第一篇 AlexNet——论文翻译

本文介绍了AlexNet,一个大型深度卷积神经网络,它在ImageNet LSVRC-2010竞赛中大幅降低错误率,实现37.5%的top-1和17.0%的top-5错误率。网络包含5个卷积层和3个全连接层,使用ReLU非线性、多GPU训练、局部响应归一化、重叠池化等创新技术。数据增强和dropout正则化策略有效防止过拟合。AlexNet的成功揭示了深度学习在大规模图像识别任务中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文链接:http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

我们训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分类为1000个不同的类别。在测试数据上,我们实现了37.5%和17.0%的top-1和top-5错误率,这大大优于之前的最先进方案。神经网络有6000万个参数和65万个神经元,由5个卷积层组成,其中一些是最大池化层,三个全连接层和最终的1000路softmax。为了使训练更快,我们使用非饱和神经元和非常高效的卷积操作的GPU实现。为了减少全连接层中的过拟合,我们采用了最近开发的称为“dropout”的正则化方法,该方法被证明是非常有效的。我们还在ILSVRC-2012竞赛中输入了该模型的一个变体,并实现了15.3%的获胜前5名测试错误率,而第二名的成绩是26.2%。

1 简介

目前的目标识别方法主要使用机器学习方法。为了提高它们的性能,我们可以收集更大的数据集,学习更强大的模型,并使用更好的技术来防止过拟合。直到最近,带标签图像的数据集都相对较小,只有数万张图像(例如NORB [16], Caltech-101/256[8,9]和CIFAR-10/100[12])。在这种规模的数据集上,简单的识别任务可以很好地解决,特别是当它们通过标签保持变换进行扩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值