
Introduction to Physical
Compiler and ILM Flow

Timothy Chiun
Simon Koval

Corporate Applications Engineering

2

• Introduction to Physical Compiler

• Hierarchical Physical Synthesis with Interface
Logic Models

Agenda

Introduction to Physical
Compiler
Timothy Chiun

CAE, Physical Compiler

4

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

5

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

6

• Achieving Timing Closure
• Scaling the Design Process for

Multi-Million Gate Chips

Problems

7

SDF

Capacitance

PDEF

Logic SynthesisLogic Synthesis

Place/RoutePlace/Route

RTL Constraints

Netlist

GDSII

A
SI

C
 T

ea
m

Ve
nd

or
/F

ou
nd

ry

SDF
Constraints

Tech lib/WLM

Timing Critical Designs
What’s not working?

• Synthesis
– WLMs are statistical
– Constraints are estimated

set_input_delay,
set_output_delay, set_load,
set_driving_cell,
set_clock_skew, etc.

8

Timing Critical Designs
What’s not working?

• Place/Route
– Estimates for wire delays

are off!
Nets with the same fanout

have very different
delays in the placed
design

– ECO’s are required
Timing closure becomes

a moving target

Logic SynthesisLogic Synthesis

Place/RoutePlace/Route

RTL Constraints

Netlist

GDSII

A
SI

C
 T

ea
m

Ve
nd

or
/F

ou
nd

ry

SDF
Constraints

Tech lib/WLM

9

Flows and Issues – Traditional Flow

RTL Constraints

Netlist

GDSII

A
SI

C
 T

ea
m

Ve
nd

or
/F

ou
nd

ry

Logic SynthesisLogic Synthesis

Place/RoutePlace/Route

Tech lib/WLM

10

Fanout

D
el

ay

1. Front-end timing is becoming unreliable
– With traditional flows, all nets with the same fanout

have the same estimated interconnect delay during
front-end design

Unifying Synthesis & Placement

11

1. Front-end timing is becoming unreliable
2. Placement can change timing dramatically

– After placement, it is obvious that nets with the same fanout will not
have the same interconnect delay

Unifying Synthesis & Placement is
the Best Technical Solution

Physical View

Logical View

12

After Placement After Routing

Unifying Synthesis & Placement is
the Best Technical Solution

1. Front-end timing is becoming unreliable
2. Placement can change timing dramatically
3. Detailed routing has only a minor effect

when good global routing is done to model interconnect

13

Physical Synthesis Design Phase
Synthesis Detailed Routing

0 %

±100 %

Timing Accuracy
(% Error)

WLM

Steiner

Coarse
Detail

Interconnect Model

Placement is Key!

14

Physical Compiler:
 Power of Synthesis + Placement

• Faster timing closure

• Better timing correlation between
synthesis result and post-layout
result

• Resultant netlist is more intelligently
created, resulting in reduced die
area

• World class cell placement
technology produces highly routable
designs that meet timing

RTL Source,
Timing Constraints,

Synthesis
Libraries

Physical
Constraints

Physical
Libraries

Converged Netlist and Placement

Physical
Compiler

15

Synopsys Physical Synthesis
Complete RTL to GDSII Solution

TimingTiming & &
PhysicalPhysical

ConstraintsConstraints

Logical
Library

Physical
Library

GDSII

RTL

Chip Architect™ FlexRoute™

Physical Compiler™

Block
Implementation

Standard Cell Routing
Route Compiler

Clock Tree Synthesis
ClockTree Compiler

Unified
Synthesis & Placement

Chip Level
Planning and
Integration

Design Planning
Chip-Level Integration

16

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

17

What is Physical Compiler?

.db File

.v .vhd
RTL source

.db File

Block-Level Designs

DesignTime

Des
ign

Com

pil
er

Physical
Compiler

FlexPlace
Placement

Synthesis

Timing Calculation

18

Physical Compiler is...

