

Characterization of crystalline

materials by X-Ray topography.

Yves Epelboin

Laboratoire de Minéralogie Cristallographie CNRS & Université P.M. Curie Paris, France

Yves.Epelboin@lmcp.jussieu.fr

BNL Y. Epelboin September 29th 2002

Agenda

- X-Ray Dynamical theory
 - Kinematical and Dynamical theory
 - O Propagation of wave-fields
 - X-Ray topography
- Propagation of ultra-acoustic waves in piezoelectric devices
- Characterization of biological materials
- Heating of monochromators

Kinematical theory

Limitations of the kinematical theory:

- ➤ Multiple diffraction is neglected, i.e. the intensity of the diffracted beam is small
- The index of refraction is 1, i.e. vacuum

The Bragg peak should be a Dirac!

Kinematical theory

This assumption is acceptable for imperfect crystals which may be described as a mosaic

Each bloc diffracts incoherently so that multiple diffraction does not occur.

The dynamical theory takes into account:

- The importance of the reflected amplitude i.e. multiple reflection: no need of a mosaic spread
- The refractive index of the materials (less than 1).

Today formalism is based on von Laue description:

- Maxwell equations
- Fourier expansion of the polarizability

$$D(r) = \varepsilon E(r) = \varepsilon_0 E(r) + P(r) = \varepsilon_0 \Big[1 + \chi(r) \Big] E(r)$$
$$\chi(r) = \sum_h \chi_h(r) \exp(2\pi i h.r)$$

- The energy propagates in the crystal as wave-fields
- The nature of the incident wave has to be taken into

Laue case

Incident plane wave (monochromator)

Kato approximation of a wave: incident point source:

- Wave-fields interfere
- They are sensitive to the local deformation, thus to any local stress.

Laue case

In a white beam topograph the contrast arises from the contribution of incoherent point sources distributed along the surface.

Wave-fields are sensitive to the local deformation

All the wave-fields interfere and create a complex contrast related to the deformation.

The image is made of the contribution of the wave-fields in each plane of incidence.

One distinguished three parts in the image of a defect:

The direct image when the defect intersects the direct beam

The dynamical image (less intensity)

The intermediary image

X-Ray topography

BNL Y. Epelboin September 29th 2002

Simulation

Paths of wave - fields:

- > In one incidence plane
- Dislocation moves from left to right
- Hot color means high intensity
- Cold color (blue) means low intensity

X-Ray Dynamical theory

Plane wave case at half maximum

X-Ray Dynamical theory

Plane wave case at exact Bragg condition

Pendellösung fringes

X-Ray dynamical theory

Incident point source

Extinction fringes

X-Ray Dynamical theory

- See "Dynamical Theory of X-Ray Diffraction"
 - André Authier, Oxford Science Publications 2001

Agenda

- X-Ray Dynamical theory
 - O Kinematical and Dynamical theory
 - O Propagation of wave-fields
 - O X-Ray topography
- Propagation of ultra-acoustic waves in piezoelectric devices
- Characterization of biological materials
- > Heating of monochromators

Stroboscopic topography

Work performed at LURE and ESRF
 B. Capelle, J. Détaint & Y. Epelboin

BNL Y. Epelboin September 29th 2002

Stroboscopic topography

Ultra-waves Characteristics

Study of shear modes:

- Vibration parallel to the X₁ axis.
- N overtone: number of half acoustic wavelengths in the thickness.
- More than one resonant vibration for a given overtone.

Piezoelectric devices

Circular plano-convex devices with elliptical electrodes

 $\lambda = 0.076$ nm, $\overline{2}1.0$ reflection , mode 1

Piezoelectric devices ...

 $\lambda = 0.076$ nm, $\overline{2}1.0$ reflection , mode 3

mode 5

Y. Epelboin, J. Détaint & B. Capelle, J. Appl. Cryst. 1998, 31, 574

Influence of Voltage

No vibration

Increasing u₁ vibration

 $\overline{2}\,\overline{1}.0$ reflection $\lambda \approx 0.07\,\text{nm}$

75 mm

Influence of Voltage

The amplitude is maximum in the center and decreases toward the edges

Section Topographs

Section topographs present special features

Experiment at ESRF

The image changes when the crystal to film distance changes

The fringes are shaped as a « muscle »!

