【现代信号处理第二次作业】

本文深入讲解了现代信号处理中的三角函数基本公式、Z变换、离散傅里叶变换及其应用等内容,通过具体例题详细解析了信号处理中的关键数学概念和技术实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 三角函数基本公式

在这里插入图片描述

1.1 函数关系

在这里插入图片描述

1.2 诱导公式

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

1.5-1

(1) H ( z ) = z z − 0.5   ( ∣ z ∣ > 0.5 ) H\left(z\right)=\frac{z}{z-0.5}\ (\left|z\right|>0.5) H(z)=z0.5z (z>0.5)
(2) H ( z ) = 1 + 2 z − 1 1 + 0.7 z − 1 + 0.1 z − 2 = z ( z + 2 ) z 2 + 0.7 z 1 + 0.1 H\left(z\right)=\frac{1+2z^{-1}}{1+0.7z^{-1}+0.1z^{-2}}=\frac{z\left(z+2\right)}{z^2+0.7z^1+0.1} H(z)=1+0.7z1+0.1z21+2z1=z2+0.7z1+0.1z(z+2)

1.5-2

(1)
{ Y ( z ) = R ( z ) z − 1 R ( z ) = 0.3 R ( z ) z − 1 − 0.02 R ( z ) z − 2 + X ( z ) \left\{\begin{matrix}Y\left(z\right)=R\left(z\right)z^{-1}\\R\left(z\right)=0.3R\left(z\right)z^{-1}-0.02R\left(z\right)z^{-2}+X(z)\\\end{matrix}\right. {Y(z)=R(z)z1R(z)=0.3R(z)z10.02R(z)z2+X(z)
H ( z ) = Y ( z ) X ( z ) = z − 1 1 − 0.3 z − 1 + 0.02 z − 2 = z z 2 − 0.3 z + 0.02 = 10 ( z z − 0.2 − z z − 0.1 ) H\left(z\right)=\frac{Y\left(z\right)}{X(z)}=\frac{z^{-1}}{1-0.3z^{-1}+0.02z^{-2}}=\frac{z}{z^2-0.3z+0.02}=10\left(\frac{z}{z-0.2}-\frac{z}{z-0.1}\right) H(z)=X(z)Y(z)=10.3z1+0.02z2z1=z20.3z+0.02z=10(z0.2zz0.1z)
(2) H ( z ) = 10 ( 0.2 n − 0.1 n ) ε ( n ) ( ∣ z ∣ > 0.2 ) H\left(z\right)=10({0.2}^n-{0.1}^n)\varepsilon\left(n\right)(\left|z\right|>0.2) H(z)=10(0.2n0.1n)ε(n)(z>0.2)

在这里插入图片描述

1.6-1

知识点参考
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(1)
x 1 ( n ) = e − j 2 π 5 n + e − j 2 π 5 4 n = e − j 2 π 5 n + e − j ( − 2 π 5 n ) = 2 cos ⁡ ( 2 π 5 n ) x_1\left(n\right)=e^{-j\frac{2\pi}{5}n}+e^{-j\frac{2\pi}{5}4n}=e^{-j\frac{2\pi}{5}n}+e^{-j(-\frac{2\pi}{5}n)}=2\cos(\frac{2\pi}{5}n) x1(n)=ej52πn+ej52π4n=ej52πn+ej(52πn)=2cos(52πn)
(2)
x 2 ( n ) = e − j 2 π 6 n − e − j 2 π 6 5 n = e − j 2 π 6 n − e − j ( − 2 π 6 n ) = − 2 j sin ⁡ ( 2 π 6 n ) x_2\left(n\right)=e^{-j\frac{2\pi}{6}n}-e^{-j\frac{2\pi}{6}5n}=e^{-j\frac{2\pi}{6}n}-e^{-j\left(-\frac{2\pi}{6}n\right)}=-2j\sin(\frac{2\pi}{6}n) x2(n)=ej62πnej62π5n=ej62πnej(62πn)=2jsin(62πn)
(3)
x 3 ( n ) = e − j 2 π 8 2 n − e − j 2 π 4 n = e − j 2 π 4 n − e − j 2 π 4 n = 0 x_3\left(n\right)=e^{-j\frac{2\pi}{8}2n}-e^{-j\frac{2\pi}{4}n}=e^{-j\frac{2\pi}{4}n}-e^{-j\frac{2\pi}{4}n}=0 x3(n)=ej82π2nej42πn=ej42πnej42πn=0