• Not using wireload models
• Unifies synthesis and placement
• Produces an optimized gate-level netlist AND cell

placement from :
– RTL description
– Existing gate-level netlist

• Works on a single, flat block of physical hierarchy
– Logical hierarchy is maintained

WLM

19

RTL or Gates ? Your choice

• RTL to Placed Gates (RTL2PG)
– Creates an optimized netlist concurrent with placement

starting from RTL
– Provides the highest level of flexibility in architectural choices

to meet design goals
• Gates to Placed Gates (G2PG)

– Optimizes the netlist concurrent with placement starting from
a gate-level netlist

– Least impact to existing design flows
– Higher capacity

20

Physical Compiler RTL2PG Flow

Floorplanning
Tool

compile_physical

RTL
Constraints .v .vhd .db .edif

RTL
Constraints

compile

Routing
ToolPrimeTime

Physical
Library
 .pdb

Synopsys
Library
.db file

.pdef

Netlist
& Placement

SPEF/DSPF/rSPF

.db
SDF &

set_load

Physical Compiler

Design Compiler

21

Physical Compiler G2PG Flow

Floorplanning
Tool

physopt

RTL
Constraints .v .vhd .db .edif

Constraints

compile

Routing
ToolPrimeTime

SDF &
set_load

Physical
Library

.pdb

Synopsys
Library
.db file

.pdef

Netlist
& Placement

SPEF/DSPF/rSPF

.db

Physical Compiler

Design Compiler

22

Incremental Optimizations

• Placed Gates to Placed Gates
– Fine-tune after insertion of additional cells
– Invoke additional effort to deal with design-specific issues

(timing/congestion)
• After Routing

– Clear up post-extraction timing violations
– Maintain as much back-annotated timing information as possible
– Meant for last minute timing fixes

23

Physical Compiler Package

• Translation Utilities
– lef2plib
– def2pdef
– db2def5

• Shell Tool - psyn_shell
• GUI Tool - psyn_gui

24

Physical Compiler GUI

Command Input

25

Viewing the Floorplan

Physical View of the design

26

Analyzing the Histograms

27

Schematic with Selection

28

Floorplan with Selected Path

29

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

30

Design
Compiler

RTL or GATESRTL or GATES

Constraints

.db

Tcl script

Logical
library

Physical
Compiler

.pdb
Physical
library

PDEF, .dbPhysical
Constraints

(DFT),CTS &
Routing

(DFT),CTS &
Routing

Netlist &
placement

ASIC Vendor

ASIC Vendor

Data Required to Run PC :
PC Input/Output files

31

GND

reference point
(typical)

dimension
“bounding box”

pins
• direction
• layer
• shape

Symmetry
(X, Y, or 90-degrees)

VDD

A B

Y

NAND_1

LEF - Cell Data (Physical Library)

32

Physical Library Utility - lef2plib

• ‘lef2plib’ is part of the standard
installation

• Converts LEF syntax to Synopsys
physical library syntax (PLIB)

• Physical library file can be saved
into a binary DB (PDB) using
read_lib /write_lib commands

