FOC算法

FOC算法 通常指 磁场定向控制(Field-Oriented Control),主要用于电机控制领域(如永磁同步电机、感应电机),通过将电机的三相电流分解为磁场分量(d轴)和转矩分量(q轴),实现高效、精准的转速和转矩控制。以下是其核心原理及代码示例:


一、FOC算法原理

1. 核心思想
  • 坐标变换:将三相定子电流从静止坐标系(ABC)转换到旋转坐标系(dq),分离磁场与转矩分量。

  • 控制目标

    • d轴电流(id​):控制磁场强度(通常设为0以实现最大转矩)。

    • q轴电流(iq​):控制转矩输出。

  • 闭环控制:通过PI调节器分别控制id​和iq​,实现动态响应。

2. 关键步骤
  1. Clark变换(3相→2相静止坐标系):

  2. Park变换(2相静止→2相旋转坐标系):

  3. PI调节:调节id​和iq​至目标值。

  4. 逆Park变换(2相旋转→2相静止坐标系)。

  5. SVPWM调制:生成驱动三相逆变器的PWM信号。


二、FOC算法代码示例(简化仿真)

import numpy as np
import matplotlib.pyplot as plt

# 电机参数
R = 1.0      # 定子电阻 (Ω)
L = 0.01     # 定子电感 (H)
psi = 0.1    # 永磁体磁链 (Wb)
J = 0.01     # 转动惯量 (kg·m²)
B = 0.1      # 阻尼系数

# FOC参数
Kp = 0.5     # PI比例系数
Ki = 10.0    # PI积分系数
dt = 1e-4    # 时间步长 (s)

# 初始化
theta = 0    # 转子角度 (rad)
omega = 0    # 转子转速 (rad/s)
id_err_sum = 0
iq_err_sum = 0

# 目标值
id_ref = 0   # d轴目标电流(磁场分量)
iq_ref = 5   # q轴目标电流(转矩分量)

# 存储数据
time = []
speed = []

for t in np.arange(0, 1, dt):
    # 1. Clark变换(假设三相电流平衡)
    ia = 10 * np.sin(theta)  # 模拟电流测量
    ib = 10 * np.sin(theta - 2*np.pi/3)
    ic = 10 * np.sin(theta + 2*np.pi/3)
    i_alpha = ia
    i_beta = (ia + 2*ib) / np.sqrt(3)
    
    # 2. Park变换
    i_d = i_alpha * np.cos(theta) + i_beta * np.sin(theta)
    i_q = -i_alpha * np.sin(theta) + i_beta * np.cos(theta)
    
    # 3. PI调节(控制i_d和i_q)
    id_err = id_ref - i_d
    iq_err = iq_ref - i_q
    id_err_sum += id_err * dt
    iq_err_sum += iq_err * dt
    
    Vd = Kp * id_err + Ki * id_err_sum
    Vq = Kp * iq_err + Ki * iq_err_sum
    
    # 4. 逆Park变换
    V_alpha = Vd * np.cos(theta) - Vq * np.sin(theta)
    V_beta = Vd * np.sin(theta) + Vq * np.cos(theta)
    
    # 5. 电机动力学模型(更新转速和角度)
    torque = 1.5 * psi * i_q  # 电磁转矩
    omega += (torque - B * omega) / J * dt
    theta += omega * dt
    theta = theta % (2 * np.pi)
    
    # 记录数据
    if t % 0.01 < dt:
        time.append(t)
        speed.append(omega)

# 可视化转速响应
plt.plot(time, speed)
plt.xlabel("Time (s)")
plt.ylabel("Speed (rad/s)")
plt.title("FOC控制下的电机转速响应")
plt.grid()
plt.show()

三、FOC应用场景

  1. 电动汽车驱动:精确控制电机转矩和转速。

  2. 工业机器人:实现高动态响应的关节控制。

  3. 无人机电调:优化电机效率与响应速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WangLanguager

您的鼓励是对我最大的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值