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ABSTRACT
Bipartite graphs, formed by two vertex layers, arise as a natural fit

for modeling the relationships between two groups of entities. In

bipartite graphs, common neighborhood computation between two

vertices on the same vertex layer is a basic operator, which is easily

solvable in general settings. However, it inevitably involves releas-

ing the neighborhood information of vertices, posing a significant

privacy risk for users in real-world applications. To protect edge

privacy in bipartite graphs, in this paper, we study the problem of

estimating the number of common neighbors of two vertices on

the same layer under edge local differential privacy (edge LDP).

The problem is challenging in the context of edge LDP since each

vertex on the opposite layer of the query vertices can potentially

be a common neighbor. To obtain efficient and accurate estimates,

we propose a multiple-round framework that significantly reduces

the candidate pool of common neighbors and enables the query

vertices to construct unbiased estimators locally. Furthermore, we

improve data utility by incorporating the estimators built from

the neighbors of both query vertices and devise privacy budget

allocation optimizations. These improve the estimator’s robustness

and consistency, particularly against query vertices with imbal-

anced degrees. Extensive experiments on 15 datasets validate the

effectiveness and efficiency of our proposed techniques.
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1 INTRODUCTION
Bipartite graphs have been widely used to represent connections be-

tween two sets of entities. Examples of real-world bipartite graphs

include user-item networks in E-commerce [25, 45], people-location

networks in contact tracing [4], and user-page networks in social

analysis [34]. In bipartite graphs, finding the common neighbors
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Figure 1: A bipartite graph and its corresponding noisy graph
by applying randomized responses to 𝑢1 and 𝑢2.
of two vertices is a basic operation in many tasks. For example,

the similarity between two vertices can be computed using Jaccard

similarity, which is the ratio of the number of their common neigh-

bors to their combined unique neighbors [24, 44, 57]. Additionally,

common neighbor counts can help prune unpromising vertices

in (𝑝, 𝑞)-biclique counting [55, 61]. Other tasks that benefit from

counting common neighbors in bipartite graphs include anomaly

detection [43], bipartite graph projection [40, 64], bipartite cluster-

ing coefficient computation [2, 17], community search [1, 9, 46],

and wedge-based motif counting [47, 53].

Although computing common neighbors is straightforward in

the conventional setting, it inevitably involves releasing the neigh-

borhood information of the vertices, posing a significant privacy

risk for users in real-world applications. For instance, in user-item

networks, disclosing identical items in the shopping carts of two

users in online shopping platforms (e.g., eBay and Amazon) signifi-

cantly compromises users’ privacy. Hence, it is crucial to estimate

the common neighborhood in a privacy-preserving manner, which

remains an unresolved research gap.

In the literature, differential privacy (DP) [10] has become the

gold standard for privacy-preserving computation, which provides

a mathematical framework to quantify permissible privacy loss.

Among the various DP models, edge local differential privacy (edge
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LDP) [35, 60, 65] has been widely adopted to protect the user’s pri-

vate connections. Edge LDP is a robust privacy protection protocol

that requires each vertex to perturb its local data (e.g., degrees and

neighbors) before transmitting it to the data curator.

In this paper, we study the problem of privacy-preserving com-

mon neighborhood estimation over bipartite graphs. Specifically,

given a bipartite graph 𝐺 and two query vertices 𝑢 and𝑤 , we aim

to estimate the number of common neighbors of 𝑢 and𝑤 in 𝐺 on

the same vertex layer with edge LDP. A random algorithm satisfies

edge LDP when the probabilities of observing its output from any

two vertices, whose neighbor sets differ by one vertex, are indis-

tinguishable within a factor of 𝑒𝜀 . This ensures deniability for the

existence of the edge (𝑢, 𝑣). In this context, 𝜀 represents the privacy

budget, determining the acceptable level of privacy loss. Clients can

adjust this parameter to tradeoff between privacy and data utility.

In addition, common neighbor counting under edge LDP is the first

step in addressing other problems under edge LDP, such as vertex

similarity computation [24] and (𝑝, 𝑞)-biclique counting [54].
Challenges. In this paper, we aim to design accurate and efficient

common neighbor estimation algorithms on bipartite graphs with

edge LDP. We face the following three main challenges.

• Challenge 1: In the literature, Randomized Response [48] is widely

employed to achieve edge LDP, flipping the entries of the adjacency

matrix between “0” and “1” to construct a noisy graph. However,

counting common neighbors on the noisy graph results in severe

overcounting and bias, because the noisy graph is generally much

denser. For instance, we examine the performance of this naive

approach (Naive) across 1000 runs for a pair of query vertices on

the dataset rmwiki in Fig.. 2. The blue distribution, representing

the estimates of Naive, deviates significantly to the right from the

true count (indicated by the black dashed line). This substantial

shift highlights the difficulty in accurately estimating the number

of common neighbors using the noisy graph.

• Challenge 2: Due to the constraints of edge LDP, we have to

start with all vertices on the opposite layer of the query vertices

as a candidate pool to estimate the common neighbors. This in-

volves potentially𝑂 (𝑛) independent random variables, leading to a

substantial margin of error. Reducing this candidate pool and devel-

oping an unbiased estimator that relies on fewer random variables

for enhanced data utility presents a challenging task.

• Challenge 3: When the vertices and the data curator can interact

for multiple rounds, the privacy budget must be divided among

each round. However, allocating more budget to one round reduces

the budget available for others. In addition, different pairs of query

vertices likely need to be handled differently. Thus, finding the

optimal allocation of privacy budgets to different rounds based on

the query vertices requires special attention.

Our approaches. To address Challenge 1, we propose a one-round
algorithm OneR that obtains unbiased estimates of common neigh-

bors by leveraging the probability at which the entries in the adja-

cency matrix are flipped to compensate for over-counting. Specif-

ically, for each query vertex, OneR applies randomized responses

to both query vertices to generate noisy edges. For every vertex 𝑣

on the opposite layer of the query vertices, we estimate whether

𝑣 is a common neighbor of 𝑢 and 𝑤 . Then OneR aggregates these

estimates to obtain an unbiased estimate. While OneR addresses

the challenge of the dense noisy graph and generates unbiased

estimates, it relies on a large pool of candidates, compromising

the utility of the data. As shown in Fig. 2, the yellow distribution

representing the estimates of OneR appears symmetrical around

the true common neighbor count with fat tails on both sides. This

implies that the estimates are unbiased but have high variance.

To address Challenge 2, we propose a multiple round frame-

work, allowing the query vertices to download the noisy edges

from the previous round and reduce the candidate pool to their

neighbors. Under this framework, we devise a single-source al-

gorithm MultiR-SS, which returns an unbiased estimator for the

number of common neighbors by leveraging the neighborhood of

𝑢. Specifically, in the first round, MultiR-SS applies randomized

responses to vertex𝑤 to generate noisy edges. In the second round,

the vertex 𝑢 retrieves these noisy edges from the data curator and

then constructs a single-source estimator using its neighbors in

the original graph and the neighbors of 𝑤 in the noisy graph. To

comply with edge LDP, the Laplace mechanism [10] is used to

add noise to the single-source estimator before it is released to

the data curator. This noise is scaled with the global sensitivity,

defined as the maximum difference observed in the single-source

estimator between two vertices whose neighbors differ by one edge.

MultiR-SS achieves significantly better data utility compared to

OneR by employing a multiple-round framework that reduces the

candidate pool of common neighbors to the neighborhoods of the

query vertices. As shown in Fig. 2, the green distribution represents

the estimates of MultiR-SS, which preserves the unbiasedness and

is more concentrated around the true value compared to OneR.
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Figure 2: The estimate distribution on rmwiki when 𝜀 = 1.

To tackle Challenge 3, we propose a double-source algorithm

MultiR-DS under the multiple-round framework, which integrates

two single-source estimators via a weighted average. In addition, we

propose novel privacy budget allocation optimizations that allow

MultiR-DS to dynamically adjust its privacy budgets for different

rounds and the contribution of each single-source estimator for

minimized L2 loss. Specifically, when the incoming query vertices

have large degrees, MultiR-DS tends to devote more privacy budget

to noisy graph construction. When the query vertices have very

imbalanced degrees, MultiR-DSwill favor the single-source estima-

tor associated with the low-degree vertex, which depends on fewer

random variables and induces less variance. In doing so, MultiR-DS
further reduces L2 loss compared to MultiR-SS and is more robust

to query vertices with high degrees or unbalanced degrees. In Fig. 2,

the red distribution depicts the estimates of MultiR-DS. Here the
degrees of the query vertices are highly imbalanced (556 and 2).
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In this case, MultiR-DS yields unbiased and more concentrated

estimates compared to MultiR-SS.
Contributions. Here we summarize our principal contributions.

• To the best of our knowledge, we are the first to study accurate

and efficient common neighborhood estimation on bipartite graphs

under edge LDP.

• To address the over-counting issue with the Naive algorithm,

we propose a one-round algorithm OneR to return unbiased esti-

mates, which leverages the probabilistic nature of the noisy graph

to compensate for over-counting.

• We propose a multiple-round framework and devise a single-

source algorithm (MultiR-SS), which allows one query vertex to

download the noisy edges from the other query vertex and con-

struct an unbiased estimator locally. This drastically reduces L2

loss because the search scope for the common neighbors is reduced

to the neighborhood of one query vertex.

•Under themultiple-round framework, we propose a double-source

algorithm (MultiR-DS) that constructs two unbiased estimators for

each query vertex and combines them through a weighted aver-

age. MultiR-DS further reduces L2 loss by dynamically adjusting

the allocation of the privacy budget and the contribution of two

estimators based on the incoming query vertices.

•We conduct extensive experiments on 15 real-world datasets to

evaluate the proposed algorithms. The multiple-round algorithms

MultiR-SS and MultiR-DS produce significantly smaller mean rel-

ative errors than Naive and OneR across all datasets. MultiR-DS is

especially robust to query vertices with imbalanced degrees.

2 PRELIMINARY

Table 1: Summary of Notations

Notation Definition

𝐺 a bipartite graph

A the adjacency matrix

A𝑢 the neighbor list of the vertex 𝑢

𝑁 (𝑢,𝐺) the neighbors of 𝑢 in 𝐺

𝑑𝑒𝑔(𝑢,𝐺) the degree of 𝑢 in 𝐺

𝜀 a privacy budget

𝐺 ′ a noisy bipartite graph

C2 (𝑢,𝑤) the number of common neighbors between 𝑢 and𝑤

Δ𝑔 the global sensitivity of a function 𝑔

𝑓𝑢 the single-source estimator based on 𝑁 (𝑢,𝐺)
𝑓𝑤 the single-source estimator based on 𝑁 (𝑤,𝐺)
𝑓 ∗ the double source estimator based on both 𝑓𝑢 and 𝑓𝑤

2.1 Problem definition
We consider an unweighted bipartite graph 𝐺 (𝑉 = (𝑈 , 𝐿), 𝐸). 𝑉 =

𝑈 ∪𝐿 denotes the set of vertices, where𝑈 and 𝐿 represent the upper

and lower layer, respectively. The vertices in 𝑈 and 𝐿 are called

the upper vertices and the lower vertices. 𝐸 ⊆ 𝑈 × 𝐿 denotes the

set of edges. We use 𝑛1 = |𝑈 (𝐺) | and 𝑛2 = |𝐿(𝐺) | to denote the

number of upper and lower vertices, respectively, and𝑚 = |𝐸 | to
represent the number of edges in 𝐺 . The adjacency matrix A for

𝐺 is of dimensions 𝑛 × 𝑛, where A[𝑢, 𝑣] = 1 if there exists an edge

between the vertices 𝑢 and 𝑣 and 0 otherwise. The 𝑢-th row of A
(including both “1” and “0”) is the neighbor list of 𝑢, denoted byA𝑢 .