lef2plib

LEF2

PLIB

LEF1

read_lib/write_lib

PDB

33

Input Files – Floorplan Data

Physical Compiler

 Cadence

def2pdef lef2plib

Avant! Scheme scripts

LEFDEF

PDBPDEFDBTiming DB

 Chip Architect

Floorplan
Data

Physical
Library

Floorplan
Data

Physical
Library

Design Data
Constrained

Logical
Library

34

Input Files –
Logical and Physical Hierarchy

• The logical hierarchy is maintained throughout the Physical
Compiler flow

• Physical Compiler manages both physical and logical
hierarchies

• Both are persistently stored in the .db file

35

TOP

SubC

SubA

SubB

TOP

SubCSubBSubA

Sub
A1

Sub
A3

Sub
A2

Sub
B1

Sub
B2

Sub
C1

Sub
C3

Sub
C2

Sub
A22

Sub
A21

Sub
B22

Sub
B21

Sub
C32

Sub
C31

Logical Physical

Logical & Physical Hierarchy Example -
Optimizing a Whole Chip

• Only 1 PDEF is annotated to ‘TOP’
• Physical hierarchy is flat

36

TOP

SubCSubBSubA

Sub
A1

Sub
A3

Sub
A2

Sub
B1

Sub
B2

Sub
C1

Sub
C3

Sub
C2

Sub
A22

Sub
A21

Sub
B22

Sub
B21

Sub
C32

Sub
C31

Logical & Physical Hierarchy Example -
Optimizing Floorplan Blocks

• Three PDEFs are annotated to modules
• Floorplan hierarchy is maintained

Logical Physical

TOP

SubC

SubA

SubB

37

Cluster
Hard Boundary

Floorplanning Objects

Port Locations
Signal I/O Blockages

Power Routes
Placement Blockages

RAM
Fixed Cells
e.g. RAM placement

Site Arrays
Array of placement sites

Region
Soft Boundary

38

Floorplan Utility - def2pdef

• ‘def2pdef’ is part of the standard
installation

• Converts DEF floorplan
information to IEEE PDEF syntax

• DEF v5.3 is supported
• Compiled technology file (.pdb)

must exist

PDEF

def2pdef

DEF

39

Handling Obstructions

• PDEF describes all floorplan data
• Power nets can be full or partial blockages
• RAMs can have placement keepouts
• User can add additional obstructions

– Routing layers or placement

40

• PC provides several commands that can be used to help floorplan
the design (if the incoming PDEF needs additional information).

• Command
• set_placement_area -> creates the core area for coarse placement
• create_site_row -> creates sites for detailed placement
• create_obstruction -> create a layer specific or placement obstruction
• set_cell_location -> sets the x y location of a specific cell
• set_port_location -> sets the x y location of a specific port
• set_dont_touch_placement-> creates the ‘fixed_placement’ restriction for a cell
• set_bounds -> controls grouping of specific cells
• set_keepout_margin -> creates keepouts for specific cells
• set_dont_touch -> prevents optimization but allows placement
• set_ideal_net -> specifies net as having zero weight for placement -

 prevents clumping of cells. Typically used for
 clocks, resets and test enables, etc.

Floorplanning Commands

41

Setting up for Physical Compiler

• Create your RTL as usual
• Apply your design constraints as usual
• Invoke your TCL scripts as usual

• Apply floorplan data

• Forget about wireload models

42

Example RTL2PG Script

Compile RTL using floorplan information.

read_verilog top_bob.v

current_design uncle

uniquify

link

source constraints.tcl

Read Floorplan Info…

read_pdef bob.pdef

Compile…

compile_physical -congestion

report_timing -input_pins -nets -physical

write_pdef -v3.0 -output placed_bob.pdef

write -format db -hierarchy -output placed_bob.db

exit

constraints.tcl
set_operating_conditions { WCCOM }
set_load [load_of Core/Buf1/A] [all_outputs]
create_clock -period 8 CLK
set_dont_touch_network [get_clock CLK]
set_input_delay 0.5 -clock CLK [all_inputs]
set_output_delay 1.5 -clock CLK [all_outputs]
set_max_fanout 5 uncle
set_max_transition 0.8 uncle

constraints.tcl
set_operating_conditions { WCCOM }
set_load [load_of Core/Buf1/A] [all_outputs]
create_clock -period 8 CLK
set_dont_touch_network [get_clock CLK]
set_input_delay 0.5 -clock CLK [all_inputs]
set_output_delay 1.5 -clock CLK [all_outputs]
set_max_fanout 5 uncle
set_max_transition 0.8 uncle

43

Example G2PG Script

Gates to placed gates using floorplan information.

read_db bob.db

current_design uncle

link

source constraints.tcl

Read Floorplan Info…

read_pdef bob.pdef

Compile…

physopt -congestion

report_timing -input_pins -nets -physical

write_pdef -v3.0 -output placed_bob.pdef

write -format db -hierarchy -output placed_bob.db

exit

constraints.tcl
set_operating_conditions { WCCOM }
set_load [load_of Core/Buf1/A] [all_outputs]
create_clock -period 8 CLK
set_dont_touch_network [get_clock CLK]
set_input_delay 0.5 -clock CLK [all_inputs]
set_output_delay 1.5 -clock CLK [all_outputs]
set_max_fanout 5 uncle
set_max_transition 0.8 uncle

constraints.tcl
set_operating_conditions { WCCOM }
set_load [load_of Core/Buf1/A] [all_outputs]
create_clock -period 8 CLK
set_dont_touch_network [get_clock CLK]
set_input_delay 0.5 -clock CLK [all_inputs]
set_output_delay 1.5 -clock CLK [all_outputs]
set_max_fanout 5 uncle
set_max_transition 0.8 uncle

