基于PaddleOCR识别火车票信息

本项目介绍如何利用PaddleOCR进行火车票信息的识别。PaddleOCR是一个轻量级的OCR工具库,提供了丰富的模型和半自动标注工具。文章详细讲述了加载OCR模型和读取信息的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于PaddleOCR识别火车票信息

近几年OCR文字识别技术非常火爆,百度的飞浆发布了只有几MB的轻量级ocr模型,所以本项目使用paddleOCR来实现一个火车票信息识别模型。

在这里插入图片描述

二、PaddleOCR

### 使用 PaddleOCR 实现发票文字识别 PaddleOCR 是百度开源的一个高性能 OCR 工具包,支持多种场景下的文字检测与识别功能。以下是基于 Python 的实现方法以及代码示例。 #### 1. 安装依赖库 为了使用 PaddleOCR 进行发票识别,首先需要安装 `paddleocr` 库以及其他可能需要用到的相关工具: ```bash pip install paddleocr ``` 如果需要处理更复杂的自然语言任务,则可以额外安装 `paddlenlp`[^1]。 #### 2. 导入必要的模块 在代码中导入所需的模块并初始化 PaddleOCR 对象: ```python from paddleocr import PaddleOCR, draw_ocr # 初始化 PaddleOCR 模型,默认会下载官方预训练模型 ocr = PaddleOCR(use_angle_cls=True, lang='en') ``` 上述代码中的参数解释如下: - `use_angle_cls`: 是否开启角度分类器来判断图像旋转情况。 - `lang`: 设置使用的语言模型(这里设置为英文 'en';也可以选择中文 'ch' 或其他多国语言选项)。 #### 3. 加载图片数据 读取待识别的发票图片文件作为输入源: ```python import cv2 from PIL import Image img_path = './invoice.jpg' image = cv2.imread(img_path) result = ocr.ocr(image, cls=True) ``` 此处通过 OpenCV 来加载本地存储的一张名为 `invoice.jpg` 的票据扫描件或照片,并调用已配置好的 OCR 方法对其进行分析处理[^2]。 #### 4. 解析结果 返回的结果是一个嵌套列表结构,每一项代表单独检测到的文字区域信息及其对应的内容字符串: ```python for line in result: print(line) # 输出样例 (每条记录包含位置坐标和文本内容): # [[(78.0, 95.0), (368.0, 95.0), (368.0, 123.0), (78.0, 123.0)], ('Invoice No.: INV-001', 0.95)] ``` 其中每个子数组的第一个元素表示包围框四个顶点的位置集合,第二个则是提取出来的字符序列加上置信度得分。 #### 5. 可视化展示效果 最后还可以利用辅助函数绘制标注后的效果图以便验证准确性: ```python boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(Image.open(img_path).convert('RGB'), boxes, txts, scores) im_show.save('./output_result.jpg') ``` 这样就可以保存一张带有标记线框的新图用于直观查看哪些部分被成功解析出来了。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值