目录
一、简介
二叉搜索树又称二叉排序树,也叫二叉查找树,它或者是一棵空树,或者是具有以下性质的二叉树:
- 若左子树不空,则左子树上所有节点的值都小于根节点的值;
- 若右子树不空,则右子树上所有节点的值都大于根节点的值;
- 任意节点的子树也都是二叉搜索树;
二叉搜索树有一个重要特性就是他的中序遍历结果一定是有序的。
如上图,二叉搜索树的中序遍历结果是 [1,3,4,6,8,9] 。
二、主要用途
二叉搜索树主要用于实现高效的数据查找和排序:
- 查找
由于二叉搜索树的特性,可以通过比较节点的键值来快速定位目标节点。
在查找操作中,对于一颗相对平衡的二叉搜索树,每次都可以将搜索范围缩小一半,
因此平均时间复杂度为O(log n),其中n是树中节点的数量。 - 排序
对于一个无序的序列,可以利用二叉搜索树的性质进行排序。
具体实现方法是,将序列中的元素依次插入到二叉搜索树中,然后进行中序遍历,即可按照升序输出有序序列。这种基于二叉搜索树的排序算法,对于一颗相对平衡的二叉搜索树,平均时间复杂度为O(nlog n)
需要注意的是,二叉搜索树的性能取决于树的形状。
如果构建出的二叉搜索树高度不平衡(只有左树或只有右树),查找的时间复杂度可能达到O(n),导致操
作效率会大幅下降。
因此,在实际使用中,需要注意维护二叉搜索树的平衡性,以提高操作效率,
在此基础上演化出了 AVL树、红黑树等更具平衡性的数据结构。
二叉搜索树是学习其他“搜索”数据结构的基础,下面就围绕二叉搜索树的一些操作进行展开介绍:
三、基本操作
1. 定义
为了实现二叉搜索树的相关操作,这里首先给出二叉搜索树节点的定义:
static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int val) {
this.val = val;
}
}
// 二叉搜索树根节点,初始时为空
public TreeNode root = null;
2. 查找
实现思路(利用二叉搜索树的特性):
- 从根节点开始,与目标键值进行比较。
- 如果目标键值等于当前节点的键值,则找到了目标节点;
- 如果目标键值小于当前节点的键值,则继续在左子树中查找;