第二十篇 ResNet——模型讲解

本文详细介绍了ResNet残差网络的设计原理,包括残差结构、不同层的网络结构,如Conv2_X、Conv3_X、Conv4_X和Conv5_X层的实现,以及在解决深度学习中梯度消失问题的优势。ResNet通过引入直连通道,简化了网络学习目标,提高了深层神经网络的训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常明显。

模型的创新点在于提出残差学习的思想,在网络中增加了直连通道,将原始输入信息直接传到后面的层中,如下图所示:

​​在这里插入图片描述

传统的卷积网络或者全连接网络在信息传递的时候或多或少会存在信息丢失,损耗等问题,同时还有导致梯度消失或者梯度爆炸,导致很深的网络无法训练。ResNet在一定程度上解决了这个问题,通过直接将输入信息绕道传到输出,保护信息的完整性,整个网络只需要学习输入、输出差别的那一部分,简化学习目标和难度。VGGNet和ResNet的对比如下图所示。ResNet最大的区别在于有很多的旁路将输入直接连接到后面的层,这种结构也被称为shortcut或者skip connections。

残差结构

在ResNet网络结构中会用到两种残差模块,一种是以两个3✖3的卷积网络串接在一起作为一个残差模块,如下图所示:

### 关于第二十届智能汽车竞赛中的百度 Apollo 模型 #### 背景介绍 近年来,随着自动驾驶技术的发展,各大科技公司纷纷投入资源进行技术研发与应用落地。百度作为中国领先的互联网巨头之一,在其 **Apollo 开放平台** 的支持下,已经实现了多项关键技术突破并推动了商业化进程[^1]。 尽管具体针对“第二十届智能汽车竞赛”的官方文档可能并未完全公开发布,但从现有资料可以推测出一些关于如何利用百度 Apollo 模型的技术细节以及相关教程的信息。 --- #### 技术框架概述 百度 Apollo 提供了一套完整的自动驾驶解决方案,涵盖了感知、规划决策、控制等多个模块。以下是几个关键部分: 1. **感知模块** - 基于深度学习的目标检测算法被广泛应用于环境理解中。例如,PASCAL VOC 数据集常用于训练目标检测模型,该数据集中包含了丰富的类别标签(如车辆、行人等),能够有效提升模型对于复杂场景的理解能力[^3]。 2. **路径规划与决策制定** - 自动驾驶系统需要实时处理来自传感器的数据流,并据此做出合理的行驶策略调整。这部分功能通常依赖复杂的强化学习或者规则驱动的方法来实现最优解。 3. **硬件适配与部署优化** - 对于实际比赛用车辆而言,除了软件层面的支持外还需要考虑计算单元的选择及其功耗表现等因素。因此,在设计过程中往往会选择高性能GPU/FPGA芯片配合轻量化神经网络结构以满足低延迟需求的同时保持较高精度水平。 4. **开源工具链使用说明** - 如果参赛队伍希望快速上手,则可以直接参考由雷丰阳老师所制作的Spring Boot入门视频课程内容[^2],虽然此系列主要面向Web开发领域讲解基础知识概念,但对于初学者来说仍然具有一定的借鉴意义——即通过模仿构建小型项目积累实践经验后再逐步深入研究更高级别的主题比如无人驾驶相关课题。 --- #### 实施步骤建议(理论指导而非确切流程) 为了更好地帮助团队成员理解和掌握整个工作流程下面给出了一些通用性的提示: - 明确任务要求:仔细阅读赛事章程文件弄清楚评分标准是什么样的从而确定重点攻克方向. - 构建模拟环境:借助仿真器创建虚拟道路条件以便反复试验不同的参数配置直至达到理想效果为止. - 整合第三方库函数调用接口编写自定义脚本完成特定操作序列执行过程自动化减少人为干预次数提高效率降低成本风险. 最后提醒一点就是务必重视版本管理机制确保每次修改都能追溯源头便于后期维护升级! ```python # 示例代码片段展示如何加载预训练权重至指定层 import torch from torchvision import models model = models.resnet50(pretrained=True) for param in model.parameters(): param.requires_grad = False new_fc = nn.Linear(model.fc.in_features, num_classes) # 替换最后一层全连接层适应新分类数目 model.fc = new_fc ``` 上述例子演示了怎样基于PyTorch框架定制化改造ResNet架构使之适用于新的应用场景当中去这同样也可以移植到其他类似的迁移学习案例之中加以运用推广开来形成规模效应带来更大价值回报率增长空间无限广阔前景光明未来可期! --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值