1. 三角函数基本公式
1.1 函数关系
1.2 诱导公式
1.5-1
(1)
H
(
z
)
=
z
z
−
0.5
(
∣
z
∣
>
0.5
)
H\left(z\right)=\frac{z}{z-0.5}\ (\left|z\right|>0.5)
H(z)=z−0.5z (∣z∣>0.5)
(2)
H
(
z
)
=
1
+
2
z
−
1
1
+
0.7
z
−
1
+
0.1
z
−
2
=
z
(
z
+
2
)
z
2
+
0.7
z
1
+
0.1
H\left(z\right)=\frac{1+2z^{-1}}{1+0.7z^{-1}+0.1z^{-2}}=\frac{z\left(z+2\right)}{z^2+0.7z^1+0.1}
H(z)=1+0.7z−1+0.1z−21+2z−1=z2+0.7z1+0.1z(z+2)
1.5-2
(1)
{
Y
(
z
)
=
R
(
z
)
z
−
1
R
(
z
)
=
0.3
R
(
z
)
z
−
1
−
0.02
R
(
z
)
z
−
2
+
X
(
z
)
\left\{\begin{matrix}Y\left(z\right)=R\left(z\right)z^{-1}\\R\left(z\right)=0.3R\left(z\right)z^{-1}-0.02R\left(z\right)z^{-2}+X(z)\\\end{matrix}\right.
{Y(z)=R(z)z−1R(z)=0.3R(z)z−1−0.02R(z)z−2+X(z)
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
z
−
1
1
−
0.3
z
−
1
+
0.02
z
−
2
=
z
z
2
−
0.3
z
+
0.02
=
10
(
z
z
−
0.2
−
z
z
−
0.1
)
H\left(z\right)=\frac{Y\left(z\right)}{X(z)}=\frac{z^{-1}}{1-0.3z^{-1}+0.02z^{-2}}=\frac{z}{z^2-0.3z+0.02}=10\left(\frac{z}{z-0.2}-\frac{z}{z-0.1}\right)
H(z)=X(z)Y(z)=1−0.3z−1+0.02z−2z−1=z2−0.3z+0.02z=10(z−0.2z−z−0.1z)
(2)
H
(
z
)
=
10
(
0.2
n
−
0.1
n
)
ε
(
n
)
(
∣
z
∣
>
0.2
)
H\left(z\right)=10({0.2}^n-{0.1}^n)\varepsilon\left(n\right)(\left|z\right|>0.2)
H(z)=10(0.2n−0.1n)ε(n)(∣z∣>0.2)
1.6-1
知识点参考
(1)
x
1
(
n
)
=
e
−
j
2
π
5
n
+
e
−
j
2
π
5
4
n
=
e
−
j
2
π
5
n
+
e
−
j
(
−
2
π
5
n
)
=
2
cos
(
2
π
5
n
)
x_1\left(n\right)=e^{-j\frac{2\pi}{5}n}+e^{-j\frac{2\pi}{5}4n}=e^{-j\frac{2\pi}{5}n}+e^{-j(-\frac{2\pi}{5}n)}=2\cos(\frac{2\pi}{5}n)
x1(n)=e−j52πn+e−j52π4n=e−j52πn+e−j(−52πn)=2cos(52πn)
(2)
x
2
(
n
)
=
e
−
j
2
π
6
n
−
e
−
j
2
π
6
5
n
=
e
−
j
2
π
6
n
−
e
−
j
(
−
2
π
6
n
)
=
−
2
j
sin
(
2
π
6
n
)
x_2\left(n\right)=e^{-j\frac{2\pi}{6}n}-e^{-j\frac{2\pi}{6}5n}=e^{-j\frac{2\pi}{6}n}-e^{-j\left(-\frac{2\pi}{6}n\right)}=-2j\sin(\frac{2\pi}{6}n)
x2(n)=e−j62πn−e−j62π5n=e−j62πn−e−j(−62πn)=−2jsin(62πn)
(3)
x
3
(
n
)
=
e
−
j
2
π
8
2
n
−
e
−
j
2
π
4
n
=
e
−
j
2
π
4
n
−
e
−
j
2
π
4
n
=
0
x_3\left(n\right)=e^{-j\frac{2\pi}{8}2n}-e^{-j\frac{2\pi}{4}n}=e^{-j\frac{2\pi}{4}n}-e^{-j\frac{2\pi}{4}n}=0
