1. INT8 量化原理
INT8 量化(8位整数量化)是一种深度学习模型优化技术,通过将模型中的浮点数权重和激活值转换为8位整数,从而减少计算和存储需求。INT8 量化主要用于提升推理速度和降低内存带宽需求。以下是 INT8 量化的核心原理和步骤:
1. 量化概述
量化将浮点数(通常为32位浮点数)转换为较低位数(如8位整数),以减少模型的存储空间和计算量。在 INT8 量化中,浮点数被映射到0到255之间的8位整数。
2. 量化过程
2.1 确定量化范围
-
范围计算:首先确定要量化的浮点数的范围。这通常包括权重和激活值的最小值和最大值。可以通过统计数据来计算这些范围。
-
缩放因子:根据范围计算缩放因子(scale factor)。缩放因子是将浮点值转换为整数的比例因子,计算方式为:
scale=max_float−min_float2n−1 \text{scale} = \frac{\text{max\_float} - \text{min\_float}}{2^{n} - 1} scale=2n−1max_float−min_float
其中,max_float
和min_float
分别是浮点数的最大值和最小值,n
是量化位数(在 INT8 中,n = 8)。 -
零点偏移:计算零点(zero-point),它是量化后的整数值0所对应的浮点值。零点用于将浮点数的负值正确映射到整数范围。计算公式为:
zero_point=round(−min_floatscale) \text{zero\_point} = \text{round}\left(\frac{-\text{min\_float}}{\text{scale}}\right) zero_point