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Figure 1: Our technique allows to extract for the first time accurate 3D human body models, including hair and clothing,
from a single video sequence of the person moving in front of the camera such that the person is seen from all sides.

Abstract
This paper describes a method to obtain accurate 3D

body models and texture of arbitrary people from a single,
monocular video in which a person is moving. Based on
a parametric body model, we present a robust processing
pipeline to infer 3D model shapes including clothed peo-
ple with 4.5mm reconstruction accuracy. At the core of our
approach is the transformation of dynamic body pose into
a canonical frame of reference. Our main contribution is
a method to transform the silhouette cones corresponding
to dynamic human silhouettes to obtain a visual hull in a
common reference frame. This enables efficient estimation
of a consensus 3D shape, texture and implanted animation
skeleton based on a large number of frames. Results on 4
different datasets demonstrate the effectiveness of our ap-
proach to produce accurate 3D models. Requiring only an
RGB camera, our method enables everyone to create their
own fully animatable digital double, e.g., for social VR ap-
plications or virtual try-on for online fashion shopping.

1. Introduction
A personalized realistic and animatable 3D model of

a human is required for many applications, including vir-
tual and augmented reality, human tracking for surveillance,
gaming, or biometrics. This model should comprise the
person-specific static geometry of the body, hair and cloth-
ing, alongside a coherent surface texture.

One way to capture such models is to use expensive ac-
tive scanners. But size and cost of such scanners prevent
their use in consumer applications. Alternatively, multi-
view passive reconstruction from a dense set of static body
pose images can be used [22, 46]. However, it is hard for
people to stand still for a long time, and so this process is
time-consuming and error-prone. Also, consumer RGB-D
cameras can be used to scan 3D body models [39], but these
specialized sensors are not as widely available as video.
Further, all these methods merely reconstruct surface shape
and texture, but no rigged animation skeleton inside. All
aforementioned applications would benefit from the ability
to automatically reconstruct a personalized movable avatar
from monocular RGB video.
Despite remarkable progress in reconstructing 3D body
models [6, 71, 81] or free-form surface [86, 44, 47, 21]
from depth data, 3D reconstruction of humans in clothing
from monocular video (without a pre-recorded scan of the
person) has not been addressed before. In this work, we es-
timate the shape of people in clothing from a single video
in which the person moves. Some methods infer shape
parameters of a parametric body model from a single im-
age [7, 20, 5, 27, 83, 34], but the reconstruction is limited to
the parametric space and can not capture personalized shape
detail and clothing geometry.
To estimate geometry from a video sequence, we could
jointly optimize a single free-form shape constrained by a
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Figure 2. Overview of our method. The input to our method is an image sequence with corresponding segmentations. We first calculate
poses using the SMPL model (a). Then we unpose silhouette camera rays (unposed silhouettes depicted in red) (b) and optimize for the
subjects shape in the canonical T-pose (c). Finally, we are able to calculate a texture and generate a personalized blend shape model (d).

body model to fit a set of F images. Unfortunately, this re-
quires to optimize F poses at once and more importantly it
requires storing F models in memory during optimization
which makes it computationally expensive and unpractical.