44

Running compile_physical (RTL2PG)

• Uses all floorplan information present
– Optimizes RTL design based on placement
– Produces a fully legal result

• Same switches as ‘compile’ plus
-congestion
-timing_driven_congestion
-congestion_effort

45

Running physopt (G2PG)

• Uses all floorplan information present
– Optimizes an existing gate level design based on placement
– Produces a fully legal result

• Same switches as ‘compile_physical’ plus
-check_only

46

Incremental Optimizations

• physopt -incremental

– Uses existing placement as starting point for physopt, initial
placement is skipped

• physopt -incremental -eco

– Allows the merge of new / changed leaf cells

• physopt -incremental -post_route

– Maintains backannotated timing

• –size_only

– Allows only cell sizing to take place
– Works on all the above incremental modes

47

Incremental -size_only

Candidate for
sizing

Candidate for
sizing After sizing up

there is no room
After sizing up

there is no room

Cell is placed at
new location

Cell is placed at
new location

48

Incremental –in_place_size_only

Candidate for
sizing

Candidate for
sizing

Only size up to fit
the current location
Only size up to fit

the current location

Take into account
available space

Take into account
available space

49

Post-Route Physical Compiler Flow

• Read post route netlist
• Read the updated PDEF
• Read the SDF and set_load data.
 psyn_shell> read_sdf design.postroute.sdf

 psyn_shell> source design.postroute.setload

• Analyze the design for timing violations
• If timing violations or congestion exist, run

physopt in the post-route mode. Set -effort
to low to minimize change and displacement.
psyn_shell> physopt -effort low \

-post_route -incremental

Physical
Compiler

def2pdef
PDEF

RC ExtractionRC Extraction
Parasitics

set_load .tcl
.sdf

Post Netlist
Incremental

Post Route Mode

GDSII

 Route Route

db2def5

Legalized-Placed
PDEF

Logical
Netlist

DEFRouteRoute

50

Congestion-Driven Placement

• Additional checks provided during placement prevent routing
congestion.
– Congestion estimates used to modify placement
– Techniques such as “adaptive tuning of cell density” in areas of high

congestion
• Use congestion mode only when the design has a

congestion problem.

51

Tactical Commands

• create_placement
• legalize_placement
• create/remove_buffer_tree
• set_delay_estimation_options
• run_router
• set_congestion_options

Placement

High Fanout Buffering

RC Correlation or Timing

Congestion

52

• PC provides several ‘report’ commands that detail physical information

• report_area -physical -> shows the size of the core area and aspect
 ratio

• report_lib -physical -> shows physical library information
• report_cell -physical -only_physical -> shows the cell location and orientation
• report_net -physical -only_physical -> shows the net total length and pre-routes
• report_clusters -> shows the physical cluster hierarchy
• report_port -physical -> shows the physical location of the port
• report_design -physical -> shows size, area, aspect ratio, orientation,

 utilization and obstruction information.
• report_congestion -> shows the congestion prediction for the

 current placement.
• report_timing -physical -> shows location of pins and capacitive loads

 on the nets in the reported timing path.
• report_keepout_margin -> lists keepout margins for specified cells
• report_bounds -> lists type and size of cell groupings

Reporting Commands

53

Powerful and Flexible

• Different sets of commands/switches address different
problems
– Each design has it’s own unique problems
– The commands provide flexible, powerful solutions for all your designs

• Proceed step by step, and check your logs
– Use the reporting commands and the GUI