在这里插入图片描述

1.6-2

(1)代码

clc;clear;
N=6;
xn=[ones(1,N/3),zeros(1,2*N/3)];
n=0:N-1;
Xk=dfs(xn,N)

打印如下
在这里插入图片描述
(2)
在这里插入图片描述
X 0 = 1 3 ; X 1 = ( 1 + e − j 2 π 6 ) 6 = ( 1 + c o s π 3 − j s i n π 3 ) 6 = 3 − 3 j 12 X_0=\frac{1}{3}{;X}_1=\frac{(1+e^{-j\frac{2\pi}{6}})}{6}=\frac{(1+cos\frac{\pi}{3}-jsin\frac{\pi}{3})}{6}=\frac{3-\sqrt3j}{12} X0=31;X1=6(1+ej62π)=6(1+cos3πjsin3π)=1233 j
X 2 = ( 1 + e − j 4 π 6 ) 6 = ( 1 + c o s 2 π 3 − j s i n 2 π 3 ) 6 = 1 − 3 j 12 X_2=\frac{(1+e^{-j\frac{4\pi}{6}})}{6}=\frac{(1+cos\frac{2\pi}{3}-jsin\frac{2\pi}{3})}{6}=\frac{1-\sqrt3j}{12} X2=6(1+ej64π)=6(1+cos32πjsin32π)=1213 j
X 3 = ( 1 + e − j π ) 6 = ( 1 + c o s π − j s i n π ) 6 = 0 X_3=\frac{(1+e^{-j\pi})}{6}=\frac{(1+cos\pi-jsin\pi)}{6}=0 X3=6(1+ejπ)=6(1+cosπjsinπ)=0
X 4 = ( 1 + e − j 8 π 6 ) 6 = ( 1 + c o s 4 π 3 − j s i n 4 π 3 ) 6 = 1 + 3 j 12 X_4=\frac{(1+e^{-j\frac{8\pi}{6}})}{6}=\frac{(1+cos\frac{4\pi}{3}-jsin\frac{4\pi}{3})}{6}=\frac{1+\sqrt3j}{12} X4=6(1+ej68π)=6(1+cos34πjsin34π)=121+3 j
X 5 = ( 1 + e − j 10 π 6 ) 6 = ( 1 + c o s 5 π 3 − j s i n 5 π 3 ) 6 = 3 + 3 j 12 X_5=\frac{(1+e^{-j\frac{10\pi}{6}})}{6}=\frac{(1+cos\frac{5\pi}{3}-jsin\frac{5\pi}{3})}{6}=\frac{3+\sqrt3j}{12} X5=6(1+ej610π)=6(1+cos35πjsin35π)=123+3 j

根据
在这里插入图片描述
化简如下:
x ( n ) = 1 3 e j 0 + 3 − 3 j 12 e j 2 π 6 n + 1 − 3 j 12 e j 2 π 6 2 n + 1 + 3 j 12 e j 2 π 6 4 n + 3 + 3 j 12 e j 2 π 6 5 n = 1 3 + 1 2 c o s π 3 n + 3 6 s i n π 3 n + 1 6 c o s 2 π 3 n + 3 6 s i n 2 π 3 n x\left(n\right)=\frac{1}{3}e^{j0}+\frac{3-\sqrt3j}{12}e^{j\frac{2\pi}{6}n}+\frac{1-\sqrt3j}{12}e^{j\frac{2\pi}{6}2n}+\frac{1+\sqrt3j}{12}e^{j\frac{2\pi}{6}4n}+\frac{3+\sqrt3j}{12}e^{j\frac{2\pi}{6}5n}=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}n+\frac{\sqrt3}{6}sin\frac{\pi}{3}n+\frac{1}{6}cos\frac{2\pi}{3}n+\frac{\sqrt3}{6}sin\frac{2\pi}{3}n x(n)=31ej0+1233 jej62πn+1213 jej62π2n+121+3 jej62π4n+123+3 jej62π5n=31+21cos3πn+63 sin3πn+61cos32πn+63 sin32πn
(3)原始谱、幅度谱和相位谱分别如下:
在这里插入图片描述

clc;clear;
N=6;
xn=[ones(1,N/3),zeros(1,2*N/3)];
n=0:N-1;
Xk=dfs(xn,N);
subplot(1,3,1);
stem(n,xn); ylabel ('x1'); xlabel ('n'); %显示序列的图形
subplot(1,3,2);
stem(n,abs(Xk)); ylabel ('|X(k)|'); xlabel ('k(θ=2kpi/N)'); %显示序列幅度的图形
subplot(1,3,3);
stem(n,angle(Xk)); ylabel ('ang|X(k)|'); xlabel ('k(θ=2kpi/N)'); %显示序列相位的图形