The key idea of our approach is to generalize visual
hull methods [41] to monocular videos of people in mo-
tion. Standard visual hull methods capture a static shape
from multiple views. Every camera ray through a silhouette
point in the image casts a constraint on the 3D body shape.
To make visual hulls work for monocular video of a mov-
ing person it is necessary to “undo” the human motion and
bring it to a canonical frame of reference. In this work, the
geometry of people (in wide or tight clothing) is represented
as a deviation from the SMPL parametric body model [40]
of naked people in a canonical T-pose; this model also fea-
tures a pose-dependent non-rigid surface skinning. We first
estimate an initial body shape and 3D pose at each frame by
fitting the SMPL model to 2D detections similar to [37, 7].
Given such fits, we associate every silhouette point in ev-
ery frame to a 3D point in the body model. We then trans-
form every projection ray according to the inverse deforma-
tion model of its corresponding 3D model point; we call
this operation unposing (Fig. 3). After unposing the rays
for all frames we obtain a visual hull that constrains the
body shape in a canonical T-pose. We then jointly optimize
body shape parameters and free-form vertex displacements
to minimize the distance between 3D model points and un-
posed rays. This allows us to efficiently optimize a single
displacement surface on top of SMPL constrained to fit all
frames at once, which requires storing only one model in
memory (Fig. 2). Our technique allows for the first time
extracting accurate 3D human body models, including hair
and clothing, from a single video sequence of the person
moving in front of the camera such that the person is seen
from all sides.
Our results on several 3D datasets show that our method
can reconstruct 3D human shape to a remarkable accuracy
of 4.5 mm (even higher 3.1 mm with ground truth poses) de-
spite monocular depth ambiguities. We provide our dataset
and source code of our method for research purposes [1].

2. Related Work
Shape reconstruction of humans in clothing can be clas-

sified according to two criteria: (1) the type of sensor used
and (2) the kind of template prior used for reconstruction.
Free-form methods typically use multi-view cameras, depth
cameras or fusion of sensors and reconstruct surface ge-
ometry quite accurately without using a strong prior on the
shape. In more unconstrained and ambiguous settings, such
as in the monocular case, a parametric body model helps to
constrain the problem significantly. Here we review free-
form and model-based methods and focus on methods for
monocular images.

Free-form methods reconstruct the moving geometry by
deforming a mesh [12, 19, 10] or using a volumetric repre-
sentation of shape [30, 2]. The advantage of these meth-
ods is that they allow reconstruction of general dynamic
shapes provided that a template surface is available initially.
While flexible, such approaches require high-quality multi-
view input data which makes them impractical for many
applications. Only one approach showed reconstruction of
human pose and deforming cloth geometry from monoc-
ular video using a pre-captured shape template [74]. Us-
ing a depth camera, systems like KinectFusion [33, 45] al-
low reconstruction of 3D rigid scenes and also appearance
models [82] by incrementally fusing geometry in a canon-
ical frame. A number of methods adapt KinectFusion for
human body scanning [58, 39, 79, 17]. The problem is
that these methods require separate shots at different time
instances. The person thus needs to stand still while the
camera is turned around, or subtle pose changes need to be
explicitly compensated. The approach in [44] generalized
KinectFusion to non-rigid objects. The approach performs
non-rigid registration between the incoming depth frames
and a concurrently updated, initially incomplete, template.
While general, such template-free approaches [45, 31, 60]
are limited to slow and careful motions. One way to
make fusion and tracking more robust is by using multiple
kinects [21, 47] or multi-view [63, 38, 16]; such methods
achieve impressive reconstructions but do not register all



frames to the same template and focus on different appli-
cations such as streaming or remote rendering for telepres-
ence, e.g., in the holoportation project [47]. Pre-scanning
the object or person to be tracked [86, 19] reduces the prob-
lem to tracking the non-rigid deformations. Some works are
in-between free-form and model-based methods. In [23, 69]
they pre-scan a template and insert a skeleton and in [78]
they use a skeleton to regularize dynamic fusion. Our work
is also related to the seminal work of [14, 15] where they
align visual hulls over time to improve shape estimation.
In the articulated case, they need to segment and track ev-
ery body part separately and then merge the information to-
gether in a coarse voxel model; more importantly, they need
multi-view input. In [35] they compensate for small mo-
tions of captured objects by de-blurring occupancy images
but no results are shown for moving humans. In [85] they
reconstruct the shape of clothed humans in outdoor environ-
ments from RGB video, requiring the subject to stand still.
All these works use either multi-view systems, depth cam-
eras or do not handle moving humans. In contrast, we use
a single RGB video of a moving person, which makes the
problem significantly harder as geometry can not be directly
unwarped as it is done in depth fusion papers.

