Retinaface分析日志:深度学习人脸识别的最新技术

1151 篇文章 ¥299.90 ¥399.90
本文详细介绍了Retinaface在深度学习人脸识别中的应用,通过PyTorch框架进行人脸检测,设置置信度阈值,进行关键点定位和姿态估计,最后将结果进行可视化。Retinaface的技术为人脸识别领域带来了显著提升。

Retinaface分析日志:深度学习人脸识别的最新技术

Retinaface是一种基于深度学习的人脸检测技术,能够快速准确地检测图像中的多个人脸,并提取出关键特征。下面我们来看一下Retinaface分析日志的具体过程。

首先,Retinaface使用的是PyTorch框架,在代码中需要导入相关的库和模型,例如:

import torch
import torchvision
from retinaface import RetinaFace
model = RetinaFace().cuda()

然后,我们需要读取图片并对其进行预处理:

img = cv2.imread('test.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

接着,使用Retinaface进行人脸检测:

boxes, landmarks = model.detect(img, 0.5)

这里的0.5是指置信度阈值,只有大于等于该值的人脸才会被检测出来。检测完成后,我们可以对人脸进行关键点定位、姿态估计等操作。

最后,将检测结果可视化:

for box, landmark in zip(boxes, landmarks):
    cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
    for i in range(5):
        cv2.circle(img, (i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值