(4)n代入的
x ( 0 ) = 1 3 + 1 2 c o s π 3 0 + 3 6 s i n π 3 0 + 1 6 c o s 2 π 3 0 + 3 6 s i n 2 π 3 0 = 1 3 + 1 2 + 1 6 = 1 x\left(0\right)=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}0+\frac{\sqrt3}{6}sin\frac{\pi}{3}0+\frac{1}{6}cos\frac{2\pi}{3}0+\frac{\sqrt3}{6}sin\frac{2\pi}{3}0=\frac{1}{3}+\frac{1}{2}+\frac{1}{6}=1 x(0)=31+21cos3π0+63 sin3π0+61cos32π0+63 sin32π0=31+21+61=1
x ( 1 ) = 1 3 + 1 2 c o s π 3 + 3 6 s i n π 3 + 1 6 c o s 2 π 3 + 3 6 s i n 2 π 3 = 1 3 + 1 2 × 1 2 + 3 6 × 3 2 − 1 6 × 1 2 + 3 6 × 3 2 = 1 x\left(1\right)=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}+\frac{\sqrt3}{6}sin\frac{\pi}{3}+\frac{1}{6}cos\frac{2\pi}{3}+\frac{\sqrt3}{6}sin\frac{2\pi}{3}=\frac{1}{3}+\frac{1}{2}\times\frac{1}{2}+\frac{\sqrt3}{6}\times\frac{\sqrt3}{2}-\frac{1}{6}\times\frac{1}{2}+\frac{\sqrt3}{6}\times\frac{\sqrt3}{2}=1 x(1)=31+21cos3π+63 sin3π+61cos32π+63 sin32π=31+21×21+63 ×23 61×21+63 ×23 =1
x ( 2 ) = 0 x\left(2\right)=0 x(2)=0
x ( 3 ) = 0 x\left(3\right)=0 x(3)=0
x ( 4 ) = 0 x\left(4\right)=0 x(4)=0
x ( 5 ) = 0 x\left(5\right)=0 x(5)=0

原始序列与分解序列是同一序列。
在这里插入图片描述

1.6-3-1

图像分别如下:
在这里插入图片描述
由图1/2可知,无限长序列在截取后,其频谱会失真,此失真叫截取失真。截取长度越小失真越严重。
由图3/4可知,无限长序列截短后,其频谱会产生失真,此失真叫截取失真。
代码如下:

clc;clear;
n=0:0.01:4;
x1n=cos(0.5*pi*n);
N = size(n,2);
Xk = dfs(x1n, N);
% stem(n,abs(Xk)); %显示序列的幅度谱
n1 = 0:8;
n1 = n1*4/8;%归整到一个周期内
x8n=cos(0.5*pi*n1);
x8n1=zeros(1,2048-size(x8n,2));
x8n=[x8n,x8n1];
N1 = size(x8n,2);
X8k = dfs(x8n,N1);
k8 = 0:N1-1;
% stem(k8,abs(X8k)); %显示序列的幅度谱
n2 = 0:32;
n2 = n2*4/32;
x32n=cos(0.5*pi*n2);
x32n1=zeros(1,2048-size(x32n,2));
x32n=[x32n,x32n1];
N2 = size(x32n,2);
X32k = dfs(x32n,N2);
k32 = 0:N2-1;
%plot(2*k32*pi/2048,abs(X32k)); %显示序列的幅度谱
n2 = 0:32;
n2 = n2*4/32;%归整到一个周期内
x32n=cos(0.5*pi*n2);
N2 = size(x32n,2);
X32kt = dfs(x32n,N2);
k32t = 0:N2-1;
% stem(k8,abs(X8k)); %显示序列的幅度谱
figure(1);
subplot(1,4,1);%1*4图形中的第一个
plot(n,abs(Xk)); ylabel ('Xk'); xlabel ('n'); title('原序列的DTFT幅度谱');
subplot(1,4,2);
plot(k8*2*pi/2048,abs(X8k)); ylabel ('X8k'); xlabel ('k8'); title('长度为8的DTFT谱');
subplot(1,4,3);
plot(k32*2*pi/2048,abs(X32k)); ylabel ('X32k'); xlabel ('k32'); title('长度为32的DTFT谱');
subplot(1,4,4);
stem(k32t*2*pi/32,abs(X32kt)); ylabel ('X32k'); xlabel ('k32'); title('长度为32的DFT谱');