54

Primetime

db2def5

Physical Compiler

Cadence Router Avant! Router

Scheme script

write_pdefwrite -format db write -format hdl

PDEFDB verilog/vhdl

Output Files

Chip Architect

55

Preparing Routing Files

• psyn_shell-t>
change_names -rules verilog
write -format db -hierarchy -output design.db
write -format verilog -hierarchy -output design.v
write_pdef -v3.0 -output design.pdef

56

Creating DEF

• All floorplan data is written to DEF v5.2
• UNIX > db2def5

-search “lib_dir1> <lib_dir2>”
Directory containing library files

-pdb <pdb1> -pdb <pdb2>
Name of PDB file(s) to use

-out <DEF_file>
<design_DB>

57

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

58

Physical Compiler in the
Flow

• Floorplanning from Chip Architect
• Timing analysis with PrimeTime
• Scan Methodology

– Placement-based scan ordering
• Power Optimization

– Clock gating and logic optimization
• Datapath Optimization

– Use structured placement from MC (or not)

59

• Introduction
– Problems
– Current Flows and Issues
– Synopsys Physical Synthesis Solution

• What is Physical Compiler?
• Running Physical Compiler
• Physically Integrated Methodologies
• Summary

Agenda

60

Summary - Physical Compiler

• Concurrent Synthesis + Placement Tool
– Produces netlist & highly routable placement that meet timing
– Improves Productivity, reduces iterations

• Easy to Adopt
– Proven in Cadence, Avant! and IBM Flows

• Best Technology
• Proven Customer Success

– 90+ 150+ 180+ 200+ Tapeouts

Hierarchical Physical Synthesis
with

 Interface Logic Models

Simon Koval
Physical Synthesis CAE

62

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

63

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

64

ILM Goals

• Provide design abstraction capability that can be used
throughout the hierarchical design implementation flow

• Improve runtime and capacity compared to using original
netlist

• Generate highly accurate model
• Make ILMs easy to use
• Easy to debug

65

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

66

Extracted Timing Models

A

B

CLK

X

Y

A

B

CLK

X

Y

Original block

Extracted Model

67

ILM Concept

A

B

X

Y

CLK

A

B

X

Y

CLK

Original block

ILM

Original block

68

 ETM vs. ILM Comparison

• Fast model generation times, highly accurate,
context independent model

• Use for Hierarchical STA / Chip-level
optimizations

• Improves runtime and decreases memory for
chip-level tasks

• Moderate model generation times, runtime
improvement, reasonable accuracy

• Use for IP Reuse, 3rd Party Tools, non-STA
Tools

• Hides implementation details

Extracted Timing ModelsExtracted Timing Models
A

B

CLK

X

Y

Interface Logic ModelsInterface Logic Models
A

B

CLK

X

Y

69

PrimeTime ILM vs. Synthesis ILM

• PT ILM is flat

• Has no physical information

• Written out as a verilog netlist

• Supports distributed parasitics and
SDF

• Used for STA

• PC ILM maintains original block
logical hierarchy

• Can be generated with physical
information

• Can be written out in DB format
with no loss of attributes

• Supports set_load and SDF

• Can be used for STA as well as
design implementation

• Placement and back annotation
data can be propagated up to the
top-level

70

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

71

ILM flow

• Define clocks for the design
• Apply constraints on the design (optional)
• Apply back annotation data (set_load & SDF) onto the

design (optional step for post route flow)
• Create ILM for some/all top-level blocks
• Create pdbs for the blocks in CA (optional)
• Replace original designs with ILMs
• Run physopt at the top-level
• Write out the top-level design and top-level PDEF

72

Creating ILM
(with 2001.08-Psyn-Jet / 2002.05)

Physical Compiler
read_db block1.db; link

 create_clock -period pd clk
set_clock_skew –ideal clk

identify_interface_logic [-latch_levels levels] [–ignore_ports port_list]
extract_ilm -out block1_ilm.db [–physical] –verbose

model db (replaces original
design in memory)

block db
(post physopt)

73

ILM script example

read_db top.db

Replace the original design with the ILM

remove_design block1

read_db block1_ilm.db

current_design top

link

read_pdef top.pdef

Propagate placement and timing information for all ILMs

propagate_placement_up –adjust_location –verbose

propagate_annotated_delay_up

physopt

74

ILM script example (continued)

