活动介绍

UserWarning: One or more of the test scores are non-finite: [nan nan nan ... nan nan nan] warnings.warn(

时间: 2025-07-09 10:40:47 浏览: 20
<think>嗯,用户问的是关于UserWarning: One or more of the test scores are non-finite的问题。首先,我需要理解这个警告出现的场景。通常在机器学习或数据分析中,使用交叉验证时,模型评估的分数出现NaN(非数字)值,就会触发这个警告。那为什么会发生这种情况呢? 可能的原因有几个。首先,最常见的是数据中存在缺失值(NaN或infinity)。比如数据预处理的时候没有处理干净,或者某些特征在划分训练集和测试集后,测试集里出现了训练时没见过的类别,导致编码错误,生成NaN。这时候模型在预测时就会出问题,分数计算失败。 其次,模型本身的问题。比如,在训练过程中出现数值不稳定,比如除零错误,或者某些算法比如逻辑回归,当数据没有归一化,导致计算时溢出,得到infinity,这时候评估指标如准确率、F1-score就可能变成NaN。另外,像SVM如果参数设置不当,比如C值过小,也可能导致无法收敛,产生异常值。 第三个可能是评估指标的问题。比如某些指标在特定情况下无法计算,像当测试集中的所有样本都属于同一类别时,F1-score的分母可能为零,导致除以零的错误,结果就是NaN。另外,自定义的评估函数如果有bug,也可能返回无效值。 那如何解决这个问题呢?首先检查数据预处理。确保处理了缺失值,可以用填充或删除的方法。检查是否有无限大的值,可以用np.isfinite检查数组。对于分类问题,确保测试集的分层正确,特别是在使用分层交叉验证时,避免某些类别在测试集中不存在,导致编码问题。 然后是模型配置。检查模型参数是否合理,比如正则化强度,学习率等。对于容易数值不稳定的模型,尝试数据标准化或归一化。添加异常值处理,比如在训练前过滤异常样本,或者使用鲁棒性更强的模型。 接下来检查评估指标。确认选择的指标是否适合当前任务,比如在类别极度不平衡时,使用准确率可能不合适。对于可能除零的指标,可以添加平滑项,比如在分母上加一个很小的数epsilon。如果是自定义评估函数,仔细检查代码逻辑,确保没有错误。 调试步骤的话,可以先用简单的模型(如线性回归、逻辑回归)测试,看问题是否依然存在。逐步添加数据预处理步骤,定位问题出现的环节。在交叉验证循环中加入打印语句,检查每次迭代的数据和预测结果,找出哪一次迭代出现NaN,进一步分析具体原因。 举个例子,比如在使用随机森林时,如果数据中存在缺失值,可能不会报错,但某些实现可能在计算指标时出错。或者在使用梯度提升树时,学习率太高导致预测值溢出,变成inf,进而使得评估分数无效。 总结来说,这个警告提示在模型评估过程中出现了无效的分数,需要从数据、模型、评估指标三个方面排查,逐步调试,找到导致NaN的具体原因并解决。</think>当你在机器学习或数据分析过程中遇到 `UserWarning: One-Or-More of the test scores are non-finite: [nan nan ... nan]` 警告时,通常意味着模型在交叉验证或评估时出现了无法计算的分数(例如 `NaN` 或 `infinity`)。以下是逐步分析和解决方法: --- ### **1. 根本原因** #### **(1) 数据问题** - **缺失值未处理**:数据中存在 `NaN` 或 `infinity` 值,但未正确填充或删除。 - **类别标签不平衡**:在分类任务中,某些交叉验证的测试集可能只包含单一类别(如全部是正类或负类),导致某些评估指标(如 `F1-score`)的分母为零。 - **特征工程错误**:例如,测试集中出现了训练集中未见的类别(如独热编码时新类别未处理),导致生成 `NaN`。 #### **(2) 模型问题** - **数值不稳定**:例如: - 模型参数导致计算溢出(如梯度爆炸、除零错误)。 - 未标准化数据时,某些模型(如线性回归、SVM)可能因数值过大产生 `infinity`。 - **超参数配置错误**:例如正则化强度(`alpha`、`C`)过小,导致权重过大。 #### **(3) 评估指标问题** - 自定义评估函数存在逻辑错误(如除以零)。 - 某些指标(如 `R2-score`)在数据方差为零时返回 `NaN`。 --- ### **2. 解决步骤** #### **步骤 1:检查数据预处理** - **处理缺失值**: ```python # 检查数据中是否有 NaN 或 infinity import numpy as np print("NaN in data:", np.isnan(X).any()) print("Infinity in data:", np.isinf(X).any()) # 填充缺失值(示例) from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy="mean") X = imputer.fit_transform(X) ``` - **处理分类特征**: - 对测试集中出现的新类别,使用 `handle_unknown="ignore"`(如 `OneHotEncoder`)。 #### **步骤 2:验证模型稳定性** - **添加数据标准化**: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X) ``` - **调整超参数**: - 增加正则化强度(如 `alpha=1e-3`)。 - 对树模型限制最大深度(如 `max_depth=5`)。 #### **步骤 3:检查评估指标** - **避免不兼容的指标**: ```python # 例如:在类别不平衡时使用 accuracy 可能不可靠 from sklearn.metrics import make_scorer, f1_score scorer = make_scorer(f1_score, average="micro") # 改用微平均 ``` - **自定义评估函数时添加异常处理**: ```python def custom_score(y_true, y_pred): try: # 计算指标 return score except: return np.nan # 返回 NaN 或默认值 ``` #### **步骤 4:交叉验证调试** - **逐步缩小数据范围**: ```python # 使用部分数据测试 X_subset = X[:100] y_subset = y[:100] model.fit(X_subset, y_subset) ``` - **打印中间结果**: ```python from sklearn.model_selection import cross_val_score scores = cross_val_score(model, X, y, cv=5) print("Cross-validation scores:", scores) # 定位具体出错的 fold ``` --- ### **3. 示例代码修复** 假设使用 `GridSearchCV` 时出现此警告: ```python from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression # 修复:添加数据标准化并限制正则化强度 param_grid = {"C": [0.1, 1, 10]} model = LogisticRegression(max_iter=1000, solver="liblinear") grid = GridSearchCV(model, param_grid, scoring="f1") # 确保数据已处理 from sklearn.preprocessing import StandardScaler X_scaled = StandardScaler().fit_transform(X) grid.fit(X_scaled, y) ``` --- ### **4. 总结** | 问题方向 | 检查点 | 解决方法 | |----------------|--------------------------------|------------------------------| | **数据质量** | NaN/infinity、类别分布 | 填充缺失值、分层交叉验证 | | **模型稳定性** | 参数范围、标准化 | 调整超参数、标准化数据 | | **评估指标** | 指标定义、分母为零的可能性 | 改用鲁棒性指标、添加平滑项 | 通过逐步排查数据、模型和评估指标,可以定位并修复此警告。
阅读全文