In addition, the set of neighbors of a vertex 𝑢 in 𝐺 is denoted by

𝑁 (𝑢,𝐺), and its degree is denoted by 𝑑𝑒𝑔(𝑢,𝐺) = |𝑁 (𝑢,𝐺) |. We use

𝑑𝑚𝑎𝑥 (𝑈 ) and 𝑑𝑚𝑎𝑥 (𝐿) to represent the maximum degree among

the upper vertices and lower vertices, respectively.

Definition 1. Common neighbors. Let𝑢 and𝑤 be two vertices
on the same layer of a bipartite graph𝐺 . The common neighbors of 𝑢
and𝑤 are the vertices adjacent to both 𝑢 and𝑤 in 𝐺 , i.e., 𝑁 (𝑢,𝐺) ∩
𝑁 (𝑤,𝐺). Here 𝑁 (𝑢,𝐺) represents the set of neighbors of vertex 𝑢 in
graph𝐺 . We use C2 (𝑢,𝑤) to denote the number of common neighbors
of 𝑢 and𝑤 , i.e., C2 (𝑢,𝑤) = |𝑁 (𝑢,𝐺) ∩ 𝑁 (𝑤,𝐺) |.

Classic differential privacy (DP) operates under a central model,

where a central data curator manages a dataset 𝐷 [10]. 𝐷 and

𝐷′ are neighboring datasets if they differ by one data record. DP

ensures that query outputs on these neighboring datasets are hard

to distinguish. When extending DP under the central model to

protect edge privacy in graphs, neighboring datasets refer to two

graphs that vary by a single edge. However, the assumption with

the central model that the data curator with access to the entire

graph can be trusted can be impractical in real-world scenarios.

Thus, we adopt the widely-used 𝜀-edge local differential privacy

(edge LDP), which enables each vertex to locally perturb its data

before transmission to the data curator [36, 60, 65]. Under edge

LDP, the neighboring datasets are two neighbor lists differing by

one bit.

Definition 2. 𝜀-edge local differential privacy. Let 𝐺 be a
bipartite graph and 𝜀 > 0. For each vertex 𝑢 ∈ 𝑉 (𝐺), let 𝑅𝑢 with
domain {0, 1}𝑛 be a randomized algorithm of vertex 𝑢. 𝑅𝑢 provides
𝜀-edge LDP if for any two neighbor listsA𝑢 ,A′𝑢 that differ in one bit
and any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (𝑅𝑖):

𝑃𝑟 (𝑅𝑢 (A𝑢 ) ∈ 𝑆) ≤ 𝑒𝜀𝑃𝑟 (𝑅𝑢 (A′𝑢 ) ∈ 𝑆)
Here 𝜀 is called the privacy budget.

Problem Statement. Given a bipartite graph𝐺 , a privacy budget 𝜀,

and a pair of vertices 𝑢 and𝑤 on the same layer of 𝐺 , the common
neighborhood estimation problem aims to estimate C2 (𝑢,𝑤) while
satisfying 𝜀-edge LDP.

Without loss of generality, we assume that 𝑢 and 𝑤 are in the

lower layer of𝐺 . In this paper, we use the expected L2 loss to evaluate
the quality of estimates for the number of common neighbors.

Definition 3. Expected L2 loss. Given two vertices 𝑢 and𝑤 on
a bipartite graph 𝐺 , and an estimate 𝑓 for the number of common
neighbors between 𝑢 and𝑤 , the expected L2 loss of 𝑓 is the expected
squared error between C2 (𝑢,𝑤) and 𝑓 , i.e.,

𝑙2(C2 (𝑢,𝑤), 𝑓 ) = E((C2 (𝑢,𝑤) − 𝑓 )2)

2.2 Warm up
𝜀-edge LDP ensures that if two vertices have neighbor lists differing

by just one bit, they cannot be reliably distinguished based on the

outputs of the randomized algorithms. In this part, we introduce

the most common methods for providing edge LDP, which are ran-

domized responses and the Laplace mechanism. Then, we present

a naive solution to the common neighborhood estimation problem.

Warner’s randomized response. One effectivemethod for achiev-

ing 𝜀-edge LDP is through randomized responses (RR), initially

3
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Figure 3: randomized responses on a bipartite graph.

introduced as a survey technique to allow confidential answers

to sensitive inquiries such as criminal or sexual activities [48]. In

essence, participants are asked to answer the questions honestly

with probability. This concept has been adapted for graph applica-

tions to ensure edge local differential privacy [18, 35]. Specifically,

each entry 𝑥 ∈ 0, 1 of a neighbor list is perturbed with a probability

of
1

1+𝑒𝜀 , where 𝜀 denotes the privacy budget.

𝑅𝑅(𝑥) =
{
1 − 𝑥 with probability

1

1+𝑒𝜀
𝑥 with probability

𝑒𝜀

1+𝑒𝜀

Current state-of-the-art methods on general graphs perturb each

entry in the lower triangle of the adjacency matrix [18, 19]. How-

ever, to ensure that the resulting noisy graph𝐺 ′ is bipartite, we only
perturb entries in A that represent potential edges in a bipartite

graph. Without loss of generality, we assume that the upper vertices

have smaller IDs than the lower vertices. In this way, the adjacency

matrix A can be divided into 4 blocks, where the ones on the di-

agonal are empty because the vertices of the same layer cannot be

connected. In this paper, we only apply randomized responses to

the neighbor lists of the query vertices𝑢 and𝑤 . When𝑢,𝑤 ∈ 𝑈 (𝐺),
we flip the entries inA𝑢∩𝐿(𝐺) andA𝑤∩𝐿(𝐺). When𝑢,𝑤 ∈ 𝐿(𝐺),
we flip the entries in A𝑢 ∩𝑈 (𝐺) and A𝑤 ∩𝑈 (𝐺). In doing so, we

avoid generating noisy edges not allowed in bipartite graphs. We

denote the noisy graph with respect to a privacy budget 𝜀 by 𝐺 ′𝜀 .

Example 1. We illustrate applying randomized responses to a
bipartite graph with two upper vertices and four lower vertices in
Fig. 3. The left shows the original adjacency matrix and the right
side shows the matrix after applying randomized responses. Rows
and columns are ordered with upper vertices preceding lower vertices.
White squares indicate zeros, as edges within the same layer are not
allowed in bipartite graphs. To find common neighbors of the upper
vertices 𝑢 and 𝑤 , we apply randomized responses to their neighbor
lists, which affect the upper right block with eight grey squares. With
the privacy budget 𝜖 , each grey block is flipped with probability 1

1+𝑒𝜖 .
Light grey squares outlined in red represent flipped entries.

Calibrating noise with global sensitivity. To achieve 𝜀-edge

LDP, it is necessary to add noise to any data transmitted from

a vertex to the data curator. The Laplace mechanism is used for

this purpose, which calibrates the amount of noise with the global
sensitivity of the transmitted data.

Definition 4. Global sensitivity. Consider a bipartite graph
𝐺 . Let A𝑢 be the neighbor list of vertex 𝑢. Let A′𝑢 be a neighbor list
that differs from A𝑢 in at most one entry. The global sensitivity of a
function 𝑓 : A𝑢 → R is:

Δ𝑓 =𝑚𝑎𝑥A𝑢 ,A′𝑢 |𝑓 (A𝑢 ) − 𝑓 (A′𝑢 ) |

Definition 5. The Laplace Mechanism. Given a privacy bud-
get 𝜀 and any function 𝑓 , the Laplace mechanism is defined as:

˜𝑓 = 𝑓 + Lap
(
Δ𝑓

𝜀

)
Here ˜𝑓 is the noisy version of 𝑓 and 𝐿𝑎𝑝 (·) is the probability density
function of the Laplace distribution.

By applying the Laplace mechanism, we allow the vertices to

send local graph statistics with calibrated noise to the data curator

while satisfying 𝜀-edge LDP.

Edge LDP can also be obtained via composition (i.e., combine

multiple edge LDP algorithms). For instance, sequential composition
[21, 35] enables the sequential application of multiple edge LDP

algorithms (𝑀𝑖 ), each consuming some privacy budgets (𝜀𝑖 ), and

ensures that the overall process satisfies

∑
𝑖 𝜀𝑖 -edge LDP. Parallel

composition states that if disjoint subsets of the graph are processed

by different edge LDP algorithms (𝑀𝑖 ) with privacy budget 𝜀𝑖 , then

the overall mechanism running these algorithms in parallel satisfies

max𝑖 (𝜀𝑖 )-edge LDP [56]. Furthermore, edge LDP is immune to post-
processing [18, 56], allowing the data curator to apply any post-

processing to the graph statistics received from the vertices without

compromising the privacy guarantees.

Algorithm 1: Naive
Input:𝐺 : a bipartite graph; 𝜀: a privacy budget; 𝑢, 𝑤: two query

vertices from the same layer

Output: 𝑓1: the naive estimator of C2 (𝑢, 𝑤 )
// vertex side:

1 foreach 𝑖 ∈ {𝑢, 𝑤} do
2 foreach 𝑗 ∈ the opposite layer from 𝑢 and 𝑤 do

3 perturb A′ [𝑖, 𝑗 ] ←
{
1 − A[𝑖, 𝑗 ], w.p.

1

1+𝑒𝜀

A[𝑖, 𝑗 ] w.p.
𝑒𝜀

1+𝑒𝜀
4 send noisy edges to the data curator;

5 𝐺 ′𝜀 ← the noisy graph constructed from A′ [𝑖, 𝑗 ];
// curator side:

6 𝑓1 ← |𝑁 (𝑢,𝐺 ′𝜀 ) ∩ 𝑁 (𝑤,𝐺 ′𝜀 ) |;
7 return 𝑓1;

A naive approach. Given that randomized responses preserve

𝜀-edge LDP, a naive approach is to count the number of common

neighbors of𝑢 and𝑤 on the noisy graph constructed by randomized

responses, as outlined in Algorithm 1. Note that for our problem, we

only need to apply randomized responses to 𝑢 and𝑤 . Specifically,

given a privacy budget 𝜀 > 0, Naive flips the entries 𝐴[𝑖, 𝑗] with
a probability

1

1+𝑒𝜀 , where 𝑖 ∈ {𝑢,𝑤} (Lines 1-4). The data curator
collects the noisy edges from 𝑢 and𝑤 and constructs a noisy graph

𝐺 ′𝜀 (Line 5). In this way, we do not need to analyze the global sensi-

tivity for Naive because it does not involve the Laplace mechanism

and only relies on randomized responses to provide edge LDP.

Then, the naive estimator 𝑓1 is calculated taking the intersection

of the neighbors of 𝑢 and𝑤 in 𝐺 ′𝜀 , i.e., 𝑓1 = |𝑁 (𝑢,𝐺 ′𝜀 ) ∩ 𝑁 (𝑤,𝐺 ′𝜀 ) |
(Line 6). However, since there are generally more “0”s than “1”s

in the neighbor lists of 𝑢 and 𝑤 , applying randomized responses

usually results in a much denser noisy graph 𝐺 ′𝜀 , which results in

severe overcounting C2 (𝑢,𝑤).
4



Theoretical analysis for Naive. Without loss of generality, we

assume that the query vertices 𝑢 and 𝑤 are from the lower layer

𝐿(𝐺) when analyzing the time costs, communication costs, and

expected L2 losses. The time costs are divided between the ver-

tex side and the curator side. On the vertex side, the time costs

incurred by randomized responses is 𝑂 (𝑛1), where 𝑛1 is the num-

ber of vertices in 𝑈 (𝐺). On the curator side, the dominating cost

is incurred by intersecting 𝑁 (𝑢,𝐺 ′𝜀 ) and 𝑁 (𝑤,𝐺 ′𝜀 ), which takes

𝑂 (𝑚𝑖𝑛(𝑑𝑒𝑔(𝑢,𝐺 ′𝜀 ), 𝑑𝑒𝑔(𝑤,𝐺 ′𝜀 ))). Thus, the overall time complexity

is 𝑂 (𝑛1). The communication costs are incurred only during ran-

domized responses, where vertices 𝑢 and𝑤 send noisy edges to the

data curator. For vertex 𝑢, the expected number of noisy edges is

𝑑𝑢 × (1−𝑝) + (𝑛1 −𝑑𝑢 ) ×𝑝 , where 𝑝 = 1

1+𝑒𝜀 . Similarly, for vertex𝑤 ,

the expected number of noisy edges is 𝑑𝑤 × (1− 𝑝) + (𝑛1 −𝑑𝑤) × 𝑝 .
Thus, the overall communication cost is𝑂

(
𝑒𝜀−1
𝑒𝜀+1 (𝑑𝑢 + 𝑑𝑤) +

2𝑛1

1+𝑒𝜀
)
.

