non-overlapping Modularity
Vitality (αMV ) outperforms its overlapping version (αOMV )
when fo > 0.26. Below this value, the curves mainly coincide.

B. Targeting Bridges

The performances of the non-overlapping Modularity Vi-
tality (αMV ) and its overlapping version (αOMV ) are in-
vestigated on the SIR model when the fraction of initially
infected nodes (fo) contains the nodes ordered from the
highest negative centrality values. In other words, the initially
infected nodes are bridges since they contribute negatively to
modularity. The middle column of figure 1 shows the relative
difference of the outbreak size (∆R) as a function of the
fraction of initially infected nodes (fo) where the nodes are
ranked based on the top negatives (bridges-first). Once again,
one can distinguish three behaviors.

EU Airlines and U.S. Airports illustrate the first behavior.
In these networks, the curves of the relative difference of
the outbreak size (∆R) for both αOMV and αMV essentially
intersect at all fractions of initially infected nodes. Moreover,
they don’t exhibit a higher performance compared to the
baseline. They even perform worse than the baseline in the
U.S. Airports network after infecting 20% of the nodes.
Indeed, ∆R is negative in this case. Hamsterster and AstroPh
illustrate the second behavior. In these two networks, αMV

results in a higher epidemic outbreak than its overlapping
version when fo > 0.27 for Hamsterster and when fo > 0.24
for AstroPh. Its outperformance can reach up to 4% when
compared to αOMV . When fo is less than these two values,
the curves generally coincide. Finally, the third behavior is
illustrated by the networks DNC Emails and New Zealand
Collaboration. Here, the Overlapping Modularity Vitality
shows a slightly better performance than its non-overlapping
version. However, similar to Hamsterster and AstroPh, when
fo is less than 0.16 in DNC Emails, both measures share a
similar relative difference of the epidemic outbreak size.



Fig. 1. Relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes (fo) on the six real-world networks used. The
community-aware centrality measures are Modularity Vitality (αMV ) and Overlapping Modularity Vitality (αOMV ). On the left, middle, and right of the
figure, nodes are ordered from top positive centrality values, top negative centrality values, and top absolute values, respectively.



C. Targeting Hubs and Bridges

In the final experiment, we investigate the performances
of the non-overlapping Modularity Vitality (αMV ) and its
overlapping version (αOMV ) when the fraction of initially
infected nodes (fo) uses the absolute value of the centrality
measures ranks. In other words, the initially infected nodes
target hubs and bridges simultaneously, based on their global
effect on modularity. The right column of figure 1 shows the
relative difference of the outbreak size (∆R) as a function of
the fraction of initially infected nodes (fo) where the nodes
are ranked based on the absolute value (hubs and bridges).

Infecting nodes based on their global effect, regardless of
their nature (hubs or bridges), the Overlapping Modularity Vi-
tality (αOMV ) outperforms its non-overlapping counterpart in
all of the networks under study. Indeed, the outperformance of
αOMV compared to αMV can reach up to 28% in terms of the
relative difference of the outbreak size (∆R) in EU Airlines.
Up to 19% in DNC Emails and Hamsterster. Up to 13% in
U.S. Airports. Up to 7% in AstroPh. Finally, up to 5% in New
Zealand Collaboration. The network where αMV and αOMV

are the closest in terms of their relative difference is New
Zealand Collaboration. In the other networks, the difference
between αMV and αOMV increases as fo increases. Indeed,
one can see that when the fraction of initially infected nodes
is low, the difference between αOMV and αMV is minimal.
This illustrates the effectiveness of incorporating information
from the overlapping community structure and not discarding
the influence of hubs on behalf of bridges (and vice versa).
In other words, both hubs and bridges play a crucial role in
epidemic spreading. Targeting both of them leads to a higher
diffusion.

V. DISCUSSION

In this work, we introduce an extension of Modularity Vi-
tality (αMV ), a community-aware centrality measure designed
for networks with non-overlapping community structure to
overlapping communities. The Overlapping Modularity Vi-
tality (αOMV ) addresses a critical gap of many realistic
situations where a node might belong to several communities.
The extension we consider uses a simple weighting scheme
based on the reciprocal number of communities shared by
a node. This information is incorporated in the adjacency
matrix of the network. One computes the weight by averaging
the strength of membership to different communities of the
overlapping nodes. This strategy is inspired by one of the
various strategies discussed in [29]. So doing, hubs shared
by several communities contribute the most to the overlapping
modularity of a network. Conversely, bridge nodes belonging
to several communities have a substantial negative contribu-
tion to the network’s overlapping modularity.