在这里插入图片描述
在这里插入图片描述

1.6-3-2

(1)
在这里插入图片描述
代码如下:

clc;clear;
n=0:0.01:2*pi;
x1n=(-0.2).^n;
N = size(n,2);
Xk = dfs(x1n, N);
figure(1);
plot(n,abs(Xk));ylabel ('|Xk|'); xlabel ('n'); title('原序列的DTFT幅度谱'); %显示序列的幅度谱
hold on;

(2)
在这里插入图片描述
代码如下:

n1 = 0:32;
n1 = n1*2*pi/32;
x32n=(-0.2).^n1;
N1 = size(x32n,2);
X32k = dfs(x32n,N1);
k32 = 0:N1-1;
%stem(k32,abs(X32k)); %显示序列的幅度谱
n2 = 0:64;
n2 = n2*2*pi/64;
x64n=(-0.2).^n2;
N2 = size(x64n,2);
X64k = dfs(x64n,N2);
k64 = 0:N2-1;
%stem(k64,abs(X64k)); %显示序列的幅度谱
n3 = 0:128;
n3 = n3*2*pi/128;
x128n=(-0.2).^n3;
N3 = size(x128n,2);
X128k = dfs(x128n,N3);
k128 = 0:N3-1;
% stem(k128,abs(X128k)); %显示序列的幅度谱
figure(2);
subplot(1,3,1);%2*2图形中的第一个
stem(k32,abs(X32k)); ylabel ('|X32k|'); xlabel ('k32'); title('32序列的DFT幅度谱');
subplot(1,3,2);
stem(k64,abs(X64k)); ylabel ('|X64k|'); xlabel ('k64'); title('64序列的DFT幅度谱');
subplot(1,3,3);
stem(k128,abs(X128k)); ylabel ('|X128k|'); xlabel ('k128'); title('128序列的DFT幅度谱');
hold on;

(3)

在这里插入图片描述
代码如下:

n4 = 0:1024;
n4 = n4*2*pi/1024;
x1024n=(-0.2).^n4;
N4 = size(x1024n,2);
tic%开始计时
X1024k = dfs(x1024n,N4);
toc,disp(['1024DFT运行时间: ',num2str(toc)]);%结束计时,打印消耗时间
tic%开始计时
X1024kf = fft(x1024n,N4);
toc,disp(['1024FFT运行时间: ',num2str(toc)]);%结束计时,打印消耗时间
k1024 = 0:N4-1;
figure(3);
subplot(1,2,1);%2*1图形中的第一个
stem(k1024,abs(X1024k)); ylabel ('|X1024k|'); xlabel ('k1024'); title('1024序列的DFT幅度谱');
subplot(1,2,2);
stem(k1024,abs(X1024kf)); ylabel ('|X1024kf|'); xlabel ('k1024'); title('1024序列的DFT幅度谱');

打印计算时间:
在这里插入图片描述

快速傅里叶变换计算时间更短,值得使用!
在这里插入图片描述

1.7-3-1

(1)

在这里插入图片描述
其极点为 z=\frac{1}{8},则有
在这里插入图片描述
幅度谱:
在这里插入图片描述
代码:

clc;clear;
n=-pi:0.01:pi;
y=(exp(j*n)-7/8)./(exp(j*n)-1/8);
figure(1);
plot(n,abs(y));ylabel ('|H(e^{j\theta}|'); xlabel ('\theta'); title('幅度谱');
grid on;

(2)该滤波器的角频率为 0附近的增益为零,而在角频率为π的增益最大,
该滤波器滤去低频序列,保留高频序列。
(3) 1 +   c o s ( π n 2   ) + c o s ( π n   ) 1+\ cos\left(\frac{\pi n}{2}\ \right)+cos(\pi n\ ) 1+ cos(2πn )+cos(πn )三个分序列的角频率分别为 0, π 2 \frac{\pi}{2} 2π
π \pi π,其幅值增益和延时分别为