Model-based. Several works leverage a parametric body
model for human pose and shape estimation from im-
ages [52]. Early models in computer vision were based
on simple primitives [43, 24, 48, 59]. Recent ones are
learned from thousands of scans of real people and en-
code pose, and shape deformations [4, 28, 40, 87, 51].
Some works reconstruct the body shape from depth data
sequences [71, 29, 76, 81, 6] exploiting the temporal in-
formation. Typically, a single shape and multiple poses
are optimized to exploit the temporal information. Us-
ing multi-view some works have shown performance cap-
ture outdoors [54, 55] by leveraging a sum of Gaussians
body model [64] or using a pre-computed template [77].
A number of works are restricted to estimating the shape
parameters of a body model [5, 25] from multiple views
or single images with manually clicked points; silhouettes
shading cues and color have been used for inference. Some
works fit a body model to images using manual interven-
tion [83, 34, 57] with the goal of image manipulation. Shape
and clothing from a single image is recovered in [26, 13]
but the user needs to click points in the image and select the
clothing types from a database. In [36] they obtain shape
from contour drawings. The advance in 2D pose detec-
tion [70, 11, 32] has made 3D pose and shape estimation
possible in challenging scenarios. In [7, 37] they fit a 3D
body model [40] to 2D detections; since only model param-
eters are optimized and these methods heavily rely on 2D
detections, results tend to be close to the shape space mean.
In [3] they add a silhouette term to reduce this effect.

Shape Under Clothing. The aforementioned methods ig-
nore clothing or treat it as noise, but a number of works ex-
plicitly reason about clothing. Typically, these methods in-
corporate constraints such as the body should lie inside the
clothing silhouette. In [5] they estimate body shape under
clothing by optimizing model parameters for a set of images
of the same person in different clothing. In [73, 75] they ex-
ploit temporal sequences of scans to estimate shape under
clothing. Results are usually restricted to the (naked) model
space. In [80] they estimate detailed shape under cloth-
ing from scan sequences by optimizing a free-form surface
constrained by a body model. The approach in [50] jointly
captures clothing geometry and body shape using separate
meshes but requires 3D scan sequences as input. Double-
Fusion [66] reconstructs clothing geometry and inner body
shape from a single depth camera in real time.

Learning based. Only very few works predict human
shape from images using learning methods since images an-
notated with ground truth shape, pose and clothing geome-
try are hardly available. A few exceptions are the approach
of [20] that predicts shape from silhouettes using a neural
network and [18] that predicts garment geometry from a
single image. Predictions in [20] are restricted to model
shape space and tend to look over-smooth; only garments
seen in the dataset can be recovered in [18]. Recent works
leverage 2D annotations to train networks for the task of 3D
pose estimation [42, 53, 84, 65, 68, 56]. Such works typ-
ically predict a stick figure or bone skeleton only, and can
not estimate body shape or clothing.

3. Method
Given a single monocular RGB video depicting a mov-

ing person, our goal is to generate a personalized 3D model
of the subject, which consists of the shape of body, hair
and clothing, a personalized texture map, and an underly-
ing skeleton rigged to the surface. Non-rigid surface defor-
mations in new poses are thus entirely skeleton-driven. Our
method consists of 3 steps: 1) pose reconstruction (Sec. 3.2)
2) consensus shape estimation (Sec. 3.3) and 3) frame re-
finement and texture map generation (Sec. 3.4). Our main
contribution is step 2), the consensus shape estimation; step
1) builds on previous work and step 3) to obtain texture and
time-varying details is optional.