Save the top-level design

write –f db –out top_level_only_post_physopt.db

Write out the top-level PDEF to route the design

in a hierachical manner

write_pdef –no_hierarchy –o top_level_only_post_physopt.pdef

exit

%# To write the top-level DEF from unix shell

% db2def5 –no_hierarchy top_level_only_post_physopt.db \

–out top_level_only_post_physopt.def

75

ILM Commands/Reporting

• identify_interface_logic [-latch_levels levels] \

[-ignore_ports port_list]

• extract_ilm -output filename [-physical] [-verbose] \

[-include_side_load boundary | all | none]

• propagate_annotated_delay_up [cell_list]

• propagate_placement_up [-adjust_location] [-verbose] \

[cell_list]

• report_area

• report_design

• report_annotated_delay

• report_cell –physical

• write_pdef [-no_hierarchy]

• db2def5 [-no_hierarchy]

76

Identifying Interface Logic

• identify_interface_logic [-latch_levels levels] \

[-ignore_ports port_list]

• Default behavior includes all interface latches in the ILM
• Use –latch_levels levels to limit the number of latch levels for

which time borrowing can occur for latch chains that are part
of the interface logic. For example, if levels = 1, then a path
originating from an input port will continue through the first
latch encountered, but will stop at the second latch in the path.
The second latch is treated as an edge triggered register.

• Use –ignore_ports for ports like reset and scan_enable that
fanout to all registers. Ignored ports are included in the ILM,
but not fanout / fanin logic from input / output of these ports.

77

ILM Sideload Description

U1

U2

n1 n2
Out1

Out2

Out3

ILM Boundary Nets
Interface Logic

Model Net

n3

Boundary
Side-Load Cell

Side-Load Cell

U0

Reg1

Reg2

Reg3

78

ILM Propagate Placement Up

Top

(x2,y2)

Block1

(x,y)

U1

(0,0)

79

ILM Propagate Placement Up

Top

(x2,y2)

Block1

If the lower left co-ordinate of the reference design for
Block1 is (0,0), when Block1 is placed in Top at (x2,y2), the
location of the cell U1 placed at (x,y) in Block1 will become
(x+x2, y+y2) after running the command
propagate_placement_up –adjust_location.

(x+x2,y+y2)

U1

80

ILM Delay Estimation

• Use propagate_annotated_delay_up before running
physopt

• physopt uses ILM delay and capacitance annotations for
nets fully within the ILM (i.e. ILM2/n2).

• For nets crossing ILM boundary, ILM cell and port
locations are used to compute wirelength and estimate
the delay (example n1, n3)

.

ILM1 ILM2

n1
U1

U2 U3

n2
U4

n3

81

Obstructions for ILMs

• Create physical lib cell for Synthesis ILM block for
providing obstruction information to PC.
– Can be done using Chip Architect (write_abstraction)

as .pdb or LEF.
– Required for rectilinear blocks / over-the-block routing

• If an ILM block does not have a pdb cell, physopt will
automatically derive the obstruction information
– Derived obstruction is rectangular.
– Creates a placement and all-layer routing obstruction over

ILM blocks.

• Cells within the ILM are automatically marked as
dont_touch and dont_touch_placement

82

ILM Recommendations

• Use –ignore_ports option to identify_interface_logic for ports such
as reset, scan_enable that fanout to all registers (if not used then
ILM could be excessively large).

• Specify the number of latch levels to be included by using the
–latch_level option to identify_interface_logic.

• Use the –physical option to extract_ilm to create an ILM with
physical information

• Use a pdb model for each ILM to not incur the restrictions caused
by using a derived obstruction (routing obstruction on all layers &
rectangular obstruction model).

• Designs with registered inputs and outputs will see the greatest
reduction in size (original netlist vs. ILM)

83

Using ILM

Chip Architect

DFT Compiler

Physical Compiler,
Design Compiler

*PrimeTime

* Use PT ILMs if using distributed parasitics

84

Full-Chip Analysis / Top-level
Optimization with ILMs

• ILM allow accurate analysis of paths between blocks
– User can efficiently find timing problems due to top-level

routing, snake paths, etc.

