文章目录
摘要
论文链接:http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
我们训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分类为1000个不同的类别。在测试数据上,我们实现了37.5%和17.0%的top-1和top-5错误率,这大大优于之前的最先进方案。神经网络有6000万个参数和65万个神经元,由5个卷积层组成,其中一些是最大池化层,三个全连接层和最终的1000路softmax。为了使训练更快,我们使用非饱和神经元和非常高效的卷积操作的GPU实现。为了减少全连接层中的过拟合,我们采用了最近开发的称为“dropout”的正则化方法,该方法被证明是非常有效的。我们还在ILSVRC-2012竞赛中输入了该模型的一个变体,并实现了15.3%的获胜前5名测试错误率,而第二名的成绩是26.2%。
1 简介
目前的目标识别方法主要使用机器学习方法。为了提高它们的性能,我们可以收集更大的数据集,学习更强大的模型,并使用更好的技术来防止过拟合。直到最近,带标签图像的数据集都相对较小,只有数万张图像(例如NORB [16], Caltech-101/256[8,9]和CIFAR-10/100[12])。在这种规模的数据集上,简单的识别任务可以很好地解决,特别是当它们通过标签保持变换进行扩