计算机视觉的应用14-目标检测经典算法之YOLOv1-YOLOv5的模型架构与改进过程详解,便于记忆

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用14-目标检测经典算法之YOLOv1-YOLOv5的模型架构与改进过程详解,便于记忆。YOLO(You Only Look Once)是一种目标检测深度学习模型。想象一下,传统的目标检测方法就像侦探一样,需要仔细观察整个场景,逐个研究每个细节来找出目标。但YOLO却跟超级英雄一样,只需要一眼扫过整个画面,就能立即捕捉到所有的目标。YOLO可以实现如此高效的目标检测,是因为它将目标检测问题转化为了一个回归问题。它通过一个神奇的神经网络,在一次前向传播中,直接从图像像素预测出目标的边界框和类别概率。这意味着,YOLO不仅快速,而且准确。它能够同时捕捉到不同大小、不同位置的目标,并且还能告诉你它们属于哪个类别。

无论是追踪移动的车辆,还是寻找行走的行人,YOLO都能在瞬间给你一个准确的答案。它的快速性和准确性使得YOLO成为许多计算机视觉应用中的首选方法,是目标检测领域的超级明星!

一、YOLO网络的详细介绍

1.设计思想:
传统的目标检测算法,如R-CNN系列,都采用了两步骤:首先生成候选区域,然后对这些区域进行分类。而YOLO则采取了“一次看完”的策略。它将目标检测任务看作一个回归问题,并直接在一个网络中完成边界框(bounding box)的预测和类别判断。
2.网络结构:
YOLO使用全卷积网络,并在最后引入全连接层进行预测。输入图像被分成SxS个网格,如果某个对象的中心落在网格内,则这个网格就负责预测这个对象。每个网格会预测B个边界框以及这些边界框含有对象的置信度,同时还会预测C个条件类别概率。
3.损失函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值