相关推荐

D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py:372: FitFailedWarning: 540 fits failed out of a total of 540. The score on these train-test partitions for these parameters will be set to nan. If these failures are not expected, you can try to debug them by setting error_score='raise'. Below are more details about the failures: -------------------------------------------------------------------------------- 108 fits failed with the following error: Traceback (most recent call last): File "D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py", line 680, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py", line 327, in fit X, y = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 581, in _validate_data X, y = check_X_y(X, y, **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 964, in check_X_y X = check_array( File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 746, in check_array array = np.asarray(array, order=order, dtype=dtype) File "D:\anaconda\lib\site-packages\pandas\core\generic.py", line 2064, in __array__ return np.asarray(self._values, dtype=dtype) ValueError: could not convert string to float: 'L' -------------------------------------------------------------------------------- 432 fits failed with the following error: Traceback (most recent call last): File "D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py", line 680, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py", line 327, in fit X, y = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 581, in _validate_data X, y = check_X_y(X, y, **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 964, in check_X_y X = check_array( File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 746, in check_array array = np.asarray(array, order=order, dtype=dtype) File "D:\anaconda\lib\site-packages\pandas\core\generic.py", line 2064, in __array__ return np.asarray(self._values, dtype=dtype) ValueError: could not convert string to float: 'M' warnings.warn(some_fits_failed_message, FitFailedWarning) D:\anaconda\lib\site-packages\sklearn\model_selection\_search.py:969: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan] warnings.warn( --------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_9852\3302585992.py in <module> 35 scoring='neg_mean_squared_error' 36 ) ---> 37 grid_search.fit(X_train, y_train) 38 39 # 输出最佳参数 D:\anaconda\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params) 924 refit_start_time = time.time() 925 if y is not None: --> 926 self.best_estimator_.fit(X, y, **fit_params) 927 else: 928 self.best_estimator_.fit(X, **fit_params) D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py in fit(self, X, y, sample_weight) 325 if issparse(y): 326 raise ValueError("sparse multilabel-indicator for y is not supported.") --> 327 X, y = self._validate_data( 328 X, y, multi_output=True, accept_sparse="csc", dtype=DTYPE 329 ) D:\anaconda\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params) 579 y = check_array(y, **check_y_params) 580 else: --> 581 X, y = check_X_y(X, y, **check_params) 582 out = X, y 583 D:\anaconda\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator) 962 raise ValueError("y cannot be None") 963 --> 964 X = check_array( 965 X, 966 accept_sparse=accept_sparse, D:\anaconda\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 744 array = array.astype(dtype, casting="unsafe", copy=False) 745 else: --> 746 array = np.asarray(array, order=order, dtype=dtype) 747 except ComplexWarning as complex_warning: 748 raise ValueError( D:\anaconda\lib\site-packages\pandas\core\generic.py in __array__(self, dtype) 2062 2063 def __array__(self, dtype: npt.DTypeLike | None = None) -> np.ndarray: -> 2064 return np.asarray(self._values, dtype=dtype) 2065 2066 def __array_wrap__( ValueError: could not convert string to float: 'M' ​

D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=VGG19_Weights.IMAGENET1K_V1. You can also use weights=VGG19_Weights.DEFAULT to get the most up-to-date weights. warnings.warn(msg) D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=VGG19_Weights.IMAGENET1K_V1. You can also use weights=VGG19_Weights.DEFAULT to get the most up-to-date weights. warnings.warn(msg) D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=VGG19_Weights.IMAGENET1K_V1. You can also use weights=VGG19_Weights.DEFAULT to get the most up-to-date weights. warnings.warn(msg) D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\miniconda3\envs\UDIS++\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=VGG19_Weights.IMAGENET1K_V1. You can also use weights=VGG19_Weights.DEFAULT to get the most up-to-date weights. warnings.warn(msg)怎么解决

/home/wfs/anaconda3/envs/open-mmlab/lib/python3.8/site-packages/torch/nn/functional.py:3981: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. warnings.warn( /home/wfs/anaconda3/envs/open-mmlab/lib/python3.8/site-packages/mmcv/runner/hooks/optimizer.py:31: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior. return clip_grad.clip_grad_norm_(params, **self.grad_clip) 2025-07-25 20:01:14,499 - mmcv - INFO - Reducer buckets have been rebuilt in this iteration. 2025-07-25 20:01:56,509 - mmdet - INFO - Epoch [1][50/28130] lr: 3.987e-05, eta: 8 days, 10:31:11, time: 0.926, data_time: 0.079, memory: 4884, loss_cls: 2.1964, loss_bbox: 2.3503, d0.loss_cls: 2.2795, d0.loss_bbox: 2.3152, loss: 9.1414, grad_norm: nan 2025-07-25 20:02:39,278 - mmdet - INFO - Epoch [1][100/28130] lr: 4.653e-05, eta: 8 days, 2:48:52, time: 0.855, data_time: 0.015, memory: 4884, loss_cls: 2.2189, loss_bbox: 2.3256, d0.loss_cls: 2.2865, d0.loss_bbox: 2.2834, loss: 9.1145, grad_norm: nan 2025-07-25 20:03:22,356 - mmdet - INFO - Epoch [1][150/28130] lr: 5.320e-05, eta: 8 days, 0:41:24, time: 0.862, data_time: 0.015, memory: 4884, loss_cls: 2.2252, loss_bbox: 2.2780, d0.loss_cls: 2.2865, d0.loss_bbox: 2.2274, loss: 9.0171, grad_norm: nan

