光谱相似度指数(SSI) 定义

光谱相似度指数(Spectral Similarity Index, SSI)是一种用于量化两条光谱曲线相似程度的数学指标,广泛应用于遥感、材料科学、化学分析及地质勘探等领域。其核心是通过计算光谱数据间的几何或统计特征差异来评估相似性。以下是其核心定义、常用算法及关键特性:

一、基础定义

给定两条光谱曲线a=[a1,a2,…,an]和b=[b1,b2,…,bn](n为波段数),SSI通过特定公式输出一个相似性评分(通常范围在 ‌[0, 1]‌ 或 ‌[-1, 1]‌),数值越大表示相似度越高。

二、主流算法分类

1. ‌余弦相似度(Cosine Similarity)

原理‌:将光谱视为向量,计算其夹角余弦值

特性‌:

值域:‌[-1, 1]‌,1表示完全同向(形状一致)

对光照强度不敏感,仅关注光谱曲线形态(如矿物识别)。

2. ‌光谱角制图(Spectral Angle Mapper, SAM)

原理‌:计算光谱向量间的夹角(弧度或角度)

SSI转换‌:通常以下公式:

特性‌:

广泛用于高光谱遥感分类(如植被类型区分)。

3. ‌欧氏距离相似度(Euclidean Similarity)

原理‌:基于光谱向量间的欧氏距离

SSI转换‌:

特性‌:

对光谱幅值敏感(适用于反射率绝对值重要的场景)。

4. ‌交叉相关相似度(Cross-Correlation)

原理‌:计算光谱波段间的皮尔逊相关系数

特性‌:

值域:‌[-1, 1]‌,1 表示完全线性相关

对噪声鲁棒性强(如医学组织光谱匹配)

三、关键特性对比

四、应用示例

遥感影像分类

利用 SAM 比较像素光谱与地物参考光谱库,实现农作物类型识别(精度 >90%)。

药品质量控制

通过余弦相似度匹配药品近红外光谱,检测成分一致性(阈值 SSI ≥ 0.98)[^5]。

矿物勘探

欧氏距离相似度筛选岩石样本光谱,快速定位目标矿脉(如赤铁矿波段 500–900 nm)

👇点击以下名片,获取更多产品资料👇

欢迎咨询,欢迎交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值