In order to estimate the consensus shape of the subject,
we first calculate the 3D pose in each frame (Sec. 3.2). We
extend the method of [7] to make it more robust and enforce
better temporal coherence and silhouette overlap. In the
second step, the consensus shape is calculated as detailed
in Sec. 3.3. The consensus shape is efficiently optimized
to maximally explain the silhouettes at each frame instance.
Due to time-varying cloth deformations the posed consen-
sus shape might be slightly misaligned with the frame sil-
houettes. Hence, in order to compute texture and capture



time-varying details, in step 3) deviations from the consen-
sus shape are optimized per frame in a sliding window ap-
proach (Sec. 3.4). Given the refined frame-wise shapes we
can compute the texture map. Our method relies on a fore-
ground segmentation of the images. Therefore, we adopt
the CNN based video segmentation method of [9] and train
it with 3-4 manual segmentations per sequence. In order
to counter ambiguities in monocular 3D human shape re-
construction, we use the SMPL body model [40] as starting
point. In the following, we briefly explain how we adapt
original SMPL body model for our problem formulation.

3.1. SMPL Body Model with Offsets

SMPL is a parameterized model of naked humans that
takes 72 pose and 10 shape parameters and returns a tri-
angulated mesh with N = 6890 vertices. The shape β
and pose θ deformations are applied to a base template T,
which in the original SMPL model corresponds to the sta-
tistical mean shape in the training scans Tµ:

M(β,θ) = W (T (β,θ), J(β),θ,W) (1)

T (β,θ) = Tµ +Bs(β) +Bp(θ) (2)

where W is a linear blend-skinning function applied to a
rest pose T (β,θ) based on the skeleton joints J(β) and
after pose-dependent deformations Bp(θ) and shape de-
pendent deformations Bp(θ) are applied. Shape-dependent
deformations Bs(β) model subject identity. However the
Principal Component shape space of SMPL was learned
from scans of naked humans, so clothing and other personal
surface detail cannot be modeled. In order to personalize the
SMPL model, we simply add a set of auxiliary variables or
offsets D ∈ R3N from the template:

T (θ,β,D) = Tµ +Bs(β) +Bp(θ) + D (3)

Such offsets D allow us to deform the model to better ex-
plain details and clothing. Offsets are optimized in step 2.

3.2. Pose Reconstruction

The approach in [7] optimizes SMPL model parameters
to fit a set of 2D joint detections in the image. As with
any monocular method, scale is an inherent ambiguity. To
mitigate this effect, we take inspiration from [54] and ex-
tend [7] such that it jointly considers P = 5 frames and
optimizes a single shape and P = 5 poses. Note that opti-
mizing many more frames would become computationally
very expensive and many models would have to be simulta-
neously stored in memory. Our experiments reveal that even
when optimizing over P = 5 poses the scale ambiguity pre-
vails. The reason is that pose differences induce additional
3D ambiguities which cannot be uniquely decoupled from
global size, even on multiple frames [67, 61, 49]. Hence,
if the height of the person is known, we incorporate it as

Figure 3. The camera rays that form the image silhouette (left)
are getting unposed into the canonical T-pose (right). This allows
efficient shape optimization on a single model for multiple frames.

constraint during optimization. If height is not known the
shape reconstructions of our method are still accurate up to
a scale factor (height estimation is roughly off by 2-5 cm).
The output of initialization are SMPL model shape param-
eters β0 that we keep fixed during subsequent frame-wise
pose estimation. In order to estimate 3D pose more reliably,
we extend [7] by incorporating a silhouette term:

Esilh(θ) = G(woIrn(θ)C + wi(1− Irn(θ))C̄) (4)

with the silhouette image of the rendered model Irn(θ), dis-
tance transform of observed image mask C and its inverse
C̄, weights w. To be robust to local minima we optimize
at 4 different levels of a Gaussian pyramid G. We further
update the method to use state of the art 2D joint detec-
tions [11, 70] and a single-modal A-pose prior. We train the
prior from SMPL poses fitted against body scans of peo-
ple in A-pose. Further, we enforce a temporal smoothness
and initialize the pose in a new frame with the estimated
pose θ in the previous frame. If the objective error gets too
large, we re-initialize the tracker by setting the pose to zero.
While optimization in batches of frames would be beneficial
it slows down computation and we have not found signifi-
cant differences in pose accuracy. The output of this step is
a set of poses {θp}Fp=1 for the F frames in the sequence.

