光谱相似度指数(Spectral Similarity Index, SSI)是一种用于量化两条光谱曲线相似程度的数学指标,广泛应用于遥感、材料科学、化学分析及地质勘探等领域。其核心是通过计算光谱数据间的几何或统计特征差异来评估相似性。以下是其核心定义、常用算法及关键特性:
一、基础定义
给定两条光谱曲线a=[a1,a2,…,an]和b=[b1,b2,…,bn](n为波段数),SSI通过特定公式输出一个相似性评分(通常范围在 [0, 1] 或 [-1, 1]),数值越大表示相似度越高。
二、主流算法分类
1. 余弦相似度(Cosine Similarity)
原理:将光谱视为向量,计算其夹角余弦值
特性:
值域:[-1, 1],1表示完全同向(形状一致)。
对光照强度不敏感,仅关注光谱曲线形态(如矿物识别)。
2. 光谱角制图(Spectral Angle Mapper, SAM)
原理:计算光谱向量间的夹角(弧度或角度)
SSI转换:通常用以下公式:
特性:
广泛用于高光谱遥感分类(如植被类型区分)。
3. 欧氏距离相似度(Euclidean Similarity)
原理:基于光谱向量间的欧氏距离
SSI转换:
特性:
对光谱幅值敏感(适用于反射率绝对值重要的场景)。
4. 交叉相关相似度(Cross-Correlation)
原理:计算光谱波段间的皮尔逊相关系数
特性:
值域:[-1, 1],1 表示完全线性相关。
对噪声鲁棒性强(如医学组织光谱匹配)。
三、关键特性对比
四、应用示例
遥感影像分类
利用 SAM 比较像素光谱与地物参考光谱库,实现农作物类型识别(精度 >90%)。
药品质量控制
通过余弦相似度匹配药品近红外光谱,检测成分一致性(阈值 SSI ≥ 0.98)[^5]。
矿物勘探
欧氏距离相似度筛选岩石样本光谱,快速定位目标矿脉(如赤铁矿波段 500–900 nm)。
👇点击以下名片,获取更多产品资料👇
欢迎咨询,欢迎交流