SpringAI版本更新:向量数据库不可用的解决方案!

Spring AI 前两天(4.10 日)更新了 1.0.0-M7 版本后,原来的 SimpleVectorStore 内存级别的向量数据库就不能用了,Spring AI 将其全部源码删除了。

此时我们就需要一种成本更低的解决方案来解决这个问题,如何解决呢?我们一起来看。

解决方案:Redis 向量数据库

虽然 SimpleVectorStore 不支持了,但 Spring AI 内置了 Redis 或 ES 作为向量数据库的分布式存储中间件,我们可以用他们来进行向量的存储。

而在这两种方案中,显然 Redis 使用成本更低,因此,我们来看如何将向量存储到 Redis 数据库中。

它的具体实现步骤如下。

安装Redis-Stack

  1. 下载 Docker Hub:https://www.docker.com/get-started/
  2. 安装 redis-stack-server:使用“docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server”。

添加依赖

我们使用阿里云百炼平台的嵌入模型 text-embedding-v3 是兼容 OpenAI 的 SDK 的,因此,我们需要添加 OpenAI 和 Redis Vector 依赖:

<dependency>
  <groupId>org.springframework.ai</groupId>
  <artifactId>spring-ai-starter-vector-store-redis</artifactId>
</dependency>

<dependency>
  <groupId>org.springframework.ai</groupId>
  <artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>

设置配置信息

配置 Redis 连接信息,以及嵌入模型的配置信息:

spring:
  data:
    redis:
      host: localhost
      port: 6379
  ai:
    vectorstore:
      redis:
        initialize-schema: true
        index-name: custom-index
        prefix: custom-prefix
    openai:
      api-key: ${ALIYUN-AK}
      embedding:
        options:
          model: text-embedding-v3

阿里云百炼平台支持的向量模型:

代码实现

Redis 添加向量数据

@Autowired
private VectorStore vectorStore;

// 构建数据
List<Document> documents =
List.of(new Document("I like Spring Boot"),
        new Document("I love Java"));
// 添加到向量数据库
vectorStore.add(documents);

当然,向量数据的数据源可以是文件、图片、音频等资源,这里为了简单演示整体执行流程,使用了更简单直观的文本作为数据源。

VectorStore 提供的常用方法如下:

  • add(List documents) :添加文档。
  • delete(List idList) :按 ID 删除文档。
  • delete(Filter.Expression filterExpression) :按过滤表达式删除文档。
  • similaritySearch(String query) 和 similaritySearch(SearchRequest request) :相似性搜索。

执行结果如下:

查询向量数据

@RestController
@RequestMapping("/vector")
public class VectorController {

    @Resource
    private VectorStore vectorStore;

    @RequestMapping("/find")
    public List find(@RequestParam String query) {
        // 构建搜索请求,设置查询文本和返回的文档数量
        SearchRequest request = SearchRequest.builder()
        .query(query)
        .topK(3)
        .build();
        List<Document> result = vectorStore.similaritySearch(request);
        System.out.println(result);
        return result;
    }
}

执行结果如下:

从上述结果可以看出,和“java”相似度最高的向量为“I love Java”,相似度评分为 0.77,如果我们 SearchRequest 对象中的 topK 设置为 1 的话,只会查询“I love Java”这条数据,如下图所示:

本文已收录到我的技术小站 www.javacn.site,其中包含的内容有:Spring AI、并发编程、MySQL、Redis、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、JVM、设计模式、消息队列、场景题等模块。

### 如何使用 Spring AI 实现数据库调用 Spring AI 提供了一种集成方式来操作向量数据库,这使得开发者可以轻松地将机器学习模型的结果存储到数据库中并进行检索。以下是关于如何通过 Spring AI 调用数据库的具体说明。 #### 集成向量数据库的支持 Spring AI 的核心功能之一是对向量数据库的支持。这种支持允许开发人员利用高级数据结构(如嵌入式表示法)来进行高效的相似度查询和其他复杂的计算任务[^1]。为了实现这一点,通常需要完成以下几个方面的配置: - **引入依赖项** 开发者应确保项目的构建文件(例如 `pom.xml` 或 `build.gradle`)包含了必要的依赖项以启用对特定向量数据库的支持。这些可能包括 Milvus、Pinecone 或其他兼容的解决方案。 ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-vector-database-support</artifactId> <version>1.0.0</version> </dependency> ``` - **定义实体类** 创建用于映射数据库记录的 Java 类时,建议遵循标准的最佳实践。特别是当涉及到高维特征向量的数据表设计时,应当考虑性能优化策略[^2]。 ```java import org.springframework.data.annotation.Id; import java.util.List; public class DocumentEmbedding { @Id private String id; private List<Double> embedding; // 嵌入向量 public DocumentEmbedding(String id, List<Double> embedding) { this.id = id; this.embedding = embedding; } } ``` - **编写 Repository 接口** 使用 Spring Data 抽象层简化与底层持久化机制之间的交互过程。下面展示了一个简单的例子,其中展示了如何声明自定义方法以便执行基于余弦距离或其他指标的最近邻搜索。 ```java import org.springframework.data.repository.CrudRepository; import java.util.List; public interface EmbeddingRepository extends CrudRepository<DocumentEmbedding, String> { List<DocumentEmbedding> findTopNByEmbeddingNearTo(List<Double> queryVector, int n); } ``` #### 示例项目解析 实际应用场景下,可以通过加载预训练好的自然语言处理 (NLP) 模型生成文档对应的语义表达形式——即所谓的“文本嵌入”。之后再把这些数值存入专用类型的表格里等待后续分析或者推荐系统的调用需求到来时快速响应服务请求。 假设有一个 RESTful API 控制器负责接收外部输入并将之转化为内部可识别的形式后提交给上述提到过的仓储对象实例去保存起来;与此同时也可以提供另一种路径让用户能够指定关键词从而触发相应的匹配逻辑找出最接近目标含义的一组候选答案返回给他们查看。 ```java @RestController @RequestMapping("/api/vectors") public class VectorController { @Autowired private EmbeddingService embeddingService; @PostMapping("/store") public ResponseEntity<String> store(@RequestBody TextData textData){ try{ double[] vector = embeddingService.generate(textData.getText()); boolean success = repository.save(vector); if(success){ return new ResponseEntity<>("Stored successfully", HttpStatus.OK); }else{ throw new RuntimeException(); } }catch(Exception e){ return new ResponseEntity<>(e.getMessage(), HttpStatus.INTERNAL_SERVER_ERROR); } } @GetMapping("/search/{query}") public ResponseEntity<List<TextResult>> search(@PathVariable String query){ try{ List<double[]> results = repository.findSimilar(query); return new ResponseEntity<>(convertResults(results), HttpStatus.OK); } catch(Exception e){ return new ResponseEntity<>(Collections.emptyList(), HttpStatus.NOT_FOUND); } } } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sufu1065

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值