3.3. Consensus Shape

Given the set of estimated poses we could jointly opti-
mize a single refined shape matching all original F poses,
which would yield a complex, non-convex optimization
problem. Instead, we merge all the information into an un-
posed canonical frame, where refinement is computation-
ally easier. At every frame a silhouette places a new con-
straint on the body shape; specifically, the set of rays going
from the camera to the silhouette points define a constraint
cone, see Fig. 3. Since the person is moving, the pose is
changing. Our key idea is to unpose the cone defined by
the projection rays using the estimated poses. Effectively,
we invert the SMPL function for every ray. In SMPL, every
vertex v deforms according to the following equation:

v′i =

K∑
k=1

wk,iGk(θ, J(β))(vi + bs,i(β) + bP,i(θ)) (5)



where Gk is the global transformation of joint k and
bs,i(β) ∈ R and bP,i(θ) are elements of Bs(β) and Bp(θ)
corresponding to i − th vertex. For every ray r we find its
closest 3D model point. From Eq. (5) it follows that the
inverse transformation applied to a ray r corresponding to
model point v′i is

r =

(
K∑

k=1

wk,iGk(θ, J(β))

)−1

r′ − bP,i(θ). (6)

Doing this for every ray effectively unposes the silhou-
ette cone and places constraints on a canonical T-pose,
see Fig. 3. Unposing removes blend-shape calculations
from the optimization problem and significantly reduces the
memory foot-print of the method. Without unposing the
vertex operations and the respective Jacobians would have
to be computed for every frame at every update of the shape.
Given the set of unposed rays for F silhouettes (we use
F = 120 in all experiments), we formulate an optimization
in the canonical frame

Econs = Edata + wlpElp + wvarEvar + wsymEsym (7)

and minimize it with respect to shape parameters β of a
template model and the vertex offsets D defined in Eq. 3.
The objective Econs consists of a data term Edata and three
regularization terms Elp, Evar, Esym with weights w∗ that
balance its influence.

Data Term measures the distance between vertices and
rays. Point to line distances can be efficiently computed
expressing rays using Plucker coordinates (r = rm, rn).
Given a set of correspondences (vi, r) ∈ M the data term
equals

Edata =
∑

(v,r)∈M

ρ(v × rn − rm) (8)

where ρ is the Geman-McClure robust cost function, here
applied to the point to line distance. Since the canonical
pose parameters are all zero (θ = 0) it follows from Eq. 3
that vertex positions are a function of shape parameters and
offsets v(β0,D) = Ti(β0,D) = (vµ,i + bs,i(β0) + di),
where di ∈ R3 is the offset in D corresponding to vertex vi.
In our notation, we remove the dependency on parameters
for clarity. The remaining terms regularize the optimization.

Laplacian Term. We enforce smooth deformation by
adding the Laplacian mesh regularizer [62]:

Elp =
N∑
i=1

τl,i||L(vi)− δi||2 (9)

where δ = L(v(β0,0)) and L is the Laplace operator. The
term forces the Laplacian of the optimized mesh to be simi-
lar to the Laplacian of the mesh at initialization (where off-
sets D = 0).

Body Model Term. We penalize deviations of the re-
constructed free-form vertices v(β0,D) from vertices ex-
plained by the SMPL model v(β,0):

Evar =

N∑
i=1

τv,i||vi(β0,D)− vi(β,0)||2 (10)

Symmetry Term. Humans are usually axially symmet-
rical with respect to the Y-axis. Since the body model is
nearly symmetric, we add a constraint on the offsets alone
that enforces a symmetrical shape:

Esym =
∑

(i,j)∈S

τs,i,j

∣∣∣∣∣∣[−1, 1, 1]T · di − dj

∣∣∣∣∣∣2 (11)

where S contains all pairs of Y-symmetric vertices. We
phrase this as a soft-constraint to allow potential asymme-
tries in clothing wrinkles and body shapes. Since the refined
consensus shape still has the mesh topology of SMPL, we
can apply the pose-based deformation space of SMPL to
simulate surface deformation in new skeleton poses.

