PlanetMath
  Math for the people, by the people.
(advanced)
Login
create new user
name:
pass:
forgotten password?
Main Menu
the math
Encyclopædia
Papers
Books
Expositions

meta
Requests (54)
Orphanage (6)
Unclass'd (205)
Unproven (103)
Corrections (28)

talkback
Polls
Forums
Feedback
Bug Reports

information
Docs
Classification
News
Legalese
History
ChangeLog
TODO List
divergence (Definition)

Basic Definition.

Let $ x,y,z$ be a system of Cartesian coordinates on $ 3$-dimensional Euclidean space, and let $ \mathbf{i}, \mathbf{j}, \mathbf{k}$ be the corresponding basis of unit vectors. The divergence of a continuously differentiable vector field
$\displaystyle \mathbf{F}= F^1\mathbf{i}+F^2\mathbf{j}+F^3\mathbf{k},$
is defined to be the function
$\displaystyle \operatorname{div}\mathbf{F}= \frac{\partial F^1}{\partial x}+ \frac{\partial F^2}{\partial y}+ \frac{\partial F^3}{\partial z}.$
Another common notation for the divergence is $ \nabla \cdot\mathbf{F}$ (see gradient), a convenient mnemonic.

Physical interpretation.

In physical terms, the divergence of a vector field is the extent to which the vector field flow behaves like a source or a sink at a given point. Indeed, an alternative, but logically equivalent definition, gives the divergence as the derivative of the net flow of the vector field across the surface of a small sphere relative to the surface area of the sphere. To wit,
$\displaystyle (\operatorname{div}\mathbf{F})(p)= \lim_{r\rightarrow 0} \int_{S} \!\!(\mathbf{F}\cdot \mathbf{N})dS\;/\left(4 \pi r^2\right), $
where $ S$ denotes the sphere of radius $ r$ about a point $ p\in\mathbb{R}^3$, and the integral is a surface integral taken with respect to $ \mathbf{N}$, the normal to that sphere.

The non-infinitesimal interpretation of divergence is given by Gauss's Theorem. This theorem is a conservation law, stating that the volume total of all sinks and sources, i.e. the volume integral of the divergence, is equal to the net flow across the volume's boundary. In symbols,

$\displaystyle \int_V \operatorname{div}\mathbf{F}\, dV = \int_S (\mathbf{F}\cdot \mathbf{N})\, dS,$
where $ V\subset\mathbb{R}^3$ is a compact region with a smooth boundary, and $ S=\partial V$ is that boundary oriented by outward-pointing normals. We note that Gauss's theorem follows from the more general Stokes' theorem, which itself generalizes the fundamental theorem of calculus.

In light of the physical interpretation, a vector field with constant zero divergence is called incompressible - in this case, no net flow can occur across any closed surface.

General definition.

The notion of divergence has meaning in the more general setting of Riemannian geometry. To that end, let $ \mathbf{V}$ be a vector field on a Riemannian manifold. The covariant derivative of $ \mathbf{V}$ is a type $ (1,1)$ tensor field. We define the divergence of $ \mathbf{V}$ to be the trace of that field. In terms of coordinates (see tensor and Einstein summation convention), we have

$\displaystyle \operatorname{div}\mathbf{V}= V^i{}_{;i} \ .$

"divergence" is owned by rmilson. [ full author list (2) ]
(view preamble)

View style:

Also defines:  incompressible, divergence theorem, Gauss's theorem


Cross-references: terms, trace, field, tensor, type, covariant derivative, Riemannian manifold, constant, fundamental theorem of calculus, general Stokes theorem, smooth, region, compact, interpretation, normal, integral, radius, sphere, net, derivative, equivalent, sink, source, flow, gradient, function, vector field, differentiable, unit vectors, basis, Euclidean space, coordinates

This is version 6 of divergence, born on 2002-08-05, modified 2002-10-05.
Object id is 3271, canonical name is Divergence.
Accessed 175 times total. [ details ]

Classification:
AMS MSC26B12 (Real functions :: Functions of several variables :: Calculus of vector functions)

Pending Errata and Addenda
None.
[ View all 2 ]
Discussion
Style: Expand: Order:

No messages.

Interact
rate | post | correct | update request | add derivation | add example | add (any)