04树 + 堆 + 优先队列 + 图(D1_树(D3_二叉搜索树(BST)))

目录

一、简介

二、主要用途

三、基本操作

1. 定义

2. 查找

3. 插入

4. 删除

找到待删结点

分情况删除

5. 最终代码

四、知识小结

五、参考文献


一、简介

二叉搜索树又称二叉排序树,也叫二叉查找树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若左子树不空,则左子树上所有节点的值都小于根节点的值;
  • 若右子树不空,则右子树上所有节点的值都大于根节点的值;
  • 任意节点的子树也都是二叉搜索树;

二叉搜索树有一个重要特性就是他的中序遍历结果一定是有序的。

如上图,二叉搜索树的中序遍历结果是 [1,3,4,6,8,9] 。

二、主要用途

二叉搜索树主要用于实现高效的数据查找和排序:

  1. 查找
    由于二叉搜索树的特性,可以通过比较节点的键值来快速定位目标节点。
    在查找操作中,对于一颗相对平衡的二叉搜索树,每次都可以将搜索范围缩小一半,
    因此平均时间复杂度为O(log n),其中n是树中节点的数量。
  2. 排序
    对于一个无序的序列,可以利用二叉搜索树的性质进行排序。
    具体实现方法是,将序列中的元素依次插入到二叉搜索树中,然后进行中序遍历,即可按照升序输出有序序列。这种基于二叉搜索树的排序算法,对于一颗相对平衡的二叉搜索树,平均时间复杂度为O(nlog n)

需要注意的是,二叉搜索树的性能取决于树的形状。

如果构建出的二叉搜索树高度不平衡(只有左树或只有右树),查找的时间复杂度可能达到O(n),导致操

作效率会大幅下降。

因此,在实际使用中,需要注意维护二叉搜索树的平衡性,以提高操作效率,

在此基础上演化出了 AVL树、红黑树等更具平衡性的数据结构。

二叉搜索树是学习其他“搜索”数据结构的基础,下面就围绕二叉搜索树的一些操作进行展开介绍:

三、基本操作

1. 定义

为了实现二叉搜索树的相关操作,这里首先给出二叉搜索树节点的定义:

static class TreeNode {
 	 public int val;
     public TreeNode left;
     public TreeNode right;

     public TreeNode(int val) {
         this.val = val;
     }
 }
// 二叉搜索树根节点,初始时为空
public TreeNode root = null;

2. 查找

实现思路(利用二叉搜索树的特性):

  1. 从根节点开始,与目标键值进行比较。
  2. 如果目标键值等于当前节点的键值,则找到了目标节点;
  3. 如果目标键值小于当前节点的键值,则继续在左子树中查找;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodingW丨编程之路

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值