在这里插入图片描述
代码:

syms n
f=(exp(1i*n)-7/8)./(exp(1i*n)-1/8);
disp(vpa(abs(subs(f,'n',0))));disp(vpa(angle(subs(f,'n',0)*180/pi)));
disp(vpa(abs(subs(f,'n',pi/2))));disp(vpa(angle(subs(f,'n',pi/2))*180/pi));
disp(vpa(abs(subs(f,'n',pi))));disp(vpa(angle(subs(f,'n',pi))*180/pi));

在这里插入图片描述

1.7-3-2

(1) a.系统的差分方程 y ( n ) = x ( n ) − 3 x ( n − 1 ) + 3 x ( n − 2 ) − x ( n − 3 ) y\left(n\right)=x\left(n\right)-3x\left(n-1\right)+3x(n-2)-x(n-3) y(n)=x(n)3x(n1)+3x(n2)x(n3)
z变换: Y ( z ) = X ( z ) − 3 X ( z ) z − 1 + 3 X ( z ) z − 2 − X ( z ) z − 3 Y\left(z\right)=X\left(z\right)-3X\left(z\right)z^{-1}+3X\left(z\right)z^{-2}-X\left(z\right)z^{-3} Y(z)=X(z)3X(z)z1+3X(z)z2X(z)z3
传递函数: H ( z ) = Y ( z ) X ( z ) = 1 − 3 z − 1 + 3 z − 2 − z − 3 H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=1-3z^{-1}+3z^{-2}-z^{-3} H(z)=X(z)Y(z)=13z1+3z2z3
频率函数: H ( e j θ ) = 1 − 3 e − j θ + 3 e − j 2 θ − e − j 3 θ H\left(e^{j\theta}\right)=1-3e^{-j\theta}+3e^{-j2\theta}-e^{-j3\theta} H(ejθ)=13ejθ+3ej2θej3θ
系统为 FIR滤波器,该滤波器为高通滤波器(HPF)
b.系统的差分方程 y ( n ) = x ( n ) + 3 x ( n − 1 ) + 3 x ( n − 2 ) + x ( n − 3 ) y\left(n\right)=x\left(n\right)+3x\left(n-1\right)+3x\left(n-2\right)+x(n-3) y(n)=x(n)+3x(n1)+3x(n2)+x(n3)
z变换: Y ( z ) = X ( z ) + 3 X ( z ) z − 1 + 3 X ( z ) z − 2 + X ( z ) z − 3 Y\left(z\right)=X\left(z\right)+3X\left(z\right)z^{-1}+3X\left(z\right)z^{-2}+X\left(z\right)z^{-3} Y(z)=X(z)+3X(z)z1+3X(z)z2+X(z)z3
传递函数: H ( z ) = Y ( z ) X ( z ) = 1 + 3 z − 1 + 3 z − 2 + z − 3 H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=1+3z^{-1}+3z^{-2}+z^{-3} H(z)=X(z)Y(z)=1+3z1+3z2+z3
频率函数: H ( e j θ ) = 1 + 3 e − j θ + 3 e − j 2 θ + e − j 3 θ H\left(e^{j\theta}\right)=1+3e^{-j\theta}+3e^{-j2\theta}+e^{-j3\theta} H(ejθ)=1+3ejθ+3ej2θ+ej3θ
系统为 FIR滤波器,该滤波器为低通滤波器(LPF)
图像:
在这里插入图片描述
代码:

clc; clear;
n = -pi:0.01:pi;
y1 = 1-3*exp(-1i*n)+3*exp(-2*1i*n)-exp(-3*1i*n);
y2 = 1+3*exp(-1i*n)+3*exp(-2*1i*n)+exp(-3*1i*n);
figure(1)
subplot(1,2,1);
plot(n,abs(y1));ylabel ('|H_1(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
subplot(1,2,2);
plot(n,abs(y2));ylabel ('|H_2(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;