Implementation Details. Body regions that are typically
unclothed or where silhouettes are noisy (face, ears, hands,
and feet) are more regularized towards the body model
using per-vertex weights τ . We optimize Econs using
a “dog-leg” trust region method using the chumpy auto-
differentiation framework. We alternate minimizing Econs
with respect to model parameters and offsets and finding
point to line correspondences. We also re-initialize Elp,
Evar, Esym. More implementation details and runtime met-
rics are given in the supplementary material.

3.4. Frame Refinement and Texture Generation

After calculating a global shape for the given sequence,
we aim to capture the temporal variations. We adapt the en-
ergy in Eq. 7 to process frames sequentially. The optimiza-
tion is initialized with the preceding frame and regularized
with neighboring frames:

Eref,j =

f+m∑
j=f−m

ψjEdata,j + wvarEvar,j

+wlpElp,j + wlastElast,j (12)

where ψj = 1 for j = k and ψj = wneigh < 1 for neigh-
boring frames. Hence, wneigh defines the influence of neigh-
boring frames and Elast regularizes the reconstruction to the
result of the preceding frame. To create the texture, we
warp our estimated canonical model back to each frame,
back-project the image color to all visible vertices, and fi-
nally generate a texture image by calculating the median of
the most orthogonal texels from all views. An example of
keyframes we use for texture mapping and the resulting tex-
ture image is shown in Fig. 4.



Figure 4. We back-project the image color from several frames to
all visible vertices to generate a full texture map.

4. Experiments
We study the effectiveness of our method, qualitatively

and quantitatively, in different scenarios. For quantitative
evaluation, we used two publicly available datasets consist-
ing of 3D scan sequences of humans in motion: with mini-
mal clothing (MC) (DynamicFAUST [8]) and with clothing
(BUFF [80]). Since these datasets were recorded without
RGB sensors we simply render images of the scans using
a virtual camera and use them as input. In order to evalu-
ate our method on more varied clothing and backgrounds,
we captured a new test dataset (People-Snapshot dataset),
and present qualitative results. To the best of our knowl-
edge, our method is the first approach that enables detailed
human body model reconstruction in clothing from a sin-
gle monocular RGB video without requiring a pre-scanned
template or manually clicked points. Thus, there exist no
methods with the same setting as ours. Hence, we pro-
vide a quantitative comparison to the state-of-the-art RGB-
D based approach KinectCap [6] on their dataset. The im-
age sequences and ground truth scans were provided by the
authors of [6]. While reconstruction from monocular videos
is much harder than from depth videos, a comparison is still
informative. In all experiments, the method’s parameters
are set to two constant values, one set for clothed and one
set for people in MC, which are empirically determined.

4.1. Results on Rendered Images
We take all 9 sequences of 5 different subjects in the

BUFF dataset and all 9 sequences of 9 subjects from the Dy-
namicFaust dataset performing “Hip” movements, featur-
ing strong fabric movement or soft tissue dynamics respec-
tively. Each dynamic sequence consists of 300-800 frames.
To simulate the subject rotating in front of a camera, we cre-
ate a virtual camera at 2.5 meters away from the 3D scans of
the subject. We rotate the camera in a circle around the per-
son moving one time per sequence. The foreground masks
are easily obtained from the alpha channel of the rendered
images. For BUFF we render images with real dynamic
textures; for DynamicFAUST since textures are not avail-
able we rendered shaded models. In Fig. 6, we show
some examples of our reconstruction results on image se-
quences rendered from BUFF and DynamicFAUST scans.
The complete results of all 9 sequences are provided in the

Figure 5. Comparison to the monocular model-based method [7]
(left to right) input frame, SMPLify, consensus shape. To make a
fair comparison we extended [7] to multiple views as well. Com-
pared to pure model-based methods, our approach captures also
medium level geometry details from a single RGB camera.

