04树 + 堆 + 优先队列 + 图(D1_树(D15_哈夫曼树/霍夫曼树))

目录

一、基本介绍

二、哈夫曼树的创建

三、哈夫曼编码

1. 基本介绍

2. 编码原理解析

3. 哈夫曼编码的实现

4. 使用哈夫曼编码实现数据压缩与解压

文件压缩 & 解压


一、基本介绍

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl) 达到最小,称这样

的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)

  • 路径:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径
  • 路径长度:通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
  • 结点的权:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权
  • 结点的带权路径长度:从根结点到该结点之间的路径长度与该结点的权的乘积
  • 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为

WPL(weighted path length)

比如:

对于下图二叉树结构中的13结点

权值:13

路径:1——>5——>13

路径长度:3-1=2

带权路径长度:13 x 2 = 26

该二叉树的带权路径长度为:13x2+7x2+8x2+3x2=62

哈夫曼树的特点:

  • 权值越大的结点离根结点越近
  • 树的带权路径长度WPL最小

二、哈夫曼树的创建

构成哈夫曼树的步骤:

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一棵最简单的二叉树
  2. 取出根节点权值最小的两棵二叉树
  3. 组成一棵新的二叉树, 该新的二叉树的根节点的权值是前面两棵二叉树根节点权值的和
  4. 再将这棵新的二叉树,以根节点的权值大小与之前剩下的二叉树进行再次排序,
  5. 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一棵哈夫曼树

题目:要求把数列 {13, 7, 8, 3, 29, 6, 1},转成一棵哈夫曼树.

图解

1、排序:1, 3, 6, 7, 8, 13, 29

2、找到最小根结点值最小的两棵二叉树,1,3构建如下二叉树

3、再进行排序:4,6,7,8,13,29 取4,6构建如下二叉树

4、再进行排序:7,8,10,13,29 取7,8构建如下二叉树

5、再进行排序:10,13,15,29 取10,13构建如下二叉树

6、再进行排序:15,23,29 取15,23 构建如下二叉树

7、再进行排序:29,38 取29,38 得到最终的哈夫曼树

代码实现:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
    int value; // 结点权值
    Node left; // 指向左子结点
    Node right; // 指向右子结点
    //写一个前序遍历
    public void preOrder() {
        System.out.println(this);
        if(this.left != null) {
            this.left.preOrder();
        }
        if(this.right != null) {
            this.right.preOrder();
        }
    }	
    public Node(int value) {
        this.value = value;
    }
    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }
    @Override
    //一个内部比较器实现权值集合排序
    public int compareTo(Node o) {
        // TODO Auto-generated method stub
        // 表示从小到大排序
        return this.value - o.value;
    }

}
public class HuffmanTree {
    public static void main(String[] args) {
        int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
        Node root = createHuffmanTree(arr);	
        //测试一把
        System.out.println("前序遍历已经创建好的哈夫曼树:");
        preOrder(root); //
        
    }	
    //编写一个前序遍历的方法
    public static void preOrder(Node root) {
        if(root != null) {
            root.preOrder();
        }else{
            System.out.println("是空树,不能遍历~~");
        }
    }
    // 创建赫夫曼树的方法
    /**
     * 
     * @param arr 需要创建成哈夫曼树的数组
     * @return 创建好后的赫夫曼树的root结点
     */
    public static Node createHuffmanTree(int[] arr) {
        // 第一步为了操作方便
        // 1. 遍历 arr 数组
        // 2. 将arr的每个元素构成成一个Node
        // 3. 将每个Node 放入到ArrayList中
        int num=0;//记录排序的次数
        List<Node> nodes = new ArrayList<Node>();
        for (int value : arr) {
            nodes.add(new Node(value));
        }
        
        //我们处理的过程是一个循环的过程	
        while(nodes.size() > 1) {		
            //排序 从小到大 
            Collections.sort(nodes);		
            num++;
            System.out.println("第"+num+"次排序nodes =" + nodes);		
            //取出根节点权值最小的两颗二叉树 
            //(1) 取出权值最小的结点(二叉树)
            Node leftNode = nodes.get(0);
            //(2) 取出权值第二小的结点(二叉树)
            Node rightNode = nodes.get(1);
            
            //(3)构建一颗新的二叉树
            Node parent = new Node(leftNode.value + rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;
            
            //(4)从ArrayList删除处理过的二叉树
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            //(5)将parent加入到nodes
            nodes.add(parent);
        }	
        //返回哈夫曼树的root结点
        return nodes.get(0);		
    }
}
第1次排序nodes =[Node [value=1], Node [value=3], Node [value=6], Node [value=7], Node [value=8], Node [value=13], Node [value=29]]
第2次排序nodes =[Node [value=4], Node [value=6], Node [value=7], Node [value=8], Node [value=13], Node [value=29]]
第3次排序nodes =[Node [value=7], Node [value=8], Node [value=10], Node [value=13], Node [value=29]]
第4次排序nodes =[Node [value=10], Node [value=13], Node [value=15], Node [value=29]]
第5次排序nodes =[Node [value=15], Node [value=23], Node [value=29]]
第6次排序nodes =[Node [value=29], Node [value=38]]
前序遍历已经创建好的哈夫曼树:
Node [value=67]
Node [value=29]
Node [value=38]
Node [value=15]
Node [value=7]
Node [value=8]
Node [value=23]
Node [value=10]
Node [value=4]
Node [value=1]
Node [value=3]
Node [value=6]
Node [value=13]

三、哈夫曼编码

1. 基本介绍

哈夫曼编码(Huffman Coding)是一种编码方式, 属于一种程序算法

哈夫曼编码是哈夫曼树在电讯通信中的经典的应用之一

赫夫曼编码广泛地用于数据文件压缩,其压缩率通常在20%~90%之间

赫夫曼码是可变字长编码(VLC) 的一种,Huffman于1952年提出一种编码方法,称之为最佳编码

2. 编码原理解析

1、通信领域中信息的处理方式1-定长编码:

缺点:所占字符长度太长消耗大量内存空间

2、通信领域中信息的处理方式2-变长编码

缺点:不是前缀编码,编码匹配时会出现多义性

(比如:上图中字符“a”的编码是1空格对应的编码是0,在解码过程中会把10对应的“i”解

成“a”和空格)

前缀编码:字符的编码都不能是其他字符编码的前缀, 即不能匹配到重复的编码

3、通信领域中信息的处理方式3-赫夫曼编码

i like like like java do you like a java // 共40个字符(包括空格)

d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数

按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值

根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为0 向右的路径为1 , 编码如下:

o: 1000 u: 10010 d: 100110 y: 100111 i: 101 a : 110

k: 1110 e: 1111 j: 0000 v: 0001 l: 001 : 01

按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为

(注意这里我们使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodingW丨编程之路

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值