大家好,我是微学AI,今天给大家介绍一下大模型的实践应用43-基于Qwen3(32B)+LangChain框架+MCP+RAG+传统算法的旅游行程规划系统。本报告将阐述基于大模型Qwen3(32B)、LangChain框架、MCP协议、RAG技术以及传统算法构建的智能旅游行程规划系统。该系统通过整合多种技术优势,实现了用户需求的精准分析、景点的智能推荐以及行程的优化生成,同时确保了实时数据调用的安全性和系统运行的高效性。系统充分利用Qwen3的320亿参数规模和128K上下文窗口,结合LangChain的模块化设计,实现了从需求理解到方案输出的完整闭环。
文章目录
一、项目背景与需求分析
旅游行业正经历数字化转型,传统的行程规划方式面临诸多挑战。用户在规划行程时往往面临信息过载、规划效率低、多目标难以平衡等问题。同时,旅游企业需要高效管理产品数据并确保预订流程的安全便捷。基于此背景,本项目提出了一种融合大模型与传统算法的智能行程规划系统,旨在解决上述痛点并提供个性化服务。
系统核心功能需求包括:个性化行程生成(时间/预算/兴趣适配)、多目标优化(景点顺序、交通衔接、体验指数)、实时信息整合(天气、交通、预订)、社交分享及用户反馈功能。这些需求既需要大模型强大的自然语言理解和生成能力,又需要传统算法处理复杂优化问题。Qwen3-32B作为基础模型,具备128K长上下文处理能力、优秀的推理能力和多语言支持,为系统提供了坚实的技术