supplementary material. To be able to quantitatively evalu-
ate the reconstruction quality, we adjust the pose and scale
of our reconstruction to match the ground truth body scans
following [80, 6]. Then, we compute a bi-directional ver-
tex to surface distance between our reconstruction and the
ground truth geometry. Per-vertex errors (in millimeters)
on all sequences are provided in Tab. 1. The heatmaps of
per-vertex errors are shown in Fig. 6. As can be seen, our
method yields accurate reconstruction on all sequences in-
cluding personalized details. To study the importance of
the pose estimation component, we report the accuracy of
our method using ground truth poses versus using estimated
poses full method. Ground truth poses were obtained by
registering SMPL to the 3D scans. The results of the abla-
tion evaluation are also shown in Fig. 6 and Tab. 1. We can
see that our complete pipeline achieved comparable accu-
racy with the one using ground truth poses which demon-
strates robustness. Results show that there is still room for
improvement in 3D pose reconstruction.

4.2. Qualitative Results on RGB Images

We also evaluate our method on real image sequences.
The People-Snapshot dataset consists of 24 sequences of 11
subjects varying a lot in height and weight. The sequences
are captured with a fixed camera, and we ask the subjects to
rotate while holding an A-pose. To cover a variety of cloth-
ing, lighting conditions and background, the subjects were
captured with varying sets of garments and with three differ-
ent background scenes: in the studio with green screen, out-
door, and indoor with complex dynamic background. Some
examples of our reconstruction results are shown in Fig. 7
and Fig. 1. We show more example in the supplementary
material and in the video. We can see that our method yields
detailed reconstructions of similar quality as the results on
rendered sequences, which demonstrates that our method
generalizes well on the real world scenarios. The benefits
of our method are further evidenced by overlaying the re-
posed final reconstruction on to the input images. As shown
in Fig. 9, our reconstructions precisely overlay the body sil-
houettes in the input images.
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Figure 6. Our results on image sequences from BUFF and D-FAUST datasets. Left we show D-FAUST: (a) ground truth 3D scan, (b)
consensus shape with ground truth poses (consensus-p), (c) consensus-p heatmap, (d) consensus shape (consensus), (e) consensus heat-map
(blue means 0mm, red means ≥ 2cm). Right we show textured results on BUFF: (a) ground truth scan, (b) consensus-p (c) consensus.

Subject ID full method GT poses
50002 5.13±6.43 3.92±4.49
50004 4.36±4.67 2.95±3.11
50009 3.72±3.76 2.56±2.50
50020 3.32±3.04 2.27±2.06
50021 4.45±4.05 3.00±2.66
50022 5.71±5.78 2.96±2.97
50025 4.84±4.75 2.92±2.94
50026 4.56±4.83 2.62±2.48
50027 3.89±3.57 2.55±2.33

Subject ID full method GT poses

t-
sh

ir
t,

lo
ng

pa
nt

s 00005 5.07±5.74 3.80±4.13
00032 4.84±5.25 3.37±3.59
00096 5.57±6.54 4.35±4.66
00114 4.22±5.12 3.14±2.99
03223 4.85±4.80 2.87±2.58

so
cc

er
ou

tfi
t 00005 5.35±6.67 3.82±3.67

00032 7.95±8.62 3.04±3.39
00114 4.97±5.81 3.01±2.80
03223 5.49±5.71 3.21±3.28

Subject ID Subject ID
00009 4.07±4.20 02909 3.94±4.80
00043 4.30±4.39 03122 3.21±2.85
00059 3.87±3.96 03123 3.68±3.22
00114 4.85±4.93 03124 3.67±3.31
00118 3.79±3.80 03126 4.89±6.12

Table 1. Numerical evaluation on 3 different datasets with ground truth 3D shapes. On D-FAUST and BUFF we rendered the ground truth
scans on a virtual camera (see text), KinectCap already included images. We report for every subject the average surface to surface distance
(see text). On BUFF, D-FAUST and KinectCap we achieve mean average errors of 5.37mm, 4.44mm, 3.97mm respectively. As expected
best results are obtained using ground truth poses. Perhaps surprisingly, the results (3.40 mm for BUFF, 2.86 for D-FAUST) do not differ
much from the average errors of the full pipeline. This demonstrates that our approach is robust to inaccuracies in 3D pose estimation.

