文章目录
摘要
随着大型语言模型(LLM)能力的飞速发展,构建能够处理复杂、多步骤任务的智能体(Agent)系统已成为人工智能领域的前沿。传统的线性链式(Chain)架构在处理循环、条件分支和动态交互时显得力不从心。LangGraph作为LangChain生态系统的关键扩展,通过引入基于图的计算范式,为构建高可控性、有状态的智能体应用提供了强大的解决方案 。本报告旨在深度剖析LangGraph的核心机制,重点阐述其状态管理(State Management)系统和基于此构建的智能体策略控制引擎(Strategy Control Engine)。报告将从核心架构、关键组件、工作原理等多个维度进行分析,并最终提供一个完整的、可运行的Python代码实现,以展示如何从零开始构建一个具备动态策略控制能力的研究型智能体。
1. 引言:从线性链到循环图
在LLM应用的早期阶段,LangChain的“链”(Chains)概念极大地简化了将LLM与提示、工具和其他组件串联起来的过程。然而,这种线性、单向的数据流在面对需要“思考”、反思、使用工具并根据结果迭代的复杂任务时,暴露了其局限性。例如,一个需要多次搜索、综合信息才能得出结论的研究任务,无法用一个简单的链来有效建模。
为了解决这一问题,LangGraph应运而生 。它并非要取代LangChain,而是作为其能力的补充和延伸,专门用于处理需要循环