In the following, we analyze the expected L2 loss of the estimator

𝑓1 returned by Naive.

Theorem 1. Given a bipartite graph𝐺 , a privacy budget 𝜀, and
a pair of query vertices 𝑢 and𝑤 in 𝐿(𝐺), the expected L2-loss of the
estimator for 𝑓1 in Algorithm 1 is 𝑂 ( 𝑛2

1

(1+𝑒𝜀 )4 ). Here, 𝑛1 represents the
number of vertices in𝑈 (𝐺).

Proof. The naive estimator 𝑓1 = |𝑁 (𝑢,𝐺 ′𝜀 ) ∩ 𝑁 (𝑤,𝐺 ′𝜀 ) |. Let
𝑝 = 1

1+𝑒𝜀 be the flipping probability during the randomized re-

sponses. Note that each entry A′ [𝑖, 𝑗] on the adjacency matrix of

the noisy graph follows a Bernoulli distribution with a parameter

𝑝 (if A[𝑖, 𝑗] = 0) or 1 − 𝑝 (if A[𝑖, 𝑗] = 1). Since 𝑓1 ≥ 0, we have the

following inequality:

𝑙2(𝑓1, C2 (𝑢,𝑤)) = E(𝑓 21 ) − 2C2 (𝑢,𝑤)E(𝑓1) + C2 (𝑢,𝑤)
2 = 𝑂 (E(𝑓 2

1
))

Since 𝑓1 =
∑

𝑣∈𝑈 (𝐺 ) A′ [𝑢, 𝑣]A′ [𝑣,𝑤], we have:

E(𝑓 2
1
) =

∑︁
𝑣∈𝑈 (𝐺 )

E((A′ [𝑢, 𝑣]A′ [𝑣,𝑤])2)

+ 2
∑︁

𝑣𝑖<𝑣𝑗 ∈𝑈 (𝐺 )
E(A′ [𝑢, 𝑣𝑖 ]A′ [𝑣𝑖 ,𝑤]A′ [𝑢, 𝑣 𝑗 ]A′ [𝑣 𝑗 ,𝑤])

≤ 𝑂 (
(
𝑛1

2

)
(1 − 𝑝)4) = 𝑂 (𝑛2

1
(1 − 𝑝)4) = 𝑂 (

𝑛2
1
𝑒4𝜀

(1 + 𝑒𝜀 )4
)

The last step is due to 𝑝 = 1

1+𝑒𝜀 . □

Theorem 2. The Naive algorithm satisfies 𝜀-edge LDP.

Proof. Since the randomized responses provide 𝜀-edge LDP

[18, 20], Lines 1-4 of the algorithm satisfy 𝜀-edge LDP. In addition,

edge LDP is immune to post-processing, which means that any

analysis (Lines 5-6) conducted on the noisy graph preserves edge

LDP. Thus, the theorem holds. □

3 A ONE-ROUND APPROACH
To address the problem of overcounting with the Naive approach,

we propose a one-round algorithm OneR, which exploits the prob-

abilistic nature of the noisy graph to obtain unbiased estimates

of C2 (𝑢,𝑤). Specifically, OneR leverages the flipping probability

during randomized responses to construct an unbiased estima-

tor for each vertex on the opposite layer of the query vertices.

In doing so, we do not need to analyze the global sensitivity for OneR, as it only relies on randomized responses to ensure edge LDP and does not involve the Laplace mechanism.

Then, OneR aggregates these estimates to obtain unbiased counts

of common neighbors. First, we investigate the unbiased estimator

of A[𝑖, 𝑗] for two vertices 𝑖 and 𝑗 in the bipartite graph.

3.1 An unbiased estimator for A[𝑖, 𝑗]
Consider a bipartite graph𝐺 . Let 𝜀 be the privacy budget. We use𝐺 ′𝜀
to represent the noisy graph from applying randomized responses

to the edges in 𝐺 . During randomized responses, each entry in the

neighbor list is flipped with a probability 𝑝 = 1

1+𝑒𝜀 . Note that each
entry A′ [𝑖, 𝑗] on the adjacency matrix of the noisy graph follows

a Bernoulli distribution with a parameter 𝑝 (when A[𝑖, 𝑗] = 0) or

1 − 𝑝 (when A[𝑖, 𝑗] = 1). Based on this, we have the following

equations which link the expected value of A[𝑖, 𝑗]′ and A[𝑖, 𝑗]:

E(A′ [𝑖, 𝑗]) =
{
𝑝, if A[𝑖, 𝑗] = 0

1 − 𝑝 if A[𝑖, 𝑗] = 1

This can be rearranged into one single equation: E(A′ [𝑖, 𝑗]) =
A[𝑖, 𝑗] + 𝑝 (1 − 2A[𝑖, 𝑗]). Solving this equation forA[𝑖, 𝑗] leads to:

𝐸 ( A
′ [𝑖, 𝑗] − 𝑝
1 − 2𝑝 ) = A[𝑖, 𝑗]

Let 𝜙 (𝑖, 𝑗) = A′ [𝑖, 𝑗 ]−𝑝
1−2𝑝 . It immediately follows that 𝜙 (𝑖, 𝑗) is an

unbiased estimator of A[𝑖, 𝑗]. We can also analyze the variance of

𝜙 (𝑖, 𝑗):

Var(𝜙 (𝑖, 𝑗)) = Var( A
′ [𝑖, 𝑗] − 𝑝
1 − 2𝑝 ) = 𝑝 (1 − 𝑝)

(1 − 2𝑝)2
(1)

The last step is because A′ [𝑖, 𝑗] is a Bernoulli variable with a prob-

ability 𝑝 or 1 − 𝑝 , which leads to a variance of 𝑝 (1 − 𝑝).

Algorithm 2: OneR
Input:𝐺 : a bipartite graph; 𝜀: a privacy budget; 𝑢, 𝑤: two query

vertices from the same layer

Output: 𝑓2: the one-round unbiased estimator for C2 (𝑢, 𝑤 )
1 foreach 𝑖 ∈ {𝑢, 𝑤} do
2 foreach 𝑗 ∈ the opposite layer from 𝑢 and 𝑤 do

3 perturb A′ [𝑖, 𝑗 ] ←
{
1 − A[𝑖, 𝑗 ], w.p.

1

1+𝑒𝜀

A[𝑖, 𝑗 ] w.p.
𝑒𝜀

1+𝑒𝜀
4 send noisy edges to the data curator;

5 𝐺 ′𝜀 ← the noisy graph constructed from A′ [𝑖, 𝑗 ];
6 𝑓2 ← 0; 𝑝 ← 1

1+𝑒𝜀 ;

7 foreach 𝑣 ∈ 𝑉 (𝐺 ′𝜀 ) on the opposite layer as 𝑢 and 𝑤 do
8 𝑓2 ← 𝑓2 + (A′ [𝑢, 𝑣 ] − 𝑝 ) (A′ [𝑣, 𝑤 ] − 𝑝 )/(1 − 2𝑝 )2;
9 return 𝑓2;

3.2 An unbiased estimator for C2(𝑢,𝑤)
In this part, we derive an unbiased estimator for C2 (𝑢,𝑤) based
on the noisy graph from randomized responses. Without loss of

generality, let’s assume that both𝑢 and𝑤 are in 𝐿(𝐺). By definition,
C2 (𝑢,𝑤) = |𝑁 (𝑢,𝐺) ∩ 𝑁 (𝑤,𝐺) | = ∑

𝑣∈𝑈 (𝐺 ) A[𝑢, 𝑣]A[𝑣,𝑤]. This
implies that we need to estimate A[𝑢, 𝑣]A[𝑣,𝑤] for all 𝑣 ∈ 𝑈 (𝐺)
in an unbiased way. Since A′ [𝑢, 𝑣] and A′ [𝑣,𝑤] are independent
of each other, we have E(𝜙 (𝑢, 𝑣)𝜙 (𝑣,𝑤)) = A[𝑢, 𝑣]A[𝑣,𝑤], which
leads to the following estimator for C2 (𝑢,𝑤).
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Theorem 3. Consider a bipartite graph𝐺 , a privacy budget 𝜀, and
two vertices𝑢 and𝑤 in 𝐿(𝐺). Let𝐺 ′𝜀 be the noisy graph after applying
the randomized response to 𝐺 w.r.t. 𝜀. Let 𝑝 = 1

1+𝑒𝜀 be the flipping
probability. We have E(𝑓2 (𝑢,𝑤)) = C2 (𝑢,𝑤) where

𝑓2 (𝑢,𝑤) =
∑︁

𝑣∈𝑈 (𝐺 )

(A′ [𝑢, 𝑣] − 𝑝) (A′ [𝑣,𝑤] − 𝑝)
(1 − 2𝑝)2

(2)

is an unbiased estimate for C2 (𝑢,𝑤).

The proof of Theorem 3 involves summing 𝜙 (𝑢, 𝑣)𝜙 (𝑣,𝑤) over
all 𝑣 ∈ 𝑈 (𝐺). In particular, when 𝑢 and𝑤 belong to𝑈 (𝐺), similar

results are derived with 𝑣 in 𝐿(𝐺). Based on Theorem 3, we design

a one-round algorithm OneR, which estimates C2 (𝑢,𝑤) based on

the noisy graph generated from randomized responses, as outlined

in Algorithm 2. In Lines 1-6, OneR constructs a noisy graph 𝐺 ′𝜀
by applying randomized responses to 𝑢 and𝑤 . Then, it computes

𝑓2 (𝑢,𝑤) by considering all vertices on the opposite layer (i.e.,𝑈 (𝐺))
as candidates for the common neighbors of 𝑢 and 𝑤 (Lines 7-8).

In practice, to efficiently compute 𝑓2 (𝑢,𝑤) and avoid visiting all

candidate vertices, the expression in Equation 2 can be expanded

as such.

𝑓2 (𝑢,𝑤) = 𝑁1

(1 − 𝑝)2

(1 − 2𝑝)2
− (𝑁2 − 𝑁1)

(1 − 𝑝)𝑝
(1 − 2𝑝)2

+ (𝑛1 − 𝑁2)
𝑝2

(1 − 2𝑝)2

Here 𝑁1 denotes the number of common neighbors of 𝑢 and𝑤 in

the noisy graph 𝐺 ′𝜀 . 𝑁2 denotes size of the union of the neighbor

sets of𝑢 and𝑤 in𝐺 ′𝜀 .𝑛1 represents the number of vertices in |𝑈 (𝐺) |
(i.e., the opposite layer of 𝑢 and𝑤 ). In this way, we only need to

compute the intersection and union of the neighbor sets of 𝑢 and

𝑤 in 𝐺 ′𝜀 to efficiently obtain 𝑓2 (𝑢,𝑤).