x3(n)=e−j82π2n−e−j42πn=e−j42πn−e−j42πn=0
1.6-2
(1)代码
clc;clear;
N=6;
xn=[ones(1,N/3),zeros(1,2*N/3)];
n=0:N-1;
Xk=dfs(xn,N)
打印如下
(2)
X
0
=
1
3
;
X
1
=
(
1
+
e
−
j
2
π
6
)
6
=
(
1
+
c
o
s
π
3
−
j
s
i
n
π
3
)
6
=
3
−
3
j
12
X_0=\frac{1}{3}{;X}_1=\frac{(1+e^{-j\frac{2\pi}{6}})}{6}=\frac{(1+cos\frac{\pi}{3}-jsin\frac{\pi}{3})}{6}=\frac{3-\sqrt3j}{12}
X0=31;X1=6(1+e−j62π)=6(1+cos3π−jsin3π)=123−3j
X
2
=
(
1
+
e
−
j
4
π
6
)
6
=
(
1
+
c
o
s
2
π
3
−
j
s
i
n
2
π
3
)
6
=
1
−
3
j
12
X_2=\frac{(1+e^{-j\frac{4\pi}{6}})}{6}=\frac{(1+cos\frac{2\pi}{3}-jsin\frac{2\pi}{3})}{6}=\frac{1-\sqrt3j}{12}
X2=6(1+e−j64π)=6(1+cos32π−jsin32π)=121−3j
X
3
=
(
1
+
e
−
j
π
)
6
=
(
1
+
c
o
s
π
−
j
s
i
n
π
)
6
=
0
X_3=\frac{(1+e^{-j\pi})}{6}=\frac{(1+cos\pi-jsin\pi)}{6}=0
X3=6(1+e−jπ)=6(1+cosπ−jsinπ)=0
X
4
=
(
1
+
e
−
j
8
π
6
)
6
=
(
1
+
c
o
s
4
π
3
−
j
s
i
n
4
π
3
)
6
=
1
+
3
j
12
X_4=\frac{(1+e^{-j\frac{8\pi}{6}})}{6}=\frac{(1+cos\frac{4\pi}{3}-jsin\frac{4\pi}{3})}{6}=\frac{1+\sqrt3j}{12}
X4=6(1+e−j68π)=6(1+cos34π−jsin34π)=121+3j
X
5
=
(
1
+
e
−
j
10
π
6
)
6
=
(
1
+
c
o
s
5
π
3
−
j
s
i
n
5
π
3
)
6
=
3
+
3
j
12
X_5=\frac{(1+e^{-j\frac{10\pi}{6}})}{6}=\frac{(1+cos\frac{5\pi}{3}-jsin\frac{5\pi}{3})}{6}=\frac{3+\sqrt3j}{12}
X5=6(1+e−j610π)=6(1+cos35π−jsin35π)=123+3j
根据
化简如下:
x
(
n
)
=
1
3
e
j
0
+
3
−
3
j
12
e
j
2
π
6
n
+
1
−
3
j
12
e
j
2
π
6
2
n
+
1
+
3
j
12
e
j
2
π
6
4
n
+
3
+
3
j
12
e
j
2
π
6
5
n
=
1
3
+
1
2
c
o
s
π
3
n
+
3
6
s
i
n
π
3
n
+
1
6
c
o
s
2
π
3
n
+
3
6
s
i
n
2
π
3
n
x\left(n\right)=\frac{1}{3}e^{j0}+\frac{3-\sqrt3j}{12}e^{j\frac{2\pi}{6}n}+\frac{1-\sqrt3j}{12}e^{j\frac{2\pi}{6}2n}+\frac{1+\sqrt3j}{12}e^{j\frac{2\pi}{6}4n}+\frac{3+\sqrt3j}{12}e^{j\frac{2\pi}{6}5n}=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}n+\frac{\sqrt3}{6}sin\frac{\pi}{3}n+\frac{1}{6}cos\frac{2\pi}{3}n+\frac{\sqrt3}{6}sin\frac{2\pi}{3}n
x(n)=31ej0+123−3jej62πn+121−3jej62π2n+121+3jej62π4n+123+3jej62π5n=31+21cos3πn+63sin3πn+61cos32πn+63sin32πn
(3)原始谱、幅度谱和相位谱分别如下:
clc;clear;
N=6;
xn=[ones(1,N/3),zeros(1,2*N/3)];
n=0:N-1;
Xk=dfs(xn,N);
subplot(1,3,1);
stem(n,xn); ylabel ('x1'); xlabel ('n'); %显示序列的图形
subplot(1,3,2);
stem(n,abs(Xk)); ylabel ('|X(k)|'); xlabel ('k(θ=2kpi/N)'); %显示序列幅度的图形
subplot(1,3,3);
stem(n,angle(Xk)); ylabel ('ang|X(k)|'); xlabel ('k(θ=2kpi/N)'); %显示序列相位的图形
(4)n代入的
x
(
0
)
=
1
3
+
1
2
c
o
s
π
3
0
+
3
6
s
i
n
π
3
0
+
1
6
c
o
s
2
π
3
0
+
3
6
s
i
n
2
π
3
0
=
1
3
+
1
2
+
1
6
=
1
x\left(0\right)=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}0+\frac{\sqrt3}{6}sin\frac{\pi}{3}0+\frac{1}{6}cos\frac{2\pi}{3}0+\frac{\sqrt3}{6}sin\frac{2\pi}{3}0=\frac{1}{3}+\frac{1}{2}+\frac{1}{6}=1
x(0)=31+21cos3π0+63sin3π0+61cos32π0+63sin32π0=31+21+61=1
x
(
1
)
=
1
3
+
1
2
c
o
s
π
3
+
3
6
s
i
n
π
3
+
1
6
c
o
s
2
π
3
+
3
6
s
i
n
2
π
3
=
1
3
+
1
2
×
1
2
+
3
6
×
3
2
−
1
6
×
1
2
+
3
6
×
3
2
=
1
x\left(1\right)=\frac{1}{3}+\frac{1}{2}cos\frac{\pi}{3}+\frac{\sqrt3}{6}sin\frac{\pi}{3}+\frac{1}{6}cos\frac{2\pi}{3}+\frac{\sqrt3}{6}sin\frac{2\pi}{3}=\frac{1}{3}+\frac{1}{2}\times\frac{1}{2}+\frac{\sqrt3}{6}\times\frac{\sqrt3}{2}-\frac{1}{6}\times\frac{1}{2}+\frac{\sqrt3}{6}\times\frac{\sqrt3}{2}=1
x(1)=31+21cos3π+63sin3π+61cos32π+63sin32π=31+21×21+63×23−61×21+63×23=1
x
(
2
)
=
0
x\left(2\right)=0
x(2)=0
x
(
3
)
=
0
x\left(3\right)=0
x(3)=0
x
(
4
)
=
0
x\left(4\right)=0
x(4)=0
x
(
5
)
=
0
x\left(5\right)=0
x(5)=0
原始序列与分解序列是同一序列。
1.6-3-1
图像分别如下:
由图1/2可知,无限长序列在截取后,其频谱会失真,此失真叫截取失真。截取长度越小失真越严重。
由图3/4可知,无限长序列截短后,其频谱会产生失真,此失真叫截取失真。
代码如下:
clc;clear;
n=0:0.01:4;
x1n=cos(0.5*pi*n);
N = size(n,2);
Xk = dfs(x1n, N);
% stem(n,abs(Xk)); %显示序列的幅度谱
n1 = 0:8;
n1 = n1*4/8;%归整到一个周期内
x8n=cos(0.5*pi*n1);
x8n1=zeros(1,2048-size(x8n,2));
x8n=[x8n,x8n1];
N1 = size(x8n,2);
X8k = dfs(x8n,N1);
k8 = 0:N1-1;
% stem(k8,abs(X8k)); %显示序列的幅度谱
n2 = 0:32;
n2 = n2*4/32;
x32n=cos(0.5*pi*n2);
x32n1=zeros(1,2048-size(x32n,2));
x32n=[x32n,x32n1];
N2 = size(x32n,2);
X32k = dfs(x32n,N2);
k32 = 0:N2-1;
%plot(2*k32*pi/2048,abs(X32k)); %显示序列的幅度谱
n2 = 0:32;