4.3. Comparison with KinectCap
We compare our method to [6] on their collected dataset.

Subjects were captured in both A-pose and T-poses in this
dataset. Since T-poses (zero-pose in SMPL) are rather un-
natural, they are not well captured in our general pose-prior.
Hence, we adjust our pose prior to contain also T-poses.
Note that their method relies on depth data, while ours only
uses the RGB images. Notably, our method obtains compa-
rable results qualitatively and quantitatively despite solving
a much more ill-posed problem. This is further evidenced
by the per-vertex errors in Tab. 1.

4.4. Surface Refinement Using Shading
As mentioned before, our method captures both body

shape and medium level surface geometry. In contrast to
pure model-based methods, we already add significant de-
tails (Fig. 5). Using existing shape from shading methods
the reconstruction can be further improved by adding the
finer level details of the surface, e.g. folding and wrinkles.
Fig. 10 shows an example result of applying the shape from
shading method of [72] to our reconstruction. This appli-
cation further demonstrates the accuracy of our reconstruc-
tion, since such good result cannot be obtained without an
accurate model-to-image alignment.

5. Discussion and Conclusions

We have proposed the first approach to reconstruct a per-
sonalized 3D human body model from a single video of a
moving person. The reconstruction comprises personalized
geometry of hair, body, and clothing, surface texture, and
an underlying model that allows changes in pose and shape.
Our approach combines a parametric human body model
extended by surface displacements for refinement, and a
novel method to morph and fuse the dynamic human sil-
houette cones in a common frame of reference. The fused
cones merge the shape information contained in the video,
allowing us to optimize a detailed model shape. Our al-
gorithm not only captures the geometry and appearance of
the surface, but also automatically rigs the body model with
a kinematic skeleton enabling approximate pose-dependent
surface deformation. Quantitative results demonstrate that
our approach can reconstruct human body shape with an ac-
curacy of 4.5mm and an ablation analysis shows robustness
to noisy 3D pose estimates.

The presented method finds its limits in appearances that
do not share the same topology as the body: long open hair
or skirts can not be modeled as an offset from the body. Fur-
thermore, we can only capture surface details that are seen



Figure 7. Qualitative results: since the reconstructed templates share the topology with the SMPL body model we can use SMPL to change
the pose and shape of our reconstructions. While SMPL does not model clothing deformations the deformed templates look plausible and
maybe of sufficient quality for several applications.

Figure 8. Comparison to the RGB-D based method of [6] (red) and
ground truth scans (green). Our approach (blue) achieves similar
qualitative results despite using a monocular video sequence as
opposed to a depth camera. Their approach is more accurate nu-
merically 2.54 mm versus 3.97 mm but our results are comparable
despite using a single RGB camera.

Figure 9. Side-by-side comparison of our reconstructions (right)
and the input images (left). As can be seen from the right side,
our reconstructions precisely overlay on the input images. The
reconstructed models rendered in a side view are shown at bottom
right.

Figure 10. Our reconstruction can be further improved by adding
the finer level details of the surface using shape from shading.

on the outline of at least one view. This means especially
concave regions like armpits or inner thighs are sometimes
not well handled. Strong fabric movement caused by fast
skeletal motions will additionally result in decreased level
of detail. In future work, we plan to incorporate illumi-
nation and material estimation alongside with temporally
varying textures in our method to enable realistic rendering
and video augmentation.

For the first time, our method can extract realistic avatars
including hair and clothing from a moving person in a
monocular RGB video. Since cameras are ubiquitous and
low cost, people will be able to digitize themselves and use
the 3D human models for VR applications, entertainment,
biometrics or virtual try-on for online shopping. Further-
more, our method precisely aligns models with the images,
which opens up many possibilities for image editing.
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