基于CNN卷积神经网络实现中文手写汉字识别

本文档介绍了使用CNN卷积神经网络在PyTorch中实现中文手写汉字识别的全过程,包括数据集介绍、LeNet网络的简述、网络定义、数据加载、图像绘制、训练与测试结果。项目基于纽卡斯尔大学发布的中国版MNIST数据集,经过训练,模型在10个epoch后的精度达到98.10%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于CNN卷积神经网络实现中文手写汉字识别

对于新手入门深度学习第一个接触可能就是mnist手写数字数据集,但在前一段时间纽卡斯尔大学发布了中国版的MNIST数据集,包含着15000张手写汉字图像,所以本项目利用卷积神经网络训练一个能够识别中文手写汉字的识别器,根据输入的图像识别图像中的汉字内容。

本项目训练了10个epoch,最终的训练精度达到了98.10%

在这里插入图片描述

二、数据集介绍

中国版的 MNIST 数据集是

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值