FOC算法 通常指 磁场定向控制(Field-Oriented Control),主要用于电机控制领域(如永磁同步电机、感应电机),通过将电机的三相电流分解为磁场分量(d轴)和转矩分量(q轴),实现高效、精准的转速和转矩控制。以下是其核心原理及代码示例:
一、FOC算法原理
1. 核心思想
-
坐标变换:将三相定子电流从静止坐标系(ABC)转换到旋转坐标系(dq),分离磁场与转矩分量。
-
控制目标:
-
d轴电流(id):控制磁场强度(通常设为0以实现最大转矩)。
-
q轴电流(iq):控制转矩输出。
-
-
闭环控制:通过PI调节器分别控制id和iq,实现动态响应。
2. 关键步骤
-
Clark变换(3相→2相静止坐标系):
-
Park变换(2相静止→2相旋转坐标系):
-
PI调节:调节id和iq至目标值。
-
逆Park变换(2相旋转→2相静止坐标系)。
-
SVPWM调制:生成驱动三相逆变器的PWM信号。
二、FOC算法代码示例(简化仿真)
import numpy as np import matplotlib.pyplot as plt # 电机参数 R = 1.0 # 定子电阻 (Ω) L = 0.01 # 定子电感 (H) psi = 0.1 # 永磁体磁链 (Wb) J = 0.01 # 转动惯量 (kg·m²) B = 0.1 # 阻尼系数 # FOC参数 Kp = 0.5 # PI比例系数 Ki = 10.0 # PI积分系数 dt = 1e-4 # 时间步长 (s) # 初始化 theta = 0 # 转子角度 (rad) omega = 0 # 转子转速 (rad/s) id_err_sum = 0 iq_err_sum = 0 # 目标值 id_ref = 0 # d轴目标电流(磁场分量) iq_ref = 5 # q轴目标电流(转矩分量) # 存储数据 time = [] speed = [] for t in np.arange(0, 1, dt): # 1. Clark变换(假设三相电流平衡) ia = 10 * np.sin(theta) # 模拟电流测量 ib = 10 * np.sin(theta - 2*np.pi/3) ic = 10 * np.sin(theta + 2*np.pi/3) i_alpha = ia i_beta = (ia + 2*ib) / np.sqrt(3) # 2. Park变换 i_d = i_alpha * np.cos(theta) + i_beta * np.sin(theta) i_q = -i_alpha * np.sin(theta) + i_beta * np.cos(theta) # 3. PI调节(控制i_d和i_q) id_err = id_ref - i_d iq_err = iq_ref - i_q id_err_sum += id_err * dt iq_err_sum += iq_err * dt Vd = Kp * id_err + Ki * id_err_sum Vq = Kp * iq_err + Ki * iq_err_sum # 4. 逆Park变换 V_alpha = Vd * np.cos(theta) - Vq * np.sin(theta) V_beta = Vd * np.sin(theta) + Vq * np.cos(theta) # 5. 电机动力学模型(更新转速和角度) torque = 1.5 * psi * i_q # 电磁转矩 omega += (torque - B * omega) / J * dt theta += omega * dt theta = theta % (2 * np.pi) # 记录数据 if t % 0.01 < dt: time.append(t) speed.append(omega) # 可视化转速响应 plt.plot(time, speed) plt.xlabel("Time (s)") plt.ylabel("Speed (rad/s)") plt.title("FOC控制下的电机转速响应") plt.grid() plt.show()
三、FOC应用场景
-
电动汽车驱动:精确控制电机转矩和转速。
-
工业机器人:实现高动态响应的关节控制。
-
无人机电调:优化电机效率与响应速度。