n2 = n2*4/32;%归整到一个周期内
x32n=cos(0.5*pi*n2);
N2 = size(x32n,2);
X32kt = dfs(x32n,N2);
k32t = 0:N2-1;
% stem(k8,abs(X8k)); %显示序列的幅度谱
figure(1);
subplot(1,4,1);%1*4图形中的第一个
plot(n,abs(Xk)); ylabel ('Xk'); xlabel ('n'); title('原序列的DTFT幅度谱');
subplot(1,4,2);
plot(k8*2*pi/2048,abs(X8k)); ylabel ('X8k'); xlabel ('k8'); title('长度为8的DTFT谱');
subplot(1,4,3);
plot(k32*2*pi/2048,abs(X32k)); ylabel ('X32k'); xlabel ('k32'); title('长度为32的DTFT谱');
subplot(1,4,4);
stem(k32t*2*pi/32,abs(X32kt)); ylabel ('X32k'); xlabel ('k32'); title('长度为32的DFT谱');
1.6-3-2
(1)
代码如下:
clc;clear;
n=0:0.01:2*pi;
x1n=(-0.2).^n;
N = size(n,2);
Xk = dfs(x1n, N);
figure(1);
plot(n,abs(Xk));ylabel ('|Xk|'); xlabel ('n'); title('原序列的DTFT幅度谱'); %显示序列的幅度谱
hold on;
(2)
代码如下:
n1 = 0:32;
n1 = n1*2*pi/32;
x32n=(-0.2).^n1;
N1 = size(x32n,2);
X32k = dfs(x32n,N1);
k32 = 0:N1-1;
%stem(k32,abs(X32k)); %显示序列的幅度谱
n2 = 0:64;
n2 = n2*2*pi/64;
x64n=(-0.2).^n2;
N2 = size(x64n,2);
X64k = dfs(x64n,N2);
k64 = 0:N2-1;
%stem(k64,abs(X64k)); %显示序列的幅度谱
n3 = 0:128;
n3 = n3*2*pi/128;
x128n=(-0.2).^n3;
N3 = size(x128n,2);
X128k = dfs(x128n,N3);
k128 = 0:N3-1;
% stem(k128,abs(X128k)); %显示序列的幅度谱
figure(2);
subplot(1,3,1);%2*2图形中的第一个
stem(k32,abs(X32k)); ylabel ('|X32k|'); xlabel ('k32'); title('32序列的DFT幅度谱');
subplot(1,3,2);
stem(k64,abs(X64k)); ylabel ('|X64k|'); xlabel ('k64'); title('64序列的DFT幅度谱');
subplot(1,3,3);
stem(k128,abs(X128k)); ylabel ('|X128k|'); xlabel ('k128'); title('128序列的DFT幅度谱');
hold on;
(3)
代码如下:
n4 = 0:1024;
n4 = n4*2*pi/1024;
x1024n=(-0.2).^n4;
N4 = size(x1024n,2);
tic%开始计时
X1024k = dfs(x1024n,N4);
toc,disp(['1024DFT运行时间: ',num2str(toc)]);%结束计时,打印消耗时间
tic%开始计时
X1024kf = fft(x1024n,N4);
toc,disp(['1024FFT运行时间: ',num2str(toc)]);%结束计时,打印消耗时间
k1024 = 0:N4-1;
figure(3);
subplot(1,2,1);%2*1图形中的第一个
stem(k1024,abs(X1024k)); ylabel ('|X1024k|'); xlabel ('k1024'); title('1024序列的DFT幅度谱');
subplot(1,2,2);
stem(k1024,abs(X1024kf)); ylabel ('|X1024kf|'); xlabel ('k1024'); title('1024序列的DFT幅度谱');
打印计算时间:
快速傅里叶变换计算时间更短,值得使用!