(2)a.
H ( e j θ ) = 1 − 3 e − j θ + 3 e − j 2 θ − e − j 3 θ = e − j 3 θ 2 ( e j 3 θ 2 − e j 3 θ 2 − 3 e j θ 2 + 3 e − j θ 2 ) H\left(e^{j\theta}\right)=1-3e^{-j\theta}+3e^{-j2\theta}-e^{-j3\theta}=e^{-j\frac{3\theta}{2}}(e^{j\frac{3\theta}{2}}-e^{j\frac{3\theta}{2}}-{3e}^{j\frac{\theta}{2}}+3e^{-j\frac{\theta}{2}}) H(ejθ)=13ejθ+3ej2θej3θ=ej23θ(ej23θej23θ3ej2θ+3ej2θ)
∣ H ( e j θ ) ∣ = 2 ∣ sin ⁡ ( 3 θ 2 ) − 3 sin ⁡ ( θ 2 ) ∣ = 2 ∣ 3 s i n θ 2 cos ⁡ 2 θ 2 − sin ⁡ 3 θ 2 − 3 sin ⁡ θ 2 ∣ = 8 ∣ sin ⁡ 3 θ 2 ∣ \left|H\left(e^{j\theta}\right)\right|=2\left|\sin{\left(\frac{3\theta}{2}\right)}-3\sin{\left(\frac{\theta}{2}\right)}\right|=2\left|3sin\frac{\theta}{2}\cos^2\frac{\theta}{2}-\sin^3\frac{\theta}{2}-3\sin{\frac{\theta}{2}}\right|=8\left|\sin^3\frac{\theta}{2}\right| H(ejθ)=2sin(23θ)3sin(2θ)=23sin2θcos22θsin32θ3sin2θ=8sin32θ
H ( e j θ ) = − 8 sin ⁡ 3 θ 2 H\left(e^{j\theta}\right)=-8\sin^3\frac{\theta}{2} H(ejθ)=8sin32θ
b.
H ( e j θ ) = 1 + 3 e − j θ + 3 e − j 2 θ + e − j 3 θ = e − j 3 θ 2 ( e j 3 θ 2 + e j 3 θ 2 + 3 e j θ 2 + 3 e − j θ 2 ) H\left(e^{j\theta}\right)=1+3e^{-j\theta}+3e^{-j2\theta}+e^{-j3\theta}=e^{-j\frac{3\theta}{2}}(e^{j\frac{3\theta}{2}}+e^{j\frac{3\theta}{2}}+{3e}^{j\frac{\theta}{2}}+3e^{-j\frac{\theta}{2}}) H(ejθ)=1+3ejθ+3ej2θ+ej3θ=ej23θ(ej23θ+ej23θ+3ej2θ+3ej2θ)
∣ H ( e j θ ) ∣ = 2 ∣ cos ⁡ ( 3 θ 2 ) + 3 cos ⁡ ( θ 2 ) ∣ = 2 ∣ c o s 3 θ 2 − 3 s i n 2 θ 2 + 3 c o s θ 2 ∣ = 8 ∣ cos ⁡ 3 θ 2 ∣ \left|H\left(e^{j\theta}\right)\right|=2\left|\cos{\left(\frac{3\theta}{2}\right)}+3\cos{\left(\frac{\theta}{2}\right)}\right|=2\left|{cos}^3\frac{\theta}{2}-3{sin}^2\frac{\theta}{2}+3cos\frac{\theta}{2}\right|=8\left|\cos^3\frac{\theta}{2}\right| H(ejθ)=2cos(23θ)+3cos(2θ)=2cos32θ3sin22θ+3cos2θ=8cos32θ
H ( e j θ ) = 8 cos ⁡ 3 θ 2 H\left(e^{j\theta}\right)=8\cos^3\frac{\theta}{2} H(ejθ)=8cos32θ
将其移动π,得到:
H ( e j ( π + θ ) ) = 8 cos ⁡ 3 ( π + θ ) 2 = − 8 sin ⁡ 3 θ 2 H\left(e^{j(\pi+\theta)}\right)=8\cos^3\frac{(\pi+\theta)}{2}=-8\sin^3\frac{\theta}{2} H(ej(π+θ))=8cos32(π+θ)=8sin32θ
与a系统频率函数一致,故证明b将a系统中的频谱右移了π。

