第二十四篇 DenseNet——模型讲解

本文详细介绍了DenseNet深度学习模型,通过Dense Block的结构和网络架构的层层解析,阐述了其减轻梯度消失、高效利用特征及减少参数数量的优点。虽然显存消耗较大,但随着显卡技术的发展,这一问题已不再突出。DenseNet因其独特设计,成为CVPR2017年Best Paper,值得深入研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在深度学习网络中,随着网络深度的加深,梯度消失问题会愈加明显,目前很多论文都针对这个问题提出了解决方案,比如ResNet,Highway Networks,Stochastic depth,FractalNets等,尽管这些算法的网络结构有差别,但是核心都在于使用shotcut将浅层和深层链接起来。那么DenseNet是怎么做呢?延续这个思路,那就是在保证网络中层与层之间最大程度的信息传输的前提下,直接将所有层连接起来!整体架构如下图:
在这里插入图片描述
参数结构如下表:
在这里插入图片描述

DenseNet的优点:

  • 减轻了梯度消失。
  • 加强了feature的传递,更有效地利用了feature。
  • 一定程度上较少了参数数量。

DenseNet有个缺点,就是特别的消耗显存,不过在后期的模型中修改了,但是这种连接方式和ResNet相比,显存的占用还是很明显。近几年,显卡的技术飞速发展,显存提升很大,所以这个缺点可以忽略!

作为CVPR2017年的Best Paper,DenseNet值得我们深入研究研究!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值