1.7-3-1
(1)
其极点为 z=\frac{1}{8},则有
幅度谱:
代码:
clc;clear;
n=-pi:0.01:pi;
y=(exp(j*n)-7/8)./(exp(j*n)-1/8);
figure(1);
plot(n,abs(y));ylabel ('|H(e^{j\theta}|'); xlabel ('\theta'); title('幅度谱');
grid on;
(2)该滤波器的角频率为 0附近的增益为零,而在角频率为π的增益最大,
该滤波器滤去低频序列,保留高频序列。
(3)
1
+
c
o
s
(
π
n
2
)
+
c
o
s
(
π
n
)
1+\ cos\left(\frac{\pi n}{2}\ \right)+cos(\pi n\ )
1+ cos(2πn )+cos(πn )三个分序列的角频率分别为 0,
π
2
\frac{\pi}{2}
2π
,
π
\pi
π,其幅值增益和延时分别为
代码:
syms n
f=(exp(1i*n)-7/8)./(exp(1i*n)-1/8);
disp(vpa(abs(subs(f,'n',0))));disp(vpa(angle(subs(f,'n',0)*180/pi)));
disp(vpa(abs(subs(f,'n',pi/2))));disp(vpa(angle(subs(f,'n',pi/2))*180/pi));
disp(vpa(abs(subs(f,'n',pi))));disp(vpa(angle(subs(f,'n',pi))*180/pi));
1.7-3-2
(1) a.系统的差分方程
y
(
n
)
=
x
(
n
)
−
3
x
(
n
−
1
)
+
3
x
(
n
−
2
)
−
x
(
n
−
3
)
y\left(n\right)=x\left(n\right)-3x\left(n-1\right)+3x(n-2)-x(n-3)
y(n)=x(n)−3x(n−1)+3x(n−2)−x(n−3)
z变换:
Y
(
z
)
=
X
(
z
)
−
3
X
(
z
)
z
−
1
+
3
X
(
z
)
z
−
2
−
X
(
z
)
z
−
3
Y\left(z\right)=X\left(z\right)-3X\left(z\right)z^{-1}+3X\left(z\right)z^{-2}-X\left(z\right)z^{-3}
Y(z)=X(z)−3X(z)z−1+3X(z)z−2−X(z)z−3
传递函数:
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
1
−
3
z
−
1
+
3
z
−
2
−
z
−
3
H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=1-3z^{-1}+3z^{-2}-z^{-3}
H(z)=X(z)Y(z)=1−3z−1+3z−2−z−3
频率函数:
H
(
e
j
θ
)
=
1
−
3
e
−
j
θ
+
3
e
−
j
2
θ
−
e
−
j
3
θ
H\left(e^{j\theta}\right)=1-3e^{-j\theta}+3e^{-j2\theta}-e^{-j3\theta}
H(ejθ)=1−3e−jθ+3e−j2θ−e−j3θ
系统为 FIR滤波器,该滤波器为高通滤波器(HPF)
b.系统的差分方程
y
(
n
)
=
x
(
n
)
+
3
x
(
n
−
1
)
+
3
x
(
n
−
2
)
+
x
(
n
−
3
)
y\left(n\right)=x\left(n\right)+3x\left(n-1\right)+3x\left(n-2\right)+x(n-3)
y(n)=x(n)+3x(n−1)+3x(n−2)+x(n−3)
z变换:
Y
(
z
)
=
X
(
z
)
+
3
X
(
z
)
z
−
1
+
3
X
(
z
)
z
−
2
+
X
(
z
)
z
−
3