Example 2. We illustrate the construction of the unbiased esti-
mator 𝑓2 returned by the OneR algorithm using the bipartite graph
shown in Fig.1, focusing on 𝑢1 and 𝑢2 as query vertices with three
common neighbors. The outline of the query vertices is highlighted in
red. On the right side of Fig.1, we present the noisy graph constructed
by applying randomized responses to 𝑢1 and 𝑢2. Note that we only
need to apply randomized responses to 𝑢1 and 𝑢2. The dashed lines in
the graph represent the resulting noisy edges. The vertices shaded in
grey depict the candidate pool for common neighbors between 𝑢1 and
𝑢2 in OneR, including all vertices on the opposite layer from 𝑢1 and
𝑢2. According to Equation 2, 𝑓2 relies on 𝑛2 = |𝐿(𝐺) | = 100 random
variables: A′ [𝑣𝑖 , 𝑢2], where 𝑖 ∈ [1, 100].

Theoretical analysis for OneR. Without loss of generality, we

assume that the query vertices 𝑢 and𝑤 are in 𝐿(𝐺) in the following

analyses. On the vertex side, the time costs incurred by randomized

responses is 𝑂 (𝑛1), where 𝑛1 is the number of vertices in 𝑈 (𝐺).
On the curator side, the dominating cost is incurred by computing

𝑓2 (𝑢,𝑤) in Lines 7-8, which can be implemented in 𝑂 (𝑑𝑒𝑔(𝑢,𝐺 ′𝜀 ) +
𝑑𝑒𝑔(𝑤,𝐺 ′𝜀 )) time by computing the intersection and the union of

𝑁 (𝑢,𝐺 ′𝜀 ) and 𝑁 (𝑤,𝐺 ′𝜀 ). The overall time complexity is 𝑂 (𝑛1). The
communication costs of OneR are incurred only during randomized

responses, similar to Naive. The overall communication cost is

𝑂

(
𝑒𝜀−1
𝑒𝜀+1 (𝑑𝑢 + 𝑑𝑤) +

2𝑛1

1+𝑒𝜀
)
.

In the following, we analyze the expected L2 loss of 𝑓2 returned

by Algorithm 2 in Theorem 4.

Theorem 4. The L2 loss of 𝑓2 in Theorem 3 is 𝑂 ( 𝑛1𝑒
𝜀

(1−𝑒𝜀 )4 ). Here,
𝑛1 represents the number of vertices in𝑈 (𝐺) (i.e., the opposite layer
to 𝑢 and𝑤 ).

Proof. Since 𝑓2 is unbiased, based on the bias-variance decom-

position theorem [3], the L2 loss of 𝑓1 equals its variance. Assume

𝑢 and𝑤 ∈ 𝐿(𝐺).

𝑙2 (𝑓2, C2 (𝑢,𝑤)) = Var(𝑓2 (𝑢,𝑤))

=
1

(1 − 2𝑝)4
∑︁

𝑣∈𝑈 (𝐺 )
Var((A′ [𝑢, 𝑣] − 𝑝) (A′ [𝑣,𝑤] − 𝑝))

Let 𝜂 = A′ [𝑢, 𝑣] − 𝑝 and 𝜃 = A′ [𝑣,𝑤] − 𝑝 . By construction, we

know that E(𝜂) = 1−2𝑝 when 𝑣 ∈ 𝑁 (𝑢,𝐺) and E(𝜂) = 0 otherwise.

Similarly, E(𝜃 ) = 1− 2𝑝 when 𝑣 ∈ 𝑁 (𝑤,𝐺) and E(𝜃 ) = 0 otherwise.

In addition, we have Var(𝜂) = Var(𝜃 ) = 𝑝 (1 − 𝑝). This is because 𝜂
and 𝜃 are shifted Bernoulli variables with the same variance.

Var(𝑓2 (𝑢,𝑤)) =
1

(1 − 2𝑝)4
∑︁

𝑣∈𝑈 (𝐺 )
Var(𝜂𝜃 )

=
𝑝2 (1 − 𝑝)2

(1 − 2𝑝)4
|𝑈 (𝐺) | + 𝑝 (1 − 𝑝)

(1 − 2𝑝)2
(𝑑𝑒𝑔(𝑢,𝐺) + 𝑑𝑒𝑔(𝑤,𝐺))

= 𝑂 ( 𝑝
2 (1 − 𝑝)2

(1 − 2𝑝)4
|𝑈 (𝐺) |) = 𝑂 ( 𝑛1𝑒

2𝜀

(1 − 𝑒𝜀 )4
)

The last step is due to 𝑝 = 1

1+𝑒𝜀 . □

Theorem 5. The OneR algorithm satisfies 𝜀-edge LDP.

Proof. Since the randomized responses provide 𝜀-edge LDP

[18, 20], Lines 1-4 of the algorithm satisfy 𝜀-edge LDP. Additionally,

edge LDP is immune to post-processing, meaning that any analysis

conducted on the noisy graph (Lines 5-8) preserves edge LDP. Thus,

the theorem holds. □

4 MULTIPLE-ROUND APPROACHES
The OneR algorithm reflects our first attempt at obtaining an unbi-

ased estimate of C2 (𝑢,𝑤). However, as analyzed in Section 3, the

L2 loss of OneR still contains a factor of 𝑛1, because OneR inevitably
considers all potential vertices on the opposite layer from 𝑢 and𝑤

as candidates for the common neighbors. To further improve data

utility, in this section, we employ the classic multiple-round frame-

work in the literature of graph analysis under edge LDP [18]. In

the first round, we utilize a part of the privacy budget to construct

a noisy graph via randomized responses. Then, we allow both 𝑢

and𝑤 to download the noisy edges from each other and combine

their local neighbors with the noisy edges to compute unbiased esti-

mates of C2 (𝑢,𝑤) locally. In the end, we use the remaining privacy

budget to apply the Laplace mechanism to these unbiased esti-

mates to comply with edge LDP. By adopting this multiple-round

framework, we propose a Multiple-round Single Source algorithm

(MultiR-SS) where we only rely on the local view of 𝑢 to estimate

C2 (𝑢,𝑤). Then, we introduce the Multiple-round Double Source

algorithm (MultiR-DS), which leverages the local neighborhoods

of both 𝑢 and𝑤 to optimize privacy budget allocation and balance

the contribution of query vertices, resulting in minimized L2 loss.
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Figure 4: The construction of 𝑓𝑢 and 𝑓𝑤 based on the local
neighborhoods of 𝑢1 and 𝑢2 (𝑢 = 𝑢1,𝑤 = 𝑢2).

4.1 A single-source estimator for C2(𝑢,𝑤)
In this part, we introduce a two-round algorithm for estimating

C2 (𝑢,𝑤). First, 𝜀1 is utilized to construct a noisy graph by applying

randomized responses to 𝑢 and𝑤 . Then, the data curator releases

the noisy graph. In the second round, vertex 𝑢 integrates its local

neighbors with the noisy graph to derive an unbiased estimator for

C2 (𝑢,𝑤). Then, 𝜀2 is employed to apply the Laplace mechanism to

add noise to this estimator.

Now we assume that the noisy graph 𝐺 ′𝜀1 has already been con-

structed and discuss how to estimate C2 (𝑢,𝑤) based on the local

neighbors of 𝑢 and the noisy neighbors of 𝑤 . We start by not-

ing that C2 (𝑢,𝑤) can also be written as

∑
𝑣∈𝑁 (𝑢 ) A[𝑣,𝑤]. Thus,

when the neighbors of 𝑢 are available, estimating C2 (𝑢,𝑤) re-
duces to estimating A[𝑣,𝑤], which has already been addressed

by 𝜙 (𝑣,𝑤) = A
′ [𝑣,𝑤 ]−𝑝
1−2𝑝 in Section 3. Here the flipping probability

becomes
1

1+𝑒𝜀1 . Based on the above analysis, we derive the following
unbiased estimate of C2 (𝑢,𝑤) as

𝑓𝑢 (𝑢,𝑤) =
∑︁

𝑣∈𝑁 (𝑢,𝐺 )
𝜙 (𝑣,𝑤) =

∑︁
𝑣∈𝑁 (𝑢,𝐺 )

A′ [𝑣,𝑤] − 𝑝
1 − 2𝑝

= |𝑁 (𝑢,𝐺) ∩ 𝑁 (𝑤,𝐺 ′𝜀1 ) |
1 − 𝑝
1 − 2𝑝 − |𝑁 (𝑢,𝐺) \ 𝑁 (𝑤,𝐺 ′𝜀1 ) |

𝑝

1 − 2𝑝
At this point, 𝑓𝑢 (𝑢,𝑤) is computed locally based on the neigh-

borhood of 𝑢. To release it under edge LDP, we analyze the global

sensitivity of 𝑓𝑢 (𝑢,𝑤) and apply the Laplace mechanism.

Global Sensitivity Analysis. ByDefinition 4, the global sensitivity
of 𝑓𝑢 (𝑢,𝑤) is defined as Δ(𝑓𝑢 (𝑢,𝑤)) = max𝑢,𝑢′∈𝑉 (𝐺 ) |𝑓𝑢 (𝑢,𝑤) −
𝑓𝑢′ (𝑢,𝑤) |, where 𝑢′ represents a hypothetical vertex differing from
𝑢 in its neighbor list at one entry. It follows:

Δ(𝑓𝑢 (𝑢,𝑤)) ≤ max

𝑣′
|𝜙 (𝑣 ′,𝑤) | = 1 − 𝑝

1 − 2𝑝
The last step is because the absolute value of 𝜙 (𝑣 ′,𝑤) is either

1−𝑝
1−2𝑝 or

𝑝
1−2𝑝 . Since 𝑝 = 1

1+𝑒𝜀 < 1

2
,

1−𝑝
1−2𝑝 is always larger than

𝑝
1−2𝑝 . This bound suggests that we must add Laplacian noise scaled

to
1−𝑝
1−2𝑝 before sending the estimator to the data curator. In other

words, the data curator receives the noisy version of 𝑓𝑢 (𝑢,𝑤) de-
noted by

𝑓𝑢 (𝑢,𝑤) =
∑︁

𝑣∈𝑁 (𝑢,𝐺 )

A′ [𝑣,𝑤] − 𝑝
1 − 2𝑝 + Lap

(
1 − 𝑝
(1 − 2𝑝)𝜀2

)
(3)

Lemma 1. 𝑓𝑢 (𝑢,𝑤) in Equation 3 is an unbiased estimate ofC2 (𝑢,𝑤),
i.e., E(𝑓𝑢 (𝑢,𝑤)) = C2 (𝑢,𝑤).

Proof. Since E( A
′ [𝑣,𝑤 ]−𝑝
1−2𝑝 ) = A[𝑣,𝑤], the expected value of

the first term in 𝑓𝑢 is E(∑𝑣∈𝑁 (𝑢,𝐺 ) A[𝑣,𝑤]) = C2 (𝑢,𝑤). The sec-
ond term represents the noise drawn from the Laplacian distribution

with an expected value of zero. Thus, 𝑓𝑢 (𝑢,𝑤) is unbiased. □

Algorithm 3: The MultiR-SS algorithm
Input:𝐺 : a bipartite graph; 𝜀: a privacy budget; 𝑢, 𝑤: two query

vertices

Output: 𝑓𝑢 (𝑢, 𝑤 )
1 split privacy budget 𝜀 into 𝜀1 and 𝜀2 evenly;

// round 1:

2 𝑝 ← 1

1+𝑒𝜀1 ;

3 foreach 𝑗 ∈ the opposite layer from 𝑢 and 𝑤 do

4 perturb A′ [𝑢, 𝑗 ] ←
{
1 − A[𝑢, 𝑗 ], w.p.

