MaxViT实战:使用MaxViT实现图像分类任务(一)

本文介绍MaxViT模型在图像分类任务的应用,涵盖模型训练、数据增强、混合精度训练等内容,并提供详细的实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

MaxViT,是今年谷歌提出分层Transformer的模型,将注意力模型与卷积有效地融合在一起。在图像分类方面,MaxViT 在各种设置下都达到了最先进的性能:ImageNet-1K分类任务,MaxViT 达到了 86.5% top-1 准确率; ImageNet-21K 分类任务,达到了 88.7% 的 top-1 准确率。对于下游任务,MaxViT 作为主干在对象检测和视觉美学评估方面提供了良好的性能。
论文的贡献主要有:

  • 提出了一个通用的强 Transformer 主干,MaxViT,可以在网络的每个阶段捕获本地和全局空间交互。
  • 提出了一种新颖的独立多轴注意力模块,由阻塞的局部注意力和扩张的全局注意力组成,享受线性复杂性的全局感知。
  • 通过广泛的消融研究展示了大量的设计选择,包括层数、布局、MBConv 的使用等,设计出了 MaxViT-Block。
  • 广泛的实验表明,MaxViT 在各种数据机制下实现了 SOTA 结果,适用于广泛的任务,包括图像分类、对象检测、图像美学评估和图像生成。

在这里插入图片描述

我这篇文章主要讲解如何使用MaxViT完成图像分类任务,接下来我们一起完成项目的实战。本例选用的模型是maxvit_tiny_224,在植物幼苗数据集上实现了95%的准确率。
论文链接:https://arxiv.org/pdf/2204.01697.pdf
论文翻译:https://wanghao.blog.csdn.net/article/details/127064117

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现MaxViT模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

安装包

安装timm

使用pip就行,命令:

pip install timm

本次使用的MaxViT,比较新,直接使用pip下载的模型中并没有,所以只能下载源码安装。链接:https://github.com/rwightman/pytorch-image-models
下载后解压,然后
执行:

python setup.py install 

在这里插入图片描述

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:

class EMA():
    def __init__(self, model, decay):
        self.model = model
        self.decay = decay
        self.shadow = {}
        self.backup = {}

    def register(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()

    def update(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
                self.shadow[name] = new_average.clone()

    def apply_shadow(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                self.backup[name] = param.data
                param.data = self.shadow[name]

    def restore(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}

加入到模型中。

# 初始化
ema = EMA(model, 0.999)
ema.register()

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    ema.update()

# eval前,apply shadow weights;eval之后,恢复原来模型的参数
def evaluate():
    ema.apply_shadow()
    # evaluate
    ema.restore()

这个ema最好放在微调的时候使用,否则验证集不上分,或者上分很慢。

项目结构

MaxViT_demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─mean_std.py
├─makedata.py
├─ema.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本

为了能在DP方式中使用混合精度,还需要在模型的forward函数前增加@autocast()。
在这里插入图片描述

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

### MaxViT 的架构、实现及其在计算机视觉中的应用 MaxViT种结合卷积神经网络 (CNN) 和 Transformer 架构优势的混合模型,旨在提升计算效率和性能表现。以下是有关 MaxViT 的架构设计、实现方式以及其在计算机视觉领域中的具体应用场景。 #### 1. **MaxViT 的核心设计理念** MaxViT 将局部性和全局性的特征提取能力相结合,通过引入窗口化的注意力机制来降低计算复杂度并增强模型的表现力。这种设计借鉴了 Swin Transformer 中分层窗口划分的思想[^2],同时保留了 CNN 对空间信息的有效处理特性。因此,MaxViT 能够更好地适应多种尺度下的目标检测与分割任务。 #### 2. **架构组成** MaxViT 主要由以下几个模块构成: - **MBConv 层**: MBConv(Mobile Inverted Bottleneck Convolution)是种轻量级卷积操作,在 MobileNet V2 中首次被提出。它用于捕获低层次的空间特征,并减少参数数量以提高运行速度[^3]。 - **Transformer 块**: 这部分负责建模远程依赖关系。为了优化内存消耗,采用了滑动窗口策略来进行自注意计算,从而使得每步仅需关注小块区域内的像素点而非整个输入图片。 - **Fused-MBConv 结合体**: 在某些阶段会交替使用标准卷积核大小为 $3 \times 3$ 或者更深更宽版本的 Fused-MBConvs 来进步加强表达能力而不显著增加额外开销。 ```python import tensorflow as tf from tensorflow.keras import layers def maxvit_block(inputs, num_heads=4, window_size=7): # MBConv Layer x = layers.Conv2D(filters=inputs.shape[-1], kernel_size=(1, 1), strides=(1, 1))(inputs) x = layers.BatchNormalization()(x) x = layers.Activation('swish')(x) # Window-based Self Attention Mechanism _, h, w, c = inputs.shape pad_h = (window_size - h % window_size) % window_size pad_w = (window_size - w % window_size) % window_size padded_x = tf.pad(x, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]]) patches = tf.image.extract_patches( images=padded_x, sizes=[1, window_size, window_size, 1], strides=[1, window_size, window_size, 1], rates=[1, 1, 1, 1], padding="VALID" ) attention_output = ... # Implement multi-head self-attention on these patches. return attention_output ``` 上述代码片段展示了如何构建个简单的 MaxViT 单元,其中包含了 MBConv 初始变换过程以及基于窗口的自我注意逻辑。 #### 3. **实际应用案例** 由于具备强大的表征能力和高效的推理流程,MaxViT 已经成功应用于多个前沿研究方向之中: - **图像分类**:类似于 ResNet 或 EfficientNet 等经典骨干网路,MaxViT 可作为预训练基础组件移植到新数据集上完成细粒度类别区分工作。 - **物体探测**:当嵌入 Faster R-CNN 或 YOLOv5 框架内部充当颈部连接件时,能够有效改善边界框定位精度及背景抑制效果[^1]。 - **语义/实例分割**:借助解码器结构扩展后的全景理解方案里,MaxViT 提供了更加细致且连贯的目标掩膜描绘服务。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值