Since both community-aware centrality measures can target
bridges and hubs, we investigate the effectiveness of three
different ranking strategies in a SIR epidemic scenario. First,
nodes are ranked in decreasing order of their centrality. This
strategy targets hubs at first. With this ranking scheme, when
the fraction of initially infected nodes (fo) is less than 9%,

there is no difference between the overlapping and the non-
overlapping centrality measures (αMV and αOMV ). These
results corroborate similar findings reported in [41]. Indeed,
extensive analysis shows that most hubs are direct neighbors
of overlapping nodes. Hence, the epidemic outbreak effect is
not tremendously different since local hubs and overlapping
hubs are in the vicinity of each other. The difference is more
pronounced when we infect more than 9% of the nodes.
Here, αOMV targets overlapping hub nodes that are more
strategically positioned in a network, resulting in a higher
epidemic outbreak.

Second, we investigate the strategy consisting of infecting
nodes with the highest negative contribution to the non-
overlapping (Q) and overlapping modularity (Qo). In other
words, we now target bridges. We notice that non-overlapping
Modularity Vitality (αMV ) and Overlapping Modularity Vi-
tality (αOMV ) are less effective. Indeed, even a negative
relative difference of the outbreak size (∆R) is observed. In
addition, the highest relative difference of the outbreak size
amounts to 13% when compared to the baseline for αMV

and 10% for αOMV . It occurs in the AstroPh network. These
values are almost half of the ones observed when the ranking
scheme targets hubs first. Indeed, when hubs are infected first,
the highest relative difference of the outbreak size reaches
27% when compared to the baseline for the Overlapping
Modularity Vitality and 26% for the non-overlapping Mod-
ularity Vitality. Hence, targeting bridges is not as effective
as targeting hubs. Moreover, one can see in DNC Emails
and New Zealand Collaboration networks that αOMV has
a slightly higher performance than αMV . For Hamsterster
and AstroPh, it is the opposite. Yet in both cases, when the
fraction of initially infected nodes (fo) is less than 0.27, it is
hard to differentiate between αMV and αOMV . These results
suggest that bridges identified by the two measures are very
similar or close to each other. Consequently, they result in
identical relative differences in the outbreak size.

Finally, we investigate infecting the nodes based on the
absolute value of the centrality values. This strategy simulta-
neously targets hubs and bridges. In this case, the Overlapping
Modularity Vitality (αOMV ) outperforms its counterpart on
all networks under study. Moreover, the relative difference
of the epidemic outbreak size reaches up to 28% in EU
Airlines. This is the highest value reached among all net-
works throughout the three different ranking schemes. The
outperformance of αOMV demonstrates the importance of
considering the roles of overlapping hubs and overlapping
bridges simultaneously rather than targeting each in silo.

It is worth mentioning deviations from the general trend.
In some networks, using non-overlapping Modularity Vitality
(αMV ) leads to a higher epidemic spreading compared to its
overlapping version (αOMV ). It happens when targeting hubs
first in the New Zealand Collaboration network and when
targeting bridges first in Hamsterster and AstroPh. These
networks are characterized with a high proportion of over-
lapping nodes (on(%) = 0.364, 0.251, 0.561, respectively). In
these cases, αOMV might not be able to differentiate between



strategically positioned hubs and bridges. However, when
targeting both (i.e., taking the absolute value), αOMV shows
its merit. It indicates the importance of targeting hubs and
bridges simultaneously rather than opting for one or the other.
However, these preliminary results need more investigation on
networks with different proportions of overlapping nodes.

VI. CONCLUSION

Many real-world networks naturally have a community
structure made of communities tightly connected internally
and loosely connected externally. In a lot of realistic sit-
uations, nodes can belong to several communities. These
nodes, called overlapping nodes, frequently occur in social
networks, collaboration networks, biological networks, eco-
logical networks, to name a few. For example, one protein
may contribute to various functions, one human may belong to
multiple institutions, and one researcher may work in several
scientific domains.

Identifying influential nodes within these networks is a
crucial issue. Indeed, in networks with a community structure,
nodes can act as hubs (locally influential) or bridges (globally
influential). This problem gave rise to several propositions in
the literature. However, Modularity Vitality is the only one
directly linked to the quality of the community structure.
It can target hubs and bridges by quantifying the node’s
contribution to the modularity. In this work, we propose an
extension of Modularity Vitality incorporating information
about the overlap in communities. Using SIR simulations,
we show that Overlapping Modularity Vitality outperforms
its counterpart designed for non-overlapping communities.
The difference between both measures is higher when one
uses the absolute value of the centrality to rank the nodes.
These results demonstrate the importance of incorporating
information about the overlapping communities to identify
influential nodes better. Moreover, results show that it is more
effective to target hubs or hubs and bridges simultaneously
rather than targeting bridges.

In future work, we plan to investigate the various alternative
definitions of overlapping modularity. As in many situations,
the network’s community structure is unknown; one needs
to evaluate the robustness of the results to community struc-
ture variation linked to the community detection algorithm.
Furthermore, we plan to relate the overall performance of the
Overlapping Modularity Vitality with the network topological
properties.
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