Experiment at ESRF (...ctd) PRSITE CURIE

This effect can be observed in stroboscopic images only

BNL Y. Epelboin September 29th 2002

Quantitative analysis

The comparison with a theoretical curve qualitatively fits with the theory

B. Capelle, J. Détaint & Y. Epelboin JAC 2001, 34, 625

Study of surface waves

ν = 9.507 Mhz, $λ_R/2 = 166$ μm LURE: B. Capelle, J. Détaint 1996

Good agreement with simulations V. Mocella & Y. Epelboin, JAC 1999, 154

Agenda

- X-Ray Dynamical theory
 - O Propagation of wave-fields
 - O Kinematical and Dynamical theory
 - O X-Ray topography
- Propagation of ultra-acoustic waves in piezoelectric devices
- Characterization of biological materials
- > Heating of monochromators

Characterization of Biological Materials

Work performed at ESRF:

- B. Capelle (LMCP, Paris)
- Y. Epelboin (LMCP, Paris)
- J. Härtwig (ESRF)
- F. Otalora (Granada, Spain)
- V. Stojanoff (NSLS, USA)

Question:

- O How is the determination of the molecular structure of a protein affected by the defect structures in the biomolecular crystal?
- O Do dislocations exist in the crystals?

Biological materials

Plane wave (quasi monochromatic) topography

Series of topographs for various ⊕ angles.

Monochromatic beam

Film or image plate

Biological materials

Visibility of dislocations

Dislocations?

HEWL batch grown in gel media; λ=0.81Å

Visibility of dislocations

Poor visibility of lines!

BNL Y. Epelboin September 29th 2002

Visibility of dislocations

Rule:

$$(g,b,l)=0$$

or (simplification)

$$g.b = 0$$

Visibility of dislocations

Thus if these linear contrasts are dislocations:

- Bürgers vector parallel to c axis (A4)
- Lines perpendicular to c axis

They are edge dislocations

Is this acceptable from the point of view of

- •crystal growth?
- •Dislocation visibility?

Width of dislocation images proportional to:

- Length of Bürgers vector
- \triangleright 1/ $\Delta\Theta$, $\Delta\Theta$ being the departure from exact Bragg angle

Near Bragg peak: large image

Weak beam condition: small image

- Dislocations can be distinguished only far from Bragg condition
- Near the peak all contrasts mix together to show only a black area

> Why do people see spiral loops in surface studies (AFM...)?

Thaumatin crystal 12x12 μm²
Malkin & al. J. Cryst. Growth 1999, 471

A screw dislocation appears as a spiral on a surface perpendicular to the line.

A mix dislocation also appears as a spiral, inclined on one side, on a cross surface

Surface studies can seldom determine the nature of a volume defect.

They cannot determine the nature of a dislocation.

BNL Y. Epelboin September 29th 2002

- Edge dislocations are common in hydrothermal growth:
 - \circ Growth speed improvement: 1 2
 - O More edge than screw dislocations
 - F. Lefaucheux, M-C. Robert & A. Authier J. Cryst. Growth (1973), 329 (in french)
 - S. Gits-Léon, F. Lefaucheux & M-C. Robert, J. Cryst. Growth (1978), 345

- Dislocations exist in HEWL hydro thermally grown crystals
- Features resemble to the known ones in inorganic hydro thermally grown crystals
- There are good reasons to think that biological crystals resemble to inorganic crystals from the point of view of crystal growth

Agenda

- X-Ray Dynamical theory
 - O Kinematical and Dynamical theory
 - O Propagation of wave-fields
 - O X-Ray topography
- Propagation of ultra-acoustic waves in piezoelectric devices
- Characterization of biological materials
- Heating of monochromators

Heating of monochromators

- V. Mocella (ESRF & APS)
- W. K. Lee (APS)
- G. Tajiri (APS)
- D. Mills (APS)
- C. Ferrero (ESRF)
- Y. Epelboin (LMCP-UPMC, Paris)

Study of a cryogenically cooled double crystal monochromator

(submitted to J. Appl. Cryst.)

Methodology

Calorimetry and rocking curve measurements

Finite elements modeling of thermal load and related strain

Simulation with Takagi - Taupin equations

Comparison between simulation and experiment

Si 111, E = 8 keV, I = 100 mA

Crystal dimensions 85 mm x 50 mm x 35 mm (Lee, W. K., Fernandez, P. & Mills, D. M. (2000). *J. Synch. Rad* **7**, 12)

Si 333, E = 24 keV + Si 444 E = 32 keV, I = 100 mA

BNL Y. Epelboin September 29th 2002

Results

- Simulations match very well the experiment
- Discrepancies may be explained by:
 - O The approximation of the FEA heat load model
 - Inaccurate spatial beam distribution in the simulation
- A geometrical approach is satisfactory only when the X -Ray penetration is negligible:
 - O Low intensity
 - Cow energy

Thanks

Yves.Epelboin@Imcp.jussieu.fr

http://www.lmcp.jussieu.fr/~epelboin

BNL Y. Epelboin September 29th 2002