【Block总结】DiffAttention,差分注意力融入CLIP架构,抑制噪声,增强对相关特征的关注|即插即用

论文信息

  • 标题:DiffCLIP: Differential Attention Meets CLIP(中文:DiffCLIP:差分注意力机制与CLIP的融合)
  • 作者:Hasan Abed Al Kader Hammoud, Bernard Ghanem(均来自KAUST)
  • 发表时间:2025年3月11日(arXiv预印本),2025年4月2日(论文页面更新)
  • 研究领域:多模态学习、视觉-语言模型、注意力机制
  • 论文链接:https://arxiv.org/abs/2503.06626
  • 代码链接:https://github.com/lihuibng/DiffCLIP

在这里插入图片描述

创新点

  1. 差分注意力机制引入

    • 核心创新:首次将差分注意力(Differential Attention)融入CLIP架构,通过计算两个注意力图的差异来抑制噪声,增强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值