Block1
(ILM)

Block4
(ILM)

Block3
(ILM)

Block5
(ILM)

Block2
(ILM)

Chip

85

Block Analysis / Budgeting with ILM

• Efficiently analyze block level netlist timing in context of
entire chip by representing surrounding blocks as ILM

Block2
(netlist)

Block1
(ILM)

Block4
(ILM)

Block3
(ILM)

Block5
(ILM)

Chip

86

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

87

Using ILM in DFT Compiler

• DFT Compiler is using a similar approach to address capacity
and performance issues

• Test behavior of a design is abstracted into a “Test Model”
– Test model is based on IEEE Proposed Standard Core Test Language

(CTL)
– Contains information such as: scan-in, scan-out, scan enable, async

set/reset, scan clock, chain count, chain length, scan shift timing, etc
• At top level, DFT Compiler uses information contained in Test

Models to perform Test Design Rule Checking and scan
insertion / assembly

• CTL is stored as an attribute attached to the design; use of
test models is transparent to users

88

ILM containing Test model

insert_dft extract_ilm

Block level scan insertion:

Top level scan insertion:

Top level
Netlist insert_dft

Top level
scanned netlist +

updated test model

89

Sample script

set test_use_test_models true
rtldrc
...
set_scan_configuration …
preview_dft -physical
insert_dft -physical
check_dft
list_test_models
write -f verilog
write -f db
…
extract_ilm

set test_use_test_models true
read_db <mdb>
list_test_models
...
set_scan_configuration …
preview_dft -physical
insert_dft -physical
check_dft
list_test_models
…
write -f verilog
write -f db
…

Block level scan insertion Top level scan insertion

90

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

91

Results (memory)

0
20
40
60
80

100
120
140
160
180

blk1 blk2 blk3 blk4 blk5

Original
ILM

Mem
(MB)

Design ‘A’ Full chip memory reduction: 63% (2.7X)
Original: 2659 MB; With ILM: 994 MB

92

Results (cell count)

0

20000

40000

60000

80000

100000

120000

blk1 blk2 blk3 blk4 blk5

Original
ILM

Cell count

Design ‘A’ Full chip reduction: 81%
Original: 510,009 ILM: 96,939

93

Results

0
50

100
150
200
250
300
350

Original
ILM

Mem
(MB)

Design ‘B’

memory reduction: 74% (3.9X)
original: 334 MB; ILM: 85 MB

94

Results

0
200
400
600
800

1000
1200
1400
1600

Original
ILM

Mem
(MB)

Design ‘C’

memory reduction: 86% (7X)
original: 1427 MB; ILM: 203 MB

95

Results (cell count)

Design ‘D’

 netlist ilm % reduction

blka 268918 8708 96.76
blkb 233655 3958 98.30
blkc 235448 31536 86.60
blkd 153656 7986 94.80
blke 200921 9757 95.14

96

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

97

Roadmap

2001.08 release
• Provided ILM extraction capability as Beta feature
• Enhanced PC to use ILM

2001.08-PSYN-JET release
• Support ILM extraction and usage in PC as a production feature
• Provide commands to propagate ILM data to top-level

Future Enhancements
• Top-level scan insertion using ILMs
• Top-level clock tree synthesis using ILMs
• Add commands to derive / remove obstructions
• Enable optimization within ILM (resizing / buffering)

98

Outline

• ILM Goals
• Modeling Concepts
• ILM Flow
• ILM and Test
• Modeling Results
• Roadmap
• Summary

99

Summary

Advantages of ILM
• High accuracy, easy to use/debug
• Model is context independent
• Contains physical info such as port and cell locations
• Preserves logical hierarchy and constraints
• Can be used by Physical Compiler, Design Compiler, Chip

Architect, DFT Compiler, *PrimeTime (*use PT ILMs with distributed
parasitics)

• Can be written out in DB format

