论文信息
HCF-Net(Hierarchical Context Fusion Network)是一种新提出的深度学习模型,专门用于红外小目标检测。该论文于2024年3月16日发布,作者包括Shibiao Xu、ShuChen Zheng等,主要研究机构为北京邮电大学。该模型旨在提高红外图像中微小目标的识别和定位能力,尤其是在复杂背景下。
- 论文链接:https://arxiv.org/pdf/2403.10778
- 官方GitHub代码:https://github.com/zhengshuchen/HCFNet
创新点
HCF-Net的主要创新包括:
-
并行化补丁感知注意力(PPA)模块:通过多分支特征提取策略,捕获不同尺度和层次的特征信息,增强小目标的表示能力。
-
维度感知选择性融合(DASI)模块:实现自适应的通道选择和融合,优化特征信息的整合,提高模型的灵活性和准确性。
-
多膨胀通道细化器(MDCR)模块:通过多层深度可分离卷积捕捉不同感受野范围的空间特征,增强对小目标的定位能力。
这些模块的结合使得HCF-Net在处理红外小目标