在这里插入图片描述

1.7-3-3

(1)a. 系统的差分方程 y ( n ) = x ( n ) + 0.3 y ( n − 1 ) y\left(n\right)=x\left(n\right)+0.3y\left(n-1\right) y(n)=x(n)+0.3y(n1)
z变换: Y ( z ) = X ( z ) + 0.3 Y ( z ) z − 1 Y\left(z\right)=X\left(z\right)+0.3Y\left(z\right)z^{-1} Y(z)=X(z)+0.3Y(z)z1
传递函数: H ( z ) = Y ( z ) X ( z ) = 1 1 − 0.3 z − 1 = z z − 0.3 H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\frac{1}{1-0.3z^{-1}}=\frac{z}{z-0.3} H(z)=X(z)Y(z)=10.3z11=z0.3z
则有: H ( n ) = ( 0.3 ) n ε ( n ) H\left(n\right)=\left(0.3\right)^n\varepsilon(n) H(n)=(0.3)nε(n)
频率函数: H ( e j θ ) = e j θ e j θ − 0.3 = cos ⁡ θ + j s i n θ cos ⁡ θ + j s i n θ − 0.3 H\left(e^{j\theta}\right)=\frac{e^{j\theta}}{e^{j\theta}-0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta-0.3} H(ejθ)=ejθ0.3ejθ=cosθ+jsinθ0.3cosθ+jsinθ
系统为低通滤波器。
b. 系统的差分方程 y ( n ) = x ( n ) − 0.3 y ( n − 1 ) y\left(n\right)=x\left(n\right)-0.3y\left(n-1\right) y(n)=x(n)0.3y(n1)
z变换: Y ( z ) = X ( z ) − 0.3 Y ( z ) z − 1 Y\left(z\right)=X\left(z\right)-0.3Y\left(z\right)z^{-1} Y(z)=X(z)0.3Y(z)z1
传递函数: H ( z ) = Y ( z ) X ( z ) = 1 1 + 0.3 z − 1 = z z + 0.3 H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\frac{1}{1+0.3z^{-1}}=\frac{z}{z+0.3} H(z)=X(z)Y(z)=1+0.3z11=z+0.3z
则有: H ( n ) = ( − 0.3 ) n ε ( n ) H\left(n\right)=\left(-0.3\right)^n\varepsilon(n) H(n)=(0.3)nε(n)
频率函数: H ( e j θ ) = e j θ e j θ + 0.3 = cos ⁡ θ + j s i n θ cos ⁡ θ + j s i n θ + 0.3 H\left(e^{j\theta}\right)=\frac{e^{j\theta}}{e^{j\theta}+0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta+0.3} H(ejθ)=ejθ+0.3ejθ=cosθ+jsinθ+0.3cosθ+jsinθ
系统为高通滤波器。
图像
在这里插入图片描述

代码

clc; clear;
n = -pi:0.001:pi;
y1 = exp(1i*n)./(exp(1i*n)-0.3);
y2 = exp(1i*n)./(exp(1i*n)+0.3);
figure(1)
subplot(1,2,1);
plot(n,abs(y1));ylabel ('|H_1(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
subplot(1,2,2);
plot(n,abs(y2));ylabel ('|H_2(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;

(2)b系统的频率函数
H ( e j θ ) = cos ⁡ θ + j s i n θ cos ⁡ θ + j s i n θ + 0.3 H\left(e^{j\theta}\right)=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta+0.3} H(ejθ)=cosθ+jsinθ+0.3cosθ+jsinθ
将其移动π,得到:
H ( e j ( π + θ ) ) = cos ⁡ ( π + θ ) + j s i n ( π + θ ) cos ⁡ ( π + θ ) + j s i n ( π + θ ) − 0.3 = − cos ⁡ θ − j s i n θ − cos ⁡ θ − j s i n θ + 0.3 = cos ⁡ θ + j s i n θ cos ⁡ θ + j s i n θ − 0.3 H\left(e^{j(\pi+\theta)}\right)=\frac{\cos{(\pi+\theta)}+jsin(\pi+\theta)}{\cos{(\pi+\theta)}+jsin(\pi+\theta)-0.3}=\frac{-\cos{\theta}-jsin\theta}{-\cos{\theta}-jsin\theta+0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta-0.3} H(ej(π+θ))=cos(π+θ)+jsin(π+θ)0.3cos(π+θ)+jsin(π+θ)=cosθjsinθ+0.3cosθjsinθ=cosθ+jsinθ0.3cosθ+jsinθ
与a系统频率函数一致,故证明(b)的幅度谱是将(a)的右移了角频率。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2345VOR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值