文章目录
摘要
合成孔径雷达(SAR)图像由于其独特的成像机制,在全天候、全天时对地观测中具有不可替代的优势,但其固有的相干斑噪声和与人类视觉习惯相悖的成像原理,极大地限制了其可解释性。将SAR图像翻译为信息丰富、易于理解的可见光图像(S2OIT)是一项极具价值但充满挑战的任务。近年来,生成对抗网络(GANs)在该领域取得了一定进展,但常伴有训练不稳定、模式崩溃和伪影等问题。去噪扩散概率模型(Diffusion Models)作为一种新兴的生成模型,因其出色的生成质量和训练稳定性,展现出巨大潜力 。然而,现有的基于扩散模型的S2OIT方法在色彩保真度和细节纹理还原方面仍存在挑战,尤其容易产生色彩偏移和失真 。为解决这些问题,本文提出了一种新颖的 色彩注意力条件扩散模型(Color-aware Conditional Attention Diffusion Model, Color-CAD)。该模型的核心创新点在于设计了一个 色彩注意力模块(Color Attention Module) ,它能够从目标光学图像域中学习色彩分布先验,并通过跨注意力机制引导生成过程,有效纠正颜色偏差 。此外,我们还引入了 多级结构引导=机制,通过在U-Net解码器中深度融合SAR图像的多尺度特征,确保生成图像的结构和纹理与源SAR图像高度一致 。我们在公开数据集SEN1-2和QXS-SAROPT上进行了全面的实验。结果表明,与现有的S2OIT方法相比,Color-CAD在峰值信噪比(PSNR)、结构相似