1

1+𝑒𝜀

A[𝑢, 𝑗 ] w.p.
𝑒𝜀

1+𝑒𝜀
5 send noisy edges to the data curator;

6 𝐺 ′𝜀1 ← the noisy graph constructed from A′ [𝑢, 𝑗 ];
// round 2:

7 𝑆1 ← 0; 𝑆2 ← 0;

8 foreach 𝑣 ∈ 𝑁 (𝑢,𝐺 ) do
9 if (𝑣, 𝑤 ) ∈ 𝐸 (𝐺 ′𝜀1 ) then
10 𝑆1 ← 𝑆1 + 1:
11 else
12 𝑆2 ← 𝑆2 + 1:
13 𝑓𝑢 (𝑢, 𝑤 ) ← 𝑆1 × 1−𝑝

1−2𝑝 − 𝑆2 ×
𝑝

1−2𝑝 ;

14 𝑓𝑢 (𝑢, 𝑤 ) ← 𝑓𝑢 (𝑢, 𝑤 ) + Lap
(

1−𝑝
(1−2𝑝 )𝜀2

)
;

15 return 𝑓𝑢 (𝑢, 𝑤 ) ;

The MultiR-SS algorithm. In this part, we present the Multiple-

round Single Source algorithm (MultiR-SS) which involves two

rounds of interaction between the vertices and the data curator and

returns the unbiased estimator 𝑓𝑢 (𝑢,𝑤) derived in Lemma 1. The

detailed steps are summarized in Algorithm 3. Initially, MultiR-SS
splits the privacy budget 𝜀 into 𝜀1 and 𝜀2 evenly. In the first round,

randomized responses are applied to both𝑢 and𝑤 to generate noisy

edges, which are then transmitted to the data curator (Lines 3-6).

Then, 𝐺 ′𝜀1 is constructed from these noisy edges. In the second

round, MultiR-SS visits the neighbors of 𝑢 on 𝐺 and counts how

many are connected to 𝑤 on 𝐺 ′𝜀1 . Upon termination of the for-

loop (Lines 9-13), 𝑆1 represents the |𝑁 (𝑢,𝐺) ∩ 𝑁 (𝑤,𝐺 ′𝜀1 ) | and 𝑆2
represents the |𝑁 (𝑢,𝐺)\𝑁 (𝑤,𝐺 ′𝜀1 ) |. Based on 𝑆1 and 𝑆2, MultiR-SS
computes 𝑓𝑢 (𝑢,𝑤) and add Laplacian noise scaled to 1−𝑝

(1−2𝑝 )𝜀2 (Lines
14, 15). Compared to OneR that considers all vertices on the opposite
layer from𝑢 and𝑤 on the noisy graph, MultiR-SS limits the search

scope for the common neighbors of 𝑢 and𝑤 to the local neighbors

of 𝑢, which results in a substantial reduction in L2 loss.

Example 3. Consider the bipartite graph in Fig. 1. In Fig.4, we
illustrate the construction of the single-source estimators where𝑢 = 𝑢1
and 𝑤 = 𝑢2. The outlines of 𝑢1 and 𝑤2 are highlighted in red. A
privacy budget 𝜀1 is allocated to randomized responses for 𝑢1 and
𝑢2. In Fig. 4, each query vertex can download the noisy edges from
the other query vertex and integrate them with its neighbors. In the
local perspective of 𝑢1, the solid lines represent edges between 𝑢1 and
its neighbors, while the dashed lines represent noisy edges from 𝑢2.
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The vertices shaded in grey are candidates for common neighbors
between 𝑢1 and 𝑢2 in MultiR-SS, which includes the neighbors of
𝑢1 in the original graph. Note that this is much smaller than the
candidate pool identified by OneR, which includes all vertices on the
opposite layer from the query vertices. Based on the formula for 𝑓𝑢 ,
it only relies on three Bernoulli variables: A′ [𝑣1, 𝑢2], A′ [𝑣2, 𝑢2],
and A′ [𝑣4, 𝑢2]. Similarly, we can derive 𝑓𝑤 based on four random
variables: A′ [𝑣1, 𝑢2], A′ [𝑣2, 𝑢2], A′ [𝑣4, 𝑢2], and A′ [𝑣100, 𝑢2]. The
reliance on fewer random variables accounts for the smaller expected
L2 loss of MultiR-SS compared to OneR.

Theoretical analysis for MultiR-SS. Without loss of general-

ity, we assume that the query vertices 𝑢 and 𝑤 are in 𝐿(𝐺). First,
we analyze the computational time complexity of Algorithm 3

(MultiR-SS). On the vertex side, the time costs incurred by ran-

domized responses is 𝑂 (𝑛1), where 𝑛1 = |𝑈 (𝐺) |. On the curator

side, visiting the neighbors of 𝑢 in 𝐺 to compute 𝑓𝑢 (𝑢,𝑤) takes
𝑂 (𝑑𝑒𝑔(𝑢,𝐺) time. The overall time complexity is 𝑂 (𝑛1). Then, we
analyze the communications costs of MultiR-SS, which include

(1) sending the noisy edges from 𝑤 and downloading them to

vertex 𝑢 and (2) sending the single-source estimator 𝑓𝑢 (𝑢,𝑤) to
the data curator. The dominating cost is incurred by the step (1).

Note that the expected number of noisy edges from vertex 𝑤 is

𝑑𝑤 × (1 − 𝑝) + (𝑛1 − 𝑑𝑤) × 𝑝 , where 𝑝 = 1

1+𝑒𝜀1 . Thus, the overall
communication cost is 𝑂 ( 𝑒𝜀1−1𝑒𝜀1+1𝑑𝑤 +

𝑛1

1+𝑒𝜀1 ). In the following, we

analyze the expected L2 loss of MultiR-SS.

Theorem 6. The expected L2 loss of 𝑓𝑢 (𝑢,𝑤) in Equation 3 is
𝑂 ( 𝑒𝜀1

(1−𝑒𝜀1 )2 (𝑑𝑢 +
2𝑒𝜀1

𝜀2
2

)). Here 𝑑𝑢 represents the degree of 𝑢 in 𝐺 .

Proof. Since 𝑓𝑢 (𝑢,𝑤) is an unbiased estimator, its L2 loss equals

its variance. The variance of 𝑓𝑢 (𝑢,𝑤) consists of two parts: 𝑓𝑢 (𝑢,𝑤)
and the Laplacian noise. First, it immediately follows that the vari-

ance from 𝑓𝑢 (𝑢,𝑤) is 𝑝 (1−𝑝 )
(1−2𝑝 )2𝑑𝑢 based on Equation 1. This is be-

cause each 𝜙 (𝑢,𝑤) is independent of each other and there is no

covariance involved. In addition, the variance from the Laplacian

noise is:

Var(𝐿𝑎𝑝 (Δ(𝑓𝑢 (𝑢,𝑤))
𝜀2

)) = 2( 1 − 𝑝
(1 − 2𝑝)𝜀2

)2 = 2(1 − 𝑝)2

(1 − 2𝑝)2𝜀2
2

Since 𝑓𝑢 (𝑢,𝑤) and the Laplacian noise are independent, the ex-

pected L2 loss of 𝑓𝑢 is
𝑝 (1−𝑝 )
(1−2𝑝 )2𝑑𝑢 +

2(1−𝑝 )2
(1−2𝑝 )2𝜀2

2

. Substituting 𝑝 = 1

1+𝑒𝜀1
into the above expression completes the proof. □

Since the L2 loss of 𝑓𝑢 (𝑢,𝑤) is no longer dependent on 𝑛1, the

data utility of MultiR-SS is significantly improved compared to

OneR. In addition, we check whether Algorithm 3 satisfies the pri-

vacy requirements of 𝜀-edge LDP in the following theorem.

Theorem 7. Given a bipartite graph 𝐺 and a privacy budget 𝜀,
Algorithm 3 satisfies 𝜀-edge LDP.

Proof. We use the Sequential Composition theorem [21] to prove

that Algorithm 3 satisfies 𝜀-edge LDP. In the first round, generating

the noisy edges via randomized responses satisfies 𝜀1-edge LDP

(Lines 2-6). In the second round, Lines 7-13 are conducted locally by

the vertex 𝑢. Then, the Laplace mechanism (Line 14) is applied w.r.t.
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Figure 5: Illustration of the L2 loss of 𝑓 ∗ when 𝜀 = 2.

a privacy budget of 𝜀2 to construct the unbiased estimator 𝑓𝑢 , which

satisfies 𝜀2-edge LDP. By the sequential composition property of

edge LDP, Algorithm 3 satisfies 𝜀-edge LDP (𝜀 = 𝜀1 + 𝜀2). □

4.2 A double-source estimator for C2(𝑢,𝑤)
The single-source estimator 𝑓𝑢 (𝑢,𝑤) only involves the neighbor-

hood of 𝑢. Similarly, we can develop another unbiased estimator,

𝑓𝑤 (𝑢,𝑤) =
∑

𝑣∈𝑁 (𝑤,𝐺 ) 𝜙 (𝑣,𝑢), by applying the same process to

the neighborhood of 𝑤 . This raises a natural question: How can

we integrate these estimators to further minimize L2 loss while

maintaining unbiasedness? Examining the loss of L2 of 𝑓𝑢 (𝑢,𝑤) in
Theorem 6, we can see that it consists of the first term representing

the error incurred by randomized responses, and the second term

representing the error incurred by Laplacian noise. On the one hand,

if we only minimize the first term, we could always choose the esti-

mator between 𝑓𝑢 and 𝑓𝑤 whose corresponding query vertex has a

smaller degree. On the other hand, if we only focus on minimizing

the second term, we could take an average of 𝑓𝑢 and 𝑓𝑤 and the

Laplacian noise of the resulting estimator will be reduced by half. To

balance both objectives, we propose a double-source estimator 𝑓 ∗

by taking a weighted average of 𝑓𝑢 and 𝑓𝑤 , i.e., 𝑓
∗ = 𝛼 𝑓𝑢 + (1−𝛼) 𝑓𝑤

(𝛼 ∈ [0, 1]). Here 𝛼 is the weighting parameter that adjusts the con-

tribution of 𝑓𝑢 and 𝑓𝑤 . By analyzing the L2 loss of 𝑓 ∗, we introduce
the Multiple-round Double Source algorithm (MultiR-DS), which
enhances data utility by optimizing the allocation of privacy budget

and balancing the contribution of 𝑓𝑢 and 𝑓𝑤 .

Properties of the double-source estimator 𝑓 ∗. Given that 𝑓 ∗ is
a weighted average of 𝑓𝑢 and 𝑓𝑤 , its unbiasedness directly stems

from the principle of linearity in expected values, i.e., E(𝑎𝑋 +𝑏𝑌 ) =
𝑎E(𝑋 ) + 𝑏E(𝑌 ). Thus, based on the bias-variance decomposition,

its L2 loss equals its variance, as analyzed in the following theorem.

Theorem 8. The L2 loss of 𝑓 ∗ = 𝛼 𝑓𝑢 + (1 − 𝛼) 𝑓𝑤 (𝛼 ∈ [0, 1]) is
𝑒𝜀1

(1−𝑒𝜀1 )2

(
(𝛼2𝑑𝑢 + (1 − 𝛼)2𝑑𝑤) + 2(𝛼2+(1−𝛼 )2 )𝑒𝜀1

𝜀2
2

)
. Here 𝑑𝑢 and 𝑑𝑤

represent the degrees of 𝑢 and𝑤 in 𝐺 .

Proof.

