目录
一、基本介绍
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl) 达到最小,称这样
的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)
- 路径:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径
- 路径长度:通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
- 结点的权:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权
- 结点的带权路径长度:从根结点到该结点之间的路径长度与该结点的权的乘积
- 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为
WPL(weighted path length)
比如:
对于下图二叉树结构中的13结点
权值:13
路径:1——>5——>13
路径长度:3-1=2
带权路径长度:13 x 2 = 26
该二叉树的带权路径长度为:13x2+7x2+8x2+3x2=62
哈夫曼树的特点:
- 权值越大的结点离根结点越近
- 树的带权路径长度WPL最小
二、哈夫曼树的创建
构成哈夫曼树的步骤:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一棵最简单的二叉树
- 取出根节点权值最小的两棵二叉树
- 组成一棵新的二叉树, 该新的二叉树的根节点的权值是前面两棵二叉树根节点权值的和
- 再将这棵新的二叉树,以根节点的权值大小与之前剩下的二叉树进行再次排序,
- 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一棵哈夫曼树
题目:要求把数列 {13, 7, 8, 3, 29, 6, 1},转成一棵哈夫曼树.
图解:
1、排序:1, 3, 6, 7, 8, 13, 29
2、找到最小根结点值最小的两棵二叉树,1,3构建如下二叉树
3、再进行排序:4,6,7,8,13,29 取4,6构建如下二叉树
4、再进行排序:7,8,10,13,29 取7,8构建如下二叉树
5、再进行排序:10,13,15,29 取10,13构建如下二叉树
6、再进行排序:15,23,29 取15,23 构建如下二叉树
7、再进行排序:29,38 取29,38 得到最终的哈夫曼树
代码实现:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
int value; // 结点权值
Node left; // 指向左子结点
Node right; // 指向右子结点
//写一个前序遍历
public void preOrder() {
System.out.println(this);
if(this.left != null) {
this.left.preOrder();
}
if(this.right != null) {
this.right.preOrder();
}
}
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
@Override
//一个内部比较器实现权值集合排序
public int compareTo(Node o) {
// TODO Auto-generated method stub
// 表示从小到大排序
return this.value - o.value;
}
}
public class HuffmanTree {
public static void main(String[] args) {
int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
Node root = createHuffmanTree(arr);
//测试一把
System.out.println("前序遍历已经创建好的哈夫曼树:");
preOrder(root); //
}
//编写一个前序遍历的方法
public static void preOrder(Node root) {
if(root != null) {
root.preOrder();
}else{
System.out.println("是空树,不能遍历~~");
}
}
// 创建赫夫曼树的方法
/**
*
* @param arr 需要创建成哈夫曼树的数组
* @return 创建好后的赫夫曼树的root结点
*/
public static Node createHuffmanTree(int[] arr) {
// 第一步为了操作方便
// 1. 遍历 arr 数组
// 2. 将arr的每个元素构成成一个Node
// 3. 将每个Node 放入到ArrayList中
int num=0;//记录排序的次数
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
//我们处理的过程是一个循环的过程
while(nodes.size() > 1) {
//排序 从小到大
Collections.sort(nodes);
num++;
System.out.println("第"+num+"次排序nodes =" + nodes);
//取出根节点权值最小的两颗二叉树
//(1) 取出权值最小的结点(二叉树)
Node leftNode = nodes.get(0);
//(2) 取出权值第二小的结点(二叉树)
Node rightNode = nodes.get(1);
//(3)构建一颗新的二叉树
Node parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//(4)从ArrayList删除处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//(5)将parent加入到nodes
nodes.add(parent);
}
//返回哈夫曼树的root结点
return nodes.get(0);
}
}
第1次排序nodes =[Node [value=1], Node [value=3], Node [value=6], Node [value=7], Node [value=8], Node [value=13], Node [value=29]]
第2次排序nodes =[Node [value=4], Node [value=6], Node [value=7], Node [value=8], Node [value=13], Node [value=29]]
第3次排序nodes =[Node [value=7], Node [value=8], Node [value=10], Node [value=13], Node [value=29]]
第4次排序nodes =[Node [value=10], Node [value=13], Node [value=15], Node [value=29]]
第5次排序nodes =[Node [value=15], Node [value=23], Node [value=29]]
第6次排序nodes =[Node [value=29], Node [value=38]]
前序遍历已经创建好的哈夫曼树:
Node [value=67]
Node [value=29]
Node [value=38]
Node [value=15]
Node [value=7]
Node [value=8]
Node [value=23]
Node [value=10]
Node [value=4]
Node [value=1]
Node [value=3]
Node [value=6]
Node [value=13]
三、哈夫曼编码
1. 基本介绍
哈夫曼编码(Huffman Coding)是一种编码方式, 属于一种程序算法
哈夫曼编码是哈夫曼树在电讯通信中的经典的应用之一。
赫夫曼编码广泛地用于数据文件压缩,其压缩率通常在20%~90%之间
赫夫曼码是可变字长编码(VLC) 的一种,Huffman于1952年提出一种编码方法,称之为最佳编码
2. 编码原理解析
1、通信领域中信息的处理方式1-定长编码:
缺点:所占字符长度太长消耗大量内存空间
2、通信领域中信息的处理方式2-变长编码:
缺点:不是前缀编码,编码匹配时会出现多义性
(比如:上图中字符“a”的编码是1空格对应的编码是0,在解码过程中会把10对应的“i”解
成“a”和空格)
前缀编码:字符的编码都不能是其他字符编码的前缀, 即不能匹配到重复的编码
3、通信领域中信息的处理方式3-赫夫曼编码:
i like like like java do you like a java // 共40个字符(包括空格)
d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值
根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为0 向右的路径为1 , 编码如下:
o: 1000 u: 10010 d: 100110 y: 100111 i: 101 a : 110
k: 1110 e: 1111 j: 0000 v: 0001 l: 001 : 01
按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为
(注意这里我们使用