Y\left(z\right)=X\left(z\right)+3X\left(z\right)z^{-1}+3X\left(z\right)z^{-2}+X\left(z\right)z^{-3}
Y(z)=X(z)+3X(z)z−1+3X(z)z−2+X(z)z−3
传递函数:
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
1
+
3
z
−
1
+
3
z
−
2
+
z
−
3
H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=1+3z^{-1}+3z^{-2}+z^{-3}
H(z)=X(z)Y(z)=1+3z−1+3z−2+z−3
频率函数:
H
(
e
j
θ
)
=
1
+
3
e
−
j
θ
+
3
e
−
j
2
θ
+
e
−
j
3
θ
H\left(e^{j\theta}\right)=1+3e^{-j\theta}+3e^{-j2\theta}+e^{-j3\theta}
H(ejθ)=1+3e−jθ+3e−j2θ+e−j3θ
系统为 FIR滤波器,该滤波器为低通滤波器(LPF)
图像:
代码:
clc; clear;
n = -pi:0.01:pi;
y1 = 1-3*exp(-1i*n)+3*exp(-2*1i*n)-exp(-3*1i*n);
y2 = 1+3*exp(-1i*n)+3*exp(-2*1i*n)+exp(-3*1i*n);
figure(1)
subplot(1,2,1);
plot(n,abs(y1));ylabel ('|H_1(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
subplot(1,2,2);
plot(n,abs(y2));ylabel ('|H_2(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
(2)a.
H
(
e
j
θ
)
=
1
−
3
e
−
j
θ
+
3
e
−
j
2
θ
−
e
−
j
3
θ
=
e
−
j
3
θ
2
(
e
j
3
θ
2
−
e
j
3
θ
2
−
3
e
j
θ
2
+
3
e
−
j
θ
2
)
H\left(e^{j\theta}\right)=1-3e^{-j\theta}+3e^{-j2\theta}-e^{-j3\theta}=e^{-j\frac{3\theta}{2}}(e^{j\frac{3\theta}{2}}-e^{j\frac{3\theta}{2}}-{3e}^{j\frac{\theta}{2}}+3e^{-j\frac{\theta}{2}})
H(ejθ)=1−3e−jθ+3e−j2θ−e−j3θ=e−j23θ(ej23θ−ej23θ−3ej2θ+3e−j2θ)
∣
H
(
e
j
θ
)
∣
=
2
∣
sin
(
3
θ
2
)
−
3
sin
(
θ
2
)
∣
=
2
∣
3
s
i
n
θ
2
cos
2
θ
2
−
sin
3
θ
2
−
3
sin
θ
2
∣
=
8
∣
sin
3
θ
2
∣
\left|H\left(e^{j\theta}\right)\right|=2\left|\sin{\left(\frac{3\theta}{2}\right)}-3\sin{\left(\frac{\theta}{2}\right)}\right|=2\left|3sin\frac{\theta}{2}\cos^2\frac{\theta}{2}-\sin^3\frac{\theta}{2}-3\sin{\frac{\theta}{2}}\right|=8\left|\sin^3\frac{\theta}{2}\right|
∣∣H(ejθ)∣∣=2∣∣∣∣sin(23θ)−3sin(2θ)∣∣∣∣=2∣∣∣∣3sin2θcos22θ−sin32θ−3sin2θ∣∣∣∣=8∣∣∣∣sin32θ∣∣∣∣
H
(
e
j
θ
)
=
−
8
sin
3
θ
2
H\left(e^{j\theta}\right)=-8\sin^3\frac{\theta}{2}
H(ejθ)=−8sin32θ
b.