𝑙2(𝑓 ∗, C2 (𝑢,𝑤)) = Var(𝑓 ∗) = 𝛼2Var(𝑓𝑢 ) + (1 − 𝛼)2Var(𝑓𝑤)

=
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

(𝛼2𝑑𝑢 + (1 − 𝛼)2𝑑𝑤) +
2(1 − 𝑝)2

(1 − 2𝑝)2𝜀2
2

(𝛼2 + (1 − 𝛼)2)

Note that
˜𝑓𝑢 depends on the noisy edges connected to𝑤 , while

˜𝑓𝑤
depends on the noisy edges connected to 𝑢. Since they depend on

disjoint edges in the noisy graph,
˜𝑓𝑢 and

˜𝑓𝑤 are independent, and
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their covariance 𝐶𝑜𝑣 (𝑓𝑢 , 𝑓𝑤) = 0. Thus, the first step holds. Also,

the expected L2 loss of 𝑓𝑤 is the same as 𝑓𝑢 where 𝑑𝑢 is replaced

by 𝑑𝑤 . Substituting 𝑝 = 1

1+𝑒𝜀1 completes the proof. □

Based on Theorem 8, the L2 loss of 𝑓 ∗ is a function of 𝜀1 and 𝛼 ,

where 𝑑𝑢 and 𝑑𝑤 are constants. We denote it by 𝑙2(𝑓 ∗, C2 (𝑢,𝑤)) :=
𝐹 (𝜀1, 𝛼). To obtain estimates for𝑑𝑢 and𝑑𝑤 , we can apply the Laplace

mechanism in an additional round using a small privacy budget

(𝜀0). If the estimates of 𝑑𝑢 and 𝑑𝑤 are negative, we can estimate the

average vertex degree in 𝐿(𝐺) and substitute them. To minimize

this loss, we seek values of 𝜀1 ∈ (0, 𝜀) and 𝛼 ∈ [0, 1] that minimize

𝐹 (𝜀1, 𝛼). We discover that 𝐹 reaches its global minimum if and only

if its partial derivatives
𝜕𝐹
𝜕𝛼 = 𝜕𝐹

𝜕𝜀1
= 0. However, this results in a

transcendental equation that lacks analytical solutions. Thus, we

resort to Newton’s method [12] for high-precision approximate

solutions. By optimizing 𝜀1 and 𝛼 , the resulting L2 loss of 𝑓
∗
will

be lower than that of both single-source estimators 𝑓𝑢 and 𝑓𝑤 .

We could also optimize the expected L2 loss for MultiR-SS,
which is a function of 𝜖1 and 𝑑𝑒𝑔(𝑢). Specifically, we could spend a

small privacy budget (𝜀0) to estimate 𝑑𝑒𝑔(𝑢) and then apply New-

ton’s method to find the best privacy budgets (𝜀1 and 𝜀2) that mini-

mize the expected L2 loss of MultiR-SS (𝜀 =
∑
2

𝑖=0 𝜀𝑖 ). In practice,

this implementation only outperforms the current MultiR-SS with

an even separation of privacy budget (𝜀1 = 𝜀2) when the degree of 𝑢

is large. In addition, it is a special case of MultiR-DS where 𝛼 = 1.

Algorithm 4: The MultiR-DS algorithm
Input: 𝐺 : a bipartite graph; 𝜀: a privacy budget; 𝑢, 𝑤: two query

vertices

Output: 𝑓𝑢 (𝑢, 𝑤 )
// round 1:

1 𝜀0 ← 𝜀 × 0.05;

2 𝑑𝑢 ← 𝑑𝑒𝑔 (𝑢,𝐺 ) + Lap( 1
𝜀0
) ;

3 𝑑𝑤 ← 𝑑𝑒𝑔 (𝑤,𝐺 ) + Lap( 1
𝜀0
) ;

4 𝑑 ′ ← the average vertex degree on the same layer as 𝑢;

5 correct 𝑑𝑢 and 𝑑𝑤 with 𝑑 ′;

6 find 𝛼 and 𝜀1 that minimizes Var(𝑓 ∗ ) ;
// round 2:

7 𝑝 ← 1

1+𝑒𝜀1 ;

8 foreach 𝑖 ∈ {𝑢, 𝑤} do
9 foreach 𝑗 ∈ the opposite layer from 𝑢 and 𝑤 do

10 perturb A′ [𝑖, 𝑗 ] ←
{
1 − A[𝑖, 𝑗 ], w.p.

1

1+𝑒𝜀

A[𝑖, 𝑗 ] w.p.
𝑒𝜀

1+𝑒𝜀
11 send noisy edges to the data curator;

12 𝐺 ′𝜀1 ← the noisy graph constructed from A′ [𝑖, 𝑗 ];
// round 3:

13 𝜀2 ← 𝜀 − 𝜀0 − 𝜀1;
14 𝑓𝑢 (𝑢, 𝑤 ) ← the estimator by running Lines 8-15 of Algorithm 3;

15 𝑓𝑤 (𝑢, 𝑤 ) ← the estimator by running Lines 8-15 of Algorithm 3

with 𝑢 and 𝑤 switched;

16 return 𝛼 𝑓𝑢 + (1 − 𝛼 ) 𝑓𝑤 ;

The MultiR-DS algorithm. In this part, we present the Multiple-

round Double Source algorithm (MultiR-DS) which uses an addi-

tional round compared to MultiR-SS to estimate 𝑑𝑢 and 𝑑𝑤 and

estimate the L2 loss of 𝑓 ∗. The detailed steps are outlined in Algo-

rithm 4. In the first round, MultiR-DS uses a small privacy budget

𝜀0 and applies the Laplace mechanism to obtain unbiased estimates

of 𝑑𝑢 and 𝑑𝑤 (Lines 1-3). Here the global sensitivity of 𝑑𝑢 (𝑑𝑤 ) is

one because adding or deleting an edge from the neighbor list of 𝑢

(𝑤 ) changes 𝑑𝑢 (𝑑𝑤 ) by at most one. Due to the Laplacian noise, the

reported 𝑑𝑢 and 𝑑𝑤 could be negative. In this case, we correct for

any negative value with the estimated average degree of the ver-

tices on the same side as 𝑢 and𝑤 (Lines 4, 5). Then, the MultiR-DS
algorithm invokes Newton’s method to find the pair of 𝛼 and 𝜀1 that

minimizes the estimated L2 loss of 𝑓 ∗. In the second round, random-

ized responses are applied to 𝑢 and 𝑤 with respect to 𝜀1, leading

to the noisy graph 𝐺 ′𝜀1 (Lines 7-12). In the third round, MultiR-DS
allocates the remaining privacy budget 𝜀2 to construct unbiased

estimators 𝑓𝑢 and 𝑓𝑤 from the local neighborhoods of 𝑢 and 𝑤 .

Specifically, 𝑓𝑢 is derived by executing Lines 8-15 of MultiR-SS,

while 𝑓𝑤 is computed similarly by visiting the neighbors of 𝑤 in

𝐺 (Lines 14-15). Note that when constructing 𝑓𝑢 and 𝑓𝑤 , the global

sensitivity analysis is the same as in MultiR-SS. In other words,

the global sensitivity of
1−𝑝
1−2𝑝 for each single-source estimator is

applied to both 𝑓𝑢 and 𝑓𝑤 upon construction. In the end, MultiR-DS

returns the weighted average of 𝑓𝑢 and 𝑓𝑤 where the parameter 𝛼

is computed in the first round (Line 16).

Theoretical analysis for MultiR-DS.Without loss of generality,

we assume that𝑢 and𝑤 ∈ 𝐿(𝐺). First, we analyze the computational

time complexity of MultiR-DS. On the vertex side, estimating the

average degree of the vertices in 𝐿(𝐺) takes𝑂 (𝑛2) time. When con-

structing the noisy graph, the time costs incurred by the randomized

responses are 𝑂 (𝑛1). On the curator side, visiting the neighbors of

𝑢 and𝑤 to compute 𝑓𝑢 and 𝑓𝑤 takes 𝑂 (𝑑𝑒𝑔(𝑢,𝐺) + 𝑑𝑒𝑔(𝑤,𝐺) time.

Thus, the overall time complexity is 𝑂 (𝑛).
We then analyze the communication costs of MultiR-DS, which

include: (1) sending the noisy degree of all vertices in 𝐿(𝐺), (2)
sending the noisy edges from𝑤 and downloading them to vertex

𝑢, (3) sending the noisy edges from 𝑢 and downloading them to

vertex𝑤 , and (4) sending two single-source estimators 𝑓𝑢 and 𝑓𝑤
to the data curator. Step (1) incurs communication costs of 𝑂 (𝑛2).
The communication costs for Step (2) and Step (3) are proportional

to the expected number of noisy edges from 𝑢 and 𝑤 , which is

(𝑑𝑢 +𝑑𝑤) × (1−𝑝) +2(𝑛1−𝑑𝑤) ×𝑝 , where 𝑝 = 1

1+𝑒𝜀1 . Step (4) incurs
a communication cost of 𝑂 (1). Thus, the overall communication

cost is 𝑂 (𝑛2 + 𝑒𝜀1−1
𝑒𝜀1+1 (𝑑𝑤 + 𝑑𝑢 ) +

2𝑛1

1+𝑒𝜀1 ).
Since the expected L2 loss of MultiR-DS has been analyzed in

Theorem 8, we compare it with the expected L2 loss of MultiR-SS
in the following theorem.

Theorem 9. The minimum L2 loss incurred by the double-source
estimator 𝑓 ∗ = 𝛼 𝑓𝑢 + (1 − 𝛼) 𝑓𝑤 is less than or equal to the L2 loss
incurred by both single-source estimators 𝑓𝑢 and 𝑓𝑤 .

min

𝜀1,𝛼
𝑙2(𝑓 ∗, C2 (𝑢,𝑤)) ≤ min(𝑙2(𝑓𝑢 , C2 (𝑢,𝑤)), 𝑙2(𝑓𝑤 , C2 (𝑢,𝑤)))

Proof. Let 𝐿∗ be the minimized expected L2 loss of the double-

source estimator 𝑓 ∗. To prove the above inequality, we need to

prove that 𝐿∗ ≤ 𝑙2(𝑓𝑢 , C2 (𝑢,𝑤)) and 𝐿∗ ≤ 𝑙2(𝑓𝑤 , C2 (𝑢,𝑤)). By
construction, 𝑓𝑢 is a special case of 𝑓 ∗ where 𝛼 = 1, i.e., 𝑓𝑢 = 𝑓 ∗ |𝛼=1.
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Hence, for any privacy budget allocations (𝜀1 and 𝜀2), we have

𝐿∗ ≤ 𝑙2(𝑓𝑢 , C2 (𝑢,𝑤)). Similarly, 𝑓𝑤 is also a special case of 𝑓 ∗

where 𝛼 = 0, i.e., 𝑓𝑢 = 𝑓 ∗ |𝛼=0. We also obtain 𝐿∗ ≤ 𝑙2(𝑓𝑤 , C2 (𝑢,𝑤)).
Combining these two inequalities completes the proof. □

To illustrate the comparison, we plot the L2 loss of 𝑓 ∗, 𝑓𝑢 , and
𝑓𝑤 against varying 𝜀1 values in Fig. 5, where 𝜀 = 2. The blue curve

labeled “𝛼 = 0” represents the L2 loss of 𝑓𝑤 . The red curve labeled

“𝛼 = 1” represents the L2 loss of 𝑓𝑢 . The green curve labeled “𝛼 =

0.5” represents the unbiased estimator 𝑓 ′ = (𝑓𝑢 + 𝑓𝑤)/2. The grey
horizontal line marks the global minimum L2 loss for 𝑓 ∗. On the

left, when 𝑑𝑢 = 5 and 𝑑𝑤 = 10, 𝑓 ′ outperforms 𝑓𝑢 and 𝑓𝑤 and

reaches the global minimum. On the right, when 𝑑𝑢 and 𝑑𝑤 are

more imbalanced, 𝑓𝑢 becomes the best estimator, reaching the global

minimum. None of the single-source estimators or their average

can consistently reach the minimized L2 loss of 𝑓 ∗ for all query
vertex pairs. This is due to the flexibility of 𝑓 ∗ in adjusting the

privacy budget allocation and the weighting of 𝑓𝑢 and 𝑓𝑤 .

