numpy.linalg.svd函数

本文深入解析np.linalg.svd函数的使用方法及其参数意义,包括full_matrices与compute_uv的作用,通过实例展示如何进行奇异值分解,解释奇异值的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数:np.linalg.svd(a,full_matrices=1,compute_uv=1)。

参数:
a是一个形如(M,N)矩阵

full_matrices的取值是为0或者1,默认值为1,这时u的大小为(M,M),v的大小为(N,N) 。否则u的大小为(M,K),v的大小为(K,N) ,K=min(M,N)。

compute_uv的取值是为0或者1,默认值为1,表示计算u,s,v。为0的时候只计算s。

返回值:

总共有三个返回值u,s,v
u大小为(M,M),s大小为(M,N),v大小为(N,N)。

A = u*s*v

其中s是对矩阵a的奇异值分解。s除了对角元素不为0,其他元素都为0,并且对角元素从大到小排列。s中有n个奇异值,一般排在后面的比较接近0,所以仅保留比较大的r个奇异值。 

例子:

>>> from numpy import *
>>> data = mat([[1,2,3],[4,5,6]])
>>> U,sigma,VT = np.linalg.svd(data)
>>> print U
[[-0.3863177  -0.92236578]
 [-0.92236578  0.3863177 ]]
>>> print sigma
[9.508032   0.77286964]
>>> print VT
[[-0.42866713 -0.56630692 -0.7039467 ]
 [ 0.80596391  0.11238241 -0.58119908]
 [ 0.40824829 -0.81649658  0.40824829]]
因为sigma是除了对角元素不为0,其他元素都为0。所以返回的时候,作为一维矩阵返回。本来sigma应该是由3个值的,但是因为最后一个值为0,所以直接省略了。

关于奇异值的解释:

 

--------------------- 
版权声明:本文为CSDN博主「rainpasttime」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/rainpasttime/article/details/79831533

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值