H
(
e
j
θ
)
=
1
+
3
e
−
j
θ
+
3
e
−
j
2
θ
+
e
−
j
3
θ
=
e
−
j
3
θ
2
(
e
j
3
θ
2
+
e
j
3
θ
2
+
3
e
j
θ
2
+
3
e
−
j
θ
2
)
H\left(e^{j\theta}\right)=1+3e^{-j\theta}+3e^{-j2\theta}+e^{-j3\theta}=e^{-j\frac{3\theta}{2}}(e^{j\frac{3\theta}{2}}+e^{j\frac{3\theta}{2}}+{3e}^{j\frac{\theta}{2}}+3e^{-j\frac{\theta}{2}})
H(ejθ)=1+3e−jθ+3e−j2θ+e−j3θ=e−j23θ(ej23θ+ej23θ+3ej2θ+3e−j2θ)
∣
H
(
e
j
θ
)
∣
=
2
∣
cos
(
3
θ
2
)
+
3
cos
(
θ
2
)
∣
=
2
∣
c
o
s
3
θ
2
−
3
s
i
n
2
θ
2
+
3
c
o
s
θ
2
∣
=
8
∣
cos
3
θ
2
∣
\left|H\left(e^{j\theta}\right)\right|=2\left|\cos{\left(\frac{3\theta}{2}\right)}+3\cos{\left(\frac{\theta}{2}\right)}\right|=2\left|{cos}^3\frac{\theta}{2}-3{sin}^2\frac{\theta}{2}+3cos\frac{\theta}{2}\right|=8\left|\cos^3\frac{\theta}{2}\right|
∣∣H(ejθ)∣∣=2∣∣∣∣cos(23θ)+3cos(2θ)∣∣∣∣=2∣∣∣∣cos32θ−3sin22θ+3cos2θ∣∣∣∣=8∣∣∣∣cos32θ∣∣∣∣
H
(
e
j
θ
)
=
8
cos
3
θ
2
H\left(e^{j\theta}\right)=8\cos^3\frac{\theta}{2}
H(ejθ)=8cos32θ
将其移动π,得到:
H
(
e
j
(
π
+
θ
)
)
=
8
cos
3
(
π
+
θ
)
2
=
−
8
sin
3
θ
2
H\left(e^{j(\pi+\theta)}\right)=8\cos^3\frac{(\pi+\theta)}{2}=-8\sin^3\frac{\theta}{2}
H(ej(π+θ))=8cos32(π+θ)=−8sin32θ
与a系统频率函数一致,故证明b将a系统中的频谱右移了π。
1.7-3-3
(1)a. 系统的差分方程
y
(
n
)
=
x
(
n
)
+
0.3
y
(
n
−
1
)
y\left(n\right)=x\left(n\right)+0.3y\left(n-1\right)
y(n)=x(n)+0.3y(n−1)
z变换:
Y
(
z
)
=
X
(
z
)
+
0.3
Y
(
z
)
z
−
1
Y\left(z\right)=X\left(z\right)+0.3Y\left(z\right)z^{-1}
Y(z)=X(z)+0.3Y(z)z−1
传递函数:
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
1
1
−
0.3
z
−
1
=
z
z
−
0.3
H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\frac{1}{1-0.3z^{-1}}=\frac{z}{z-0.3}
H(z)=X(z)Y(z)=1−0.3z−11=z−0.3z
则有:
H
(
n
)
=
(
0.3
)
n
ε
(
n
)
H\left(n\right)=\left(0.3\right)^n\varepsilon(n)
H(n)=(0.3)nε(n)
频率函数:
H
(
e
j
θ
)
=
e
j
θ
e
j
θ
−
0.3
=
cos
θ
+
j
s
i
n
θ
cos
θ
+
j
s
i
n
θ
−
0.3
H\left(e^{j\theta}\right)=\frac{e^{j\theta}}{e^{j\theta}-0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta-0.3}