In the following theorem, we verify the compliance of Algorithm

4 to 𝜀-edge LDP.

Theorem 10. Given a bipartite graph 𝐺 and a privacy budget 𝜀,
Algorithm 4 satisfies 𝜀-edge LDP.

Proof. We use the Sequential Composition and Parallel Compo-
sition theorems for 𝜀-edge LDP [21]. Parallel composition theorem

states that if different 𝜀-edge LDP algorithms are applied to disjoint

datasets with privacy budgets 𝜀𝑖 , the composite algorithm satis-

fies max𝑖 𝜀𝑖 -LDP. In the first round, each vertex reports its degree

using the Laplace mechanism, achieving 𝜀0-edge LDP. By paral-

lel composition, this round satisfies 𝜀0-edge LDP. In the second

round, randomized responses provide 𝜀1-edge LDP. In the third

round, building 𝑓𝑢 and 𝑓𝑤 satisfies 𝜀2-edge LDP. By parallel compo-

sition, this round satisfies 𝜀2-edge LDP. By sequential composition,

Algorithm 4 satisfies 𝜖-LDP with 𝜀 = 𝜀0 + 𝜀1 + 𝜀2. □

Summary of the expected L2 losses of all algorithms. In Table

3, we summarize the expected L2 losses of all privacy-preserving

algorithms for estimating the number of common neighbors. The

expected L2 loss of OneR is smaller than that of Naive, with OneR
having an expected L2 loss of 𝑂 (𝑛1) compared to Naive’s 𝑂 (𝑛2

1
).

In addition, the expected L2 losses of MultiR-SS and MultiR-DS
are lower than those of Naive and OneR because they do not de-

pend on the number of vertices in the graph. Between MultiR-DS
and MultiR-SS, as analyzed in Theorem 9, the minimized loss for

MultiR-DS is smaller than MultiR-SS because MultiR-SS is a spe-

cial case of MultiR-DS where 𝛼 = 0 or 𝛼 = 1. Note that for OneR,
MultiR-SS, and MultiR-DS, which are unbiased estimators, their

expected L2 losses can offer insight into their deviation from the

true value by applying Chebyshev’s inequality [39]. For instance,

for the OneR algorithm, we know E(𝑓2 (𝑢,𝑤)) = C2 (𝑢,𝑤) and that

Var(𝑓2 (𝑢,𝑤)) = 𝑝2 (1−𝑝 )2
(1−2𝑝 )4 𝑛1 +

𝑝 (1−𝑝 )
(1−2𝑝 )2 (𝑑𝑤 + 𝑑𝑤). Chebyshev’s in-

equality states that for any 𝑘 > 0:

𝑃

(
|𝑓2 (𝑢,𝑤) − C2 (𝑢,𝑤) | ≥ 𝑘

√︃
Var(𝑓2 (𝑢,𝑤))

)
≤ 1

𝑘2
.

Similar probabilistic bounds can be derived for the MultiR-SS and

MultiR-DS algorithms based on their expected L2 losses.

Table 2: Summary of Datasets

Dataset Upper Lower |𝐸 | |𝑈 | |𝐿 |
Rmwiki (RM) User Article 58.0K 1.2K 8.1K

Collaboration (AC) Author Paper 58.6K 16.7K 22.0K

Occupation (OC) Person Occupation 250.9K 127.6K 101.7K

Bag-kos (DA) Document Word 353.2K 3.4K 6.9K

Bpywiki (BP) User Article 399.7K 1.3K 57.9K

Tewiktionary (MT) User Article 529.6K 495 121.5K

Bookcrossing (BX) User Book 1.1M 105.3K 340.5K

Stackoverflow (SO) User Post 1.3M 545.2K 96.7K

Team (TM) Athlete Team 1.4M 901.2K 34.5K

Wiki-en-cat (WC) Article Category 3.8M 1.9M 182.9K

Movielens (ML) User Movie 10.0M 69.9K 10.7K

Epinions (ER) User Product 13.7M 120.5K 755.8K

Netflix (NX) User Movie 100.5M 480.2K 17.8K

Delicious-ui (DUI) User Url 101.8M 833.1K 33.8M

Orkut (OG) User Group 327.0M 2.8M 8.7M

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed common neighbor esti-

mation algorithms under 𝜀-edge LDP through experiments.

5.1 Experimental Settings
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Figure 6: Performance on different datasets (𝜖 = 2)

Datasets. We use 15 datasets from KONECT (http://konect.cc/).

Table 2 shows the statistics of the datasets. |𝑈 | and |𝐿 | are the

number of vertices in the upper and lower layers. |𝐸 | is the number

of edges in the graph.

Algorithms. We evaluate the following common neighborhood

estimation algorithms under 𝜀-edge LDP.
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Table 3: Summary of time costs, expected L2 losses, and communication costs
Algorithm Time cost Unbiased Expected L2 loss Communication cost

Naive 𝑂 (𝑛1) × 𝑂 ( 𝑛2

1
𝑒4𝜀

(1+𝑒𝜀 )4 ) 𝑂 ( 𝑒𝜀−1𝑒𝜀+1 (𝑑𝑢 + 𝑑𝑤) +
2𝑛1

1+𝑒𝜀 )

OneR 𝑂 (𝑛1) ✓ 𝑂 ( 𝑛1𝑒
2𝜀

(1−𝑒𝜀 )4 ) 𝑂 ( 𝑒𝜀−1𝑒𝜀+1 (𝑑𝑢 + 𝑑𝑤) +
2𝑛1

1+𝑒𝜀 )
MultiR-SS 𝑂 (𝑛1) ✓ 𝑂 ( 𝑒𝜀1

(1−𝑒𝜀1 )2 (𝑑𝑢 +
2𝑒𝜀1

𝜀2
2

)) 𝑂 ( 𝑒𝜀1−1𝑒𝜀1+1𝑑𝑤 +
𝑛1

1+𝑒𝜀1 )

MultiR-DS 𝑂 (𝑛) ✓ 𝑂 ( 𝑒𝜀1

(1−𝑒𝜀1 )2 (𝛼
2𝑑𝑢 + (1 − 𝛼)2𝑑𝑤)+ 2𝑒2𝜀1

(1−𝑒𝜀1 )2
𝛼2+(1−𝛼 )2

𝜀2
2

) 𝑂 (𝑛2 + 𝑒𝜀1−1
𝑒𝜀1+1 (𝑑𝑤 + 𝑑𝑢 ) +

2𝑛1

1+𝑒𝜀1 )

* Without loss of generality, we assume 𝑢,𝑤 ∈ 𝐿(𝐺). 𝜀 is the overall privacy budget. In MultiR-SS and MultiR-DS, 𝜀1 represents the privacy

budget for randomized responses, while 𝜀2 denotes the budget for the Laplace mechanism. 𝛼 ∈ [0, 1] adjusts the contribution of 𝑓𝑢 and 𝑓𝑤 .

𝑑𝑢 and 𝑑𝑤 represent the degrees of 𝑢 and𝑤 in 𝐺 . 𝑛1 = |𝑈 (𝐺) |, 𝑛2 = |𝐿(𝐺) |, and 𝑛 = |𝑈 (𝐺) ∪ 𝐿(𝐺) |.
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Figure 7: Effect of 𝜀 on the mean relative errors of Naive, OneR,
and MultiR-DS.
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Figure 8: Effectiveness of privacy budget
allocation optimization.
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Figure 9: Effectiveness of MultiR-DS.
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Figure 10: Communication costs.
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Figure 11: Effect of the number of vertices.

• Naive: the algorithm that returns the number of common

neighbors between 𝑢 and𝑤 on the noisy graph 𝐺 ′;
• OneR: the one-round algorithm returns an unbiased estimate

of C2 (𝑢,𝑤) based on the noisy graph 𝐺 ′;
• MultiR-SS: the multiple-round single-source algorithm that

returns the unbiased estimator 𝑓𝑢 (𝑢,𝑤) by utilizing the local
neighborhood of 𝑢;

• MultiR-DS: themultiple-round double-source algorithm that

returns the unbiased estimator 𝛼 𝑓𝑢 + (1 − 𝛼) 𝑓𝑤 (𝛼 ∈ [0, 1])
by utilizing the local neighborhoods of both 𝑢 and𝑤 .

We also implement two variants of MultiR-DS: MultiR-DS-Basic
and MultiR-DS*. MultiR-DS-Basic returns the average of the

two single-source estimators 𝑓𝑢 and 𝑓𝑤 (
𝑓𝑢+𝑓𝑤

2
). It spends 𝜀1 on

noisy graph construction and 1 − 𝜀1 on the Laplace mechanism

and does not estimate 𝑑𝑒𝑔(𝑢) or 𝑑𝑒𝑔(𝑤). Similarly to MultiR-DS,
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MultiR-DS* returns 𝛼 𝑓𝑢 + (1 − 𝛼) 𝑓𝑤 (𝛼 ∈ [0, 1]) and adopts the

same optimizations for the allocation of privacy budgets to find 𝜀1
and 𝛼 . The difference is that MultiR-DS* assumes that the vertex

degrees are public and it does not need an additional round for

vertex degree estimation.

To better evaluate the edge LDP algorithms, we also implement

the CentralDP algorithm under the centralized model, which as-

sumes the data curator has access to the entire bipartite graph.

CentralDP directly applies the Laplacian mechanism to the num-

ber of common neighbors of two query vertices. Since the global

sensitivity of C2 (𝑢,𝑤) in the central model is 1, CentralDP returns
C2 (𝑢,𝑤) + 𝐿𝑎𝑝 ( 1𝜀 ). All algorithms are implemented in C++. The

experiments are run on a Linux server with an Intel Xeon 6342

processor and 512GB memory.

Parameter settings. By default, the privacy budget 𝜀 is set to 2.

We also allow it to vary from 1 to 3 with increments of 0.5. For

MultiR-SS and MultiR-DS-Basic, 𝜀1 is set to 0.5𝜀 by default. For

MultiR-DS, we set 𝜀0 = 0.05𝜀 for degree estimations. For each

algorithm, we uniformly sample 100 vertex pairs on the same layer

and report the mean absolute error, the average of the absolute

differences between the predicted and true values across all sampled

vertex pairs. To evaluate the performance of MultiR-DS, we use 𝜅
to quantify the imbalance between two vertex degrees. Specifically,

on a given pair of vertices (𝑢 and𝑤 ) with the parameter 𝜅 , we have

max(𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑤)) > 𝜅 ×min(𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑤)).
Evaluate the effectiveness of edge LDP algorithms across dif-
ferent datasets. In Fig. 6(a), we report the performances of the edge

LDP algorithms including Naive, OneR, MultiR-SS, MultiR-DS,
and MultiR-DS* on 100 uniformly sampled vertex pairs when

𝜀 = 2. Note that we also include the performance of CentralDP
under the centralized model for comparison. First, we observe

that the multiple-round algorithms (MultiR-SS, MultiR-DS, and
MultiR-DS*) significantly outperform Naive and OneR across all

datasets. Specifically, MultiR-SS and MultiR-DS achieve mean ab-

solute errors lower by up to four and two orders of magnitude,

respectively. This is because MultiR-SS and MultiR-DS address

the overcounting issue due to the dense noisy graph with Naive by
deriving unbiased estimates. Meanwhile, compared to the OneR algo-
rithm that produces unbiased estimates by considering all vertices

on the opposite layers as possible common neighbors, MultiR-SS
and MultiR-DS induce much smaller mean absolute errors by re-

ducing the candidate pool common neighbors to the neighbors

of query vertices. We also observe that MultiR-DS consistently

produces smaller mean absolute errors than MultiR-SS. For exam-

ple, on Netflix, the mean absolute error of MultiR-DS is approx-
imately one-fifth that of MultiR-SS. This is because MultiR-DS
integrates the two single-source estimators and dynamically ad-

justs the privacy budget allocation based on the query vertices. In

Fig. 6(a), we observe that MultiR-DS* generally produces slightly

smaller mean absolute errors compared to MultiR-DS. This is be-
cause MultiR-DS* does not need to spend an additional privacy

budget for degree estimation, which leads to more privacy budgets

for noisy graph construction and the Laplace mechanism (i.e., 𝜀1
and 𝜀2 becomes larger). We also observe that OneR achieves much

lower mean absolute errors than Naive because OneR leverages

flipping probability to obtain unbiased estimators, which mitigates

the over-counting issue in Naive.
In addition, CentralDP results in lower errors than all algorithms

with edge LDP. This illustrates the limitations of the local model in

terms of data utility due to stronger privacy guarantees.

