导入超市用户的数据
import pandas as pd from sklearn.preprocessing import StandardScaler #标准差标准化 com = pd.read_csv('./company.csv',encoding='ansi')
导入剔除异常值的函数
def box_analysis(data): ''' 进行箱线图分析,剔除异常值 :param data: :return: ''' qu = data.quantile(0.75) ql = data.quantile(0.25) iqr = qu - ql #上限与下限 1.5可以微调 up = qu+1.5*iqr low = ql-1.5*iqr #进行比较运算 bool_id_1 = data<=up bool_id_2 = data>=low bool_num = bool_id_1 & bool_id_2 return bool_num
进行缺失值检测
print(com.isnull().sum())
检测结果无缺失值
筛选有用特征,切片处理
data = com.iloc[:,-2:]
箱线图分析来进行异常值检测
按照平均每次消费金额进行异常值去除
bood_id_1 = box_analysis(data.iloc[:,0]) data = data.loc[bood_id_1,:]
按照平均消费周期进行异常值去除
bood_id_2 = box_analysis(data.iloc[:,1]) data = data.loc[bood_id_2,:]
构建需要特征
data.loc[:,'每日消费金额'] = data.loc[:,'平均每次消费金额']/data.loc[:,'平均消费周期(天)']
标准化数据,量级不大,暂时不处理量级
stand = StandardScaler() #创建标准差示例 #先计算每一列的均值、标准差再进行转化数据 x = stand.fit_transform(data) #进行标准化
把上面数据处理部分封装进函数
def built_data(): #缺失值检测 # print(com.isnull().sum()) #筛选有用特征,切片处理 data = com.iloc[:,-2:] # print(data) #异常值检测,箱线图分析 #按照平均每次消费金额进行异常值去除 bood_id_1 = box_analysis(data.iloc[:,0]) data = data.loc[bood_id_1,:] #按照平均消费周期进行异常值去除 bood_id_2 = box_analysis(data.iloc[:,1]) data = data.loc[bood_id_2,:] #构建需要特征 data.loc[:,'每日消费金额'] = data.loc[:,'平均每次消费金额']/data.loc[:,'平均消费周期(天)'] # print(data) #标准化数据,量级不大,暂时不处理量级 #标准化数据 stand = StandardScaler() #创建标准差示例 #先计算每一列的均值、标准差再进行转化数据 x = stand.fit_transform(data) #进行标准化 return data.values
绘图部分函数如下
def show_res_km(data,y_predict,center): ''' 进行结果展示 :param data:原始数据 :param y_predict:预测标签 :param center:最终的聚类中心 :return: ''' plt.figure() #获取原始数据的行数 index_num = data.shape[0] # colors = ['r','g','b','y'] for i in range(index_num): plt.scatter(data[i,0],data[i,1],c=colors[int(y_predict[i])]) #散点图的绘制,一个一个绘制 #聚类中心的位置 #b的话是描点划线,bx的话是画点但是不描线 plt.plot(center[:,0],center[:,1],'bx',marker='x',markersize=12) plt.show()
调用函数来进行聚类
data = built_data() #导包实现 k=3 km = KMeans(n_clusters=k) #训练数据 km.fit(data) #进行预测 ,y_predict预测标签 y_predict = km.predict(data) #获取聚类中心 center = km.cluster_centers_ print('预测值:\n',y_predict) print('聚类中心:\n',center) show_res_km(data.values,y_predict,center)
结果如下