H(ejθ)=ejθ−0.3ejθ=cosθ+jsinθ−0.3cosθ+jsinθ
系统为低通滤波器。
b. 系统的差分方程
y
(
n
)
=
x
(
n
)
−
0.3
y
(
n
−
1
)
y\left(n\right)=x\left(n\right)-0.3y\left(n-1\right)
y(n)=x(n)−0.3y(n−1)
z变换:
Y
(
z
)
=
X
(
z
)
−
0.3
Y
(
z
)
z
−
1
Y\left(z\right)=X\left(z\right)-0.3Y\left(z\right)z^{-1}
Y(z)=X(z)−0.3Y(z)z−1
传递函数:
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
1
1
+
0.3
z
−
1
=
z
z
+
0.3
H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\frac{1}{1+0.3z^{-1}}=\frac{z}{z+0.3}
H(z)=X(z)Y(z)=1+0.3z−11=z+0.3z
则有:
H
(
n
)
=
(
−
0.3
)
n
ε
(
n
)
H\left(n\right)=\left(-0.3\right)^n\varepsilon(n)
H(n)=(−0.3)nε(n)
频率函数:
H
(
e
j
θ
)
=
e
j
θ
e
j
θ
+
0.3
=
cos
θ
+
j
s
i
n
θ
cos
θ
+
j
s
i
n
θ
+
0.3
H\left(e^{j\theta}\right)=\frac{e^{j\theta}}{e^{j\theta}+0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta+0.3}
H(ejθ)=ejθ+0.3ejθ=cosθ+jsinθ+0.3cosθ+jsinθ
系统为高通滤波器。
图像
代码
clc; clear;
n = -pi:0.001:pi;
y1 = exp(1i*n)./(exp(1i*n)-0.3);
y2 = exp(1i*n)./(exp(1i*n)+0.3);
figure(1)
subplot(1,2,1);
plot(n,abs(y1));ylabel ('|H_1(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
subplot(1,2,2);
plot(n,abs(y2));ylabel ('|H_2(e^{j\theta})|'); xlabel ('\theta'); title('幅度谱');grid on;
(2)b系统的频率函数
H
(
e
j
θ
)
=
cos
θ
+
j
s
i
n
θ
cos
θ
+
j
s
i
n
θ
+
0.3
H\left(e^{j\theta}\right)=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta+0.3}
H(ejθ)=cosθ+jsinθ+0.3cosθ+jsinθ
将其移动π,得到:
H
(
e
j
(
π
+
θ
)
)
=
cos
(
π
+
θ
)
+
j
s
i
n
(
π
+
θ
)
cos
(
π
+
θ
)
+
j
s
i
n
(
π
+
θ
)
−
0.3
=
−
cos
θ
−
j
s
i
n
θ
−
cos
θ
−
j
s
i
n
θ
+
0.3
=
cos
θ
+
j
s
i
n
θ
cos
θ
+
j
s
i
n
θ
−
0.3
H\left(e^{j(\pi+\theta)}\right)=\frac{\cos{(\pi+\theta)}+jsin(\pi+\theta)}{\cos{(\pi+\theta)}+jsin(\pi+\theta)-0.3}=\frac{-\cos{\theta}-jsin\theta}{-\cos{\theta}-jsin\theta+0.3}=\frac{\cos{\theta}+jsin\theta}{\cos{\theta}+jsin\theta-0.3}
H(ej(π+θ))=cos(π+θ)+jsin(π+θ)−0.3cos(π+θ)+jsin(π+θ)=−cosθ−jsinθ+0.3−cosθ−jsinθ=cosθ+jsinθ−0.3cosθ+jsinθ
与a系统频率函数一致,故证明(b)的幅度谱是将(a)的右移了角频率。