Evaluate the computational time costs across datasets. In

Fig. 6(b), we report the computational time costs of Naive, OneR,
MultiR-SS, MultiR-DS, and MultiR-DS* on 100 vertex pairs when

𝜀 = 2. Note that our evaluation focuses on the computational

time costs incurred by both the vertex side and the data cura-

tor side. We can observe that the time costs of Naive, OneR, and
MultiR-SS remain relatively comparable while MultiR-DS requires
more time. This is because the time complexities of Naive, OneR,
and MultiR-SS depend on the number of vertices on the opposite

layers of the query vertices i.e., 𝑂 (𝑛1), which is incurred by noisy

graph construction. Since MultiR-DS needs an additional 𝑂 (𝑛2)
time for the estimation of the average degree, its total time complex-

ity becomes 𝑂 (𝑛) and exceeds the others. Despite this, MultiR-DS
remains highly efficient and can scale effectively to bipartite graphs

with 300 million edges (i.e., Orkut). Also, in practice, the time re-

quired for average degree estimation is distributed across vertices.

Additionally, we observe that the MultiR-DS* algorithm runs faster

than MultiR-DS and incurs comparable time costs to MultiR-SS.
This is because MultiR-DS* does not need an additional round to

estimate the vertex degrees.

Evaluate the effect of the privacy budget 𝜀. As shown in Fig. 7,

we report the mean absolute errors of Naive, OneR, and MultiR-DS
on 8 datasets, as 𝜀 varies. Note that we also include CentralDP
under central differential privacy for comparison. We observe that

all algorithms produce smaller mean absolute errors as 𝜀 increases,

which is consistent with our L2 loss analysis. As 𝜀 increases, the

difference between any noisy graph constructed by randomized

responses and the input graph becomes smaller. Another pattern is

that themultiple-round algorithms (MultiR-SS and MultiR-DS) sig-
nificantly outperform Naive and OneR, with mean absolute errors

up to four orders of magnitude lower. This is because the expected

L2 losses of Naive and OneR are 𝑂 (𝑛2
1
) and 𝑂 (𝑛1), respectively,

while the expected L2 losses of MultiR-SS and MultiR-DS only

depend on vertex degrees. MultiR-DS consistently outperforms

MultiR-SS on varying values of 𝜀 because MultiR-DS integrates

both single-source estimators and employs privacy budget alloca-

tion optimizations for minimized L2 loss. We also observe that OneR
consistently outperforms Naive as the privacy budget increases.

As expected, CentralDP produces smaller mean absolute errors

than algorithms under edge LDP, which has stronger privacy guar-

antees.

Evaluate the effect of privacy budget allocation optimization
on MultiR-DS. In Fig. 8, we present the mean absolute errors of

MultiR-DS-Basic in four datasets, as 𝜀1 ranges from 0.1𝜀 to 0.7𝜀,

where 𝜀 = 2 and 𝜀2 = 𝜀 − 𝜀1. Note that MultiR-DS-Basic does

not employ the privacy budget allocation optimization. In contrast,

MultiR-DS adjusts 𝜀1 and the contribution of two single-source

estimators (measured by 𝛼) based on the query vertices. We use

red dashed horizontal lines to indicate the mean absolute errors

associated with MultiR-DS. First, the optimal budget allocation

plan varies across datasets and it is unrealistic to fix 𝜀1 and 𝜀2 for all

datasets. This is because optimal budget allocation depends on the
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degrees of the query vertices, as shown in Table 3. Also, for each

dataset, the mean absolute error with MultiR-DS is close to or even
smaller than the smallest mean absolute error of MultiR-DS-Basic
on varying values of 𝜀1. This implies that MultiR-DS can find 𝜀1
and 𝛼 that result in near-optimal L2 loss.

Evaluate the effectiveness of MultiR-DS on vertex pairs with
imbalanced degrees. In Fig. 9, we report the mean absolute er-

rors of MultiR-SS, MultiR-DS-Basic, and MultiR-DS across four

datasets, as 𝜅 ranges from 10
0
to 10

3
, with 𝜀 = 2. Here, 𝜅 quantifies

the imbalance between two vertex degrees. For MultiR-DS-Basic,
𝜀1 is set to 0.5𝜀. We observe that the mean absolute errors of

MultiR-SS and MultiR-DS-Basic increase as 𝜅 increases, while

the performance of MultiR-DS remains relatively unchanged. This

is because MultiR-SS only relies on one query vertex to construct

the unbiased estimator 𝑓𝑢 . Thus, if 𝑑𝑒𝑔(𝑢,𝐺) is large, the error in-
creases accordingly, as indicated in Table 3. For MultiR-DS-Basic,
it performs slightly better than MultiR-SS when 𝜅 is small because

it allows 𝑓𝑢 and 𝑓𝑤 to contribute equally (i.e., (𝑓𝑢 + 𝑓𝑤)/2). How-
ever, when the vertex degrees are highly imbalanced (𝜅 becomes

large), the errors of MultiR-DS-Basic escalate rapidly. Also, nei-
ther MultiR-SS nor MultiR-DS-Basic can adjust privacy budget

allocations based on the query vertices. In contrast, MultiR-DS uses
𝛼 to model the contribution of two query vertices and dynamically

adjust privacy budgets to minimize L2 loss. (1) If the vertex degrees

are large, MultiR-DS allocates more privacy budget to 𝜀1. (2) If the

vertex degrees are imbalanced, MultiR-DS adjusts 𝛼 so that the

query vertex with a smaller degree has a greater contribution.

Evaluate the communication costs of all algorithms. In Fig. 10,
we report the communication costs (in MB) of each algorithm aver-

aged across 100 randomly sampled vertex pairs in four datasets, as

𝜀 varies. We observe that Naive and OneR require approximately

the same message sizes. This is because Naive and OneR rely solely

on randomized responses to satisfy edge LDP. Given a fixed 𝜀,

they apply randomized responses with the same flipping probabil-

ity, resulting in the same expected number of noisy edges. Also,

MultiR-SS and MultiR-DS incur higher communication costs than

Naive and OneR, which are incurred by (1) uploading the noisy

edges to the data curator (2) downloading the noisy edges to the

query vertices (3) sending the estimators (𝑓𝑢 or 𝑓𝑤 ) from the query

vertices. For MultiR-DS, the communication costs are higher as it

utilizes the noisy edges from both query vertices and also needs

to send vertex degree estimated to the data curator. Note that the

highest average communication cost for MultiR-DS across datasets
is approximately 100 MB, which is modest in practical terms.

Evaluate the effect of the number of vertices. In Fig. 11,

we report the mean absolute errors of CentralDP, Naive, OneR,
MultiR-SS and MultiR-DS in four datasets as the number of ver-

tices increases. Specifically, on each dataset, we uniformly sam-

ple 20%, 40%, 60%, 80%, and 100% of all vertices and run the al-

gorithms on the subgraphs induced by the sampled vertices. The

privacy budget 𝜀 is fixed at 2. First, we observe that the perfor-

mances of CentralDP, MultiR-SS, and MultiR-DS remain rela-

tively unchanged. This aligns with our analysis for MultiR-SS and

MultiR-DS, where their L2 losses depend solely on the allocation

of the privacy budget, the degrees of the query vertices, and 𝛼 , the

weighting parameter adjusting the contribution of 𝑓𝑢 and 𝑓𝑤 . For

CentralDP, its errors come only from the added Laplacian noise,

which is also not related to the number of vertices in the bipartite

graph. We also observe that the mean absolute errors of Naive
and OneR increase steadily as the number of vertices increases. For

instance, on Dui and OG, the mean absolute errors of Naive increase
approximately fivefold when the number of vertices increases from

20% × |𝑉 | to 100% × |𝑉 |. Meanwhile, the mean absolute errors of

OneR show less sensitivity, increasing approximately 2.3 times. This

is because the expected L2 losses of Naive and OneR are𝑂 (𝑛2
1
) and

𝑂 (𝑛1), respectively.

6 RELATEDWORK
Here we review the related works on graph analysis under differ-

ential privacy.

Graph analysis under differential privacy. Differential privacy
is widely adopted for privacy-preserving graph analysis, including

releasing degree distributions [5, 14, 15, 32], common neighbor

count distribution [30], 𝑘-star counting [23, 33], triangle counting

[7, 18–20, 31], and core decomposition [6], and graph learning [26,

38, 50, 51, 66]. Some approaches adopt central differential privacy
[15, 23, 30, 33, 62], where a trusted curator can access the entire

graph. However, if this curator is compromised, all users’ privacy

is at risk [18, 21]. Another line of research adopts local differential
privacy [11, 18–20, 28, 35, 42, 49]. Two main paradigms exist for

graph analysis under LDP: (1) general-purpose synthetic graph

construction [13, 16, 22, 29, 36, 60, 65] and (2) problem-specific

algorithmic design. The former often suffers from low data utility

due to the loss of graph structure. Under the second category, many

works are devoted to motif counting. [18] introduces one-round and

two-round algorithms for triangle counting under edge LDP, while

[19] improves communication cost and estimation error. [11] offers

an in-depth technical analysis of these algorithms. [28] and [42]

study triangle counting in the localized setting with extended local

views. [27] attempts to improve data utility for triangle counting

under edge LDP in a crypto-assisted manner. [42] also addresses

three-hop paths and k-cliques on small 𝑘 values. [20] estimates

the 4-cycle and triangle counts under the shuffle model, where

users’ messages are shuffled before being sent to the data curator.

[41] proposes k-star LDP to addresses differentially private (𝑝, 𝑞)-
biclique counting over bipartite graphs. Specifically, each vertex

reports its perturbed k-star neighbor lists instead of the classic

edge neighbor lists to the data curator. In addition, [6] studies core

decomposition under edge LDP, leading to approximate solutions

for densest subgraph discovery. [8] further proves a purely additive

loss for the densest subgraph problem under edge LDP. A recent

work [30] studies publishing the histogram of common neighbor

counts under the centralized model, which differs from our setting.

7 CONCLUSION
In this paper, we study the problem of common neighborhood esti-

mation on bipartite graphs under edge LDP. To address overcount-

ing with the Naive approach, we propose the OneR algorithm that

leverages the flipping probability to construct unbiased estimates.

To improve data utility, we propose a multiple-round framework

and a single-source algorithm MultiR-SS, which enables the query

13



vertices to download noisy edges and construct unbiased estima-

tors locally. This significantly reduces error compared to OneR by
limiting the candidate pool. To tackle cross-round privacy bud-

get allocation and the variety of query vertices, we propose the

MultiR-DS algorithm that returns a weighted average of two un-

biased estimators associated with two query vertices. We propose

novel optimizations to adjust the privacy budgets of each round

and the contribution of each estimator based on the query vertices.

Experiments on 15 real-world bipartite graphs validate the effec-

tiveness and efficiency of the proposed multiple round algorithms.
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