C:\python\py\.venv\Scripts\python.exe C:\python\py\问题一.py ================================================== 多孔膜制备过程模拟结果 ================================================== 初始DMF质量: 0.9000 最终DMF质量: 0.680234 最终大液滴质量: 62067970265141015956599006790238076928.000000 醋酸纤维素质量: 0.0169 最终孔面积占比: 100.00% C:\python\py\问题一.py:180: UserWarning: Glyph 26102 (\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 38388 (\N{CJK UNIFIED IDEOGRAPH-95F4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 36136 (\N{CJK UNIFIED IDEOGRAPH-8D28}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 38543 (\N{CJK UNIFIED IDEOGRAPH-968F}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 21464 (\N{CJK UNIFIED IDEOGRAPH-53D8}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 21270 (\N{CJK UNIFIED IDEOGRAPH-5316}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 22823 (\N{CJK UNIFIED IDEOGRAPH-5927}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 28082 (\N{CJK UNIFIED IDEOGRAPH-6DB2}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 28404 (\N{CJK UNIFIED IDEOGRAPH-6EF4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 23380 (\N{CJK UNIFIED IDEOGRAPH-5B54}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 38754 (\N{CJK UNIFIED IDEOGRAPH-9762}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 31215 (\N{CJK UNIFIED IDEOGRAPH-79EF}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 21344 (\N{CJK UNIFIED IDEOGRAPH-5360}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 26368 (\N{CJK UNIFIED IDEOGRAPH-6700}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 32456 (\N{CJK UNIFIED IDEOGRAPH-7EC8}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 37259 (\N{CJK UNIFIED IDEOGRAPH-918B}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 37240 (\N{CJK UNIFIED IDEOGRAPH-9178}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 32420 (\N{CJK UNIFIED IDEOGRAPH-7EA4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 32500 (\N{CJK UNIFIED IDEOGRAPH-7EF4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:180: UserWarning: Glyph 32032 (\N{CJK UNIFIED IDEOGRAPH-7D20}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 36136 (\N{CJK UNIFIED IDEOGRAPH-8D28}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 38543 (\N{CJK UNIFIED IDEOGRAPH-968F}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 26102 (\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 38388 (\N{CJK UNIFIED IDEOGRAPH-95F4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 21464 (\N{CJK UNIFIED IDEOGRAPH-53D8}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 21270 (\N{CJK UNIFIED IDEOGRAPH-5316}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 22823 (\N{CJK UNIFIED IDEOGRAPH-5927}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 28082 (\N{CJK UNIFIED IDEOGRAPH-6DB2}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 28404 (\N{CJK UNIFIED IDEOGRAPH-6EF4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 23380 (\N{CJK UNIFIED IDEOGRAPH-5B54}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 38754 (\N{CJK UNIFIED IDEOGRAPH-9762}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 31215 (\N{CJK UNIFIED IDEOGRAPH-79EF}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 21344 (\N{CJK UNIFIED IDEOGRAPH-5360}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 26368 (\N{CJK UNIFIED IDEOGRAPH-6700}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 32456 (\N{CJK UNIFIED IDEOGRAPH-7EC8}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 37259 (\N{CJK UNIFIED IDEOGRAPH-918B}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 37240 (\N{CJK UNIFIED IDEOGRAPH-9178}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 32420 (\N{CJK UNIFIED IDEOGRAPH-7EA4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 32500 (\N{CJK UNIFIED IDEOGRAPH-7EF4}) missing from font(s) DejaVu Sans. C:\python\py\问题一.py:181: UserWarning: Glyph 32032 (\N{CJK UNIFIED IDEOGRAPH-7D20}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 36136 (\N{CJK UNIFIED IDEOGRAPH-8D28}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 38543 (\N{CJK UNIFIED IDEOGRAPH-968F}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 26102 (\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 38388 (\N{CJK UNIFIED IDEOGRAPH-95F4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 21464 (\N{CJK UNIFIED IDEOGRAPH-53D8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 21270 (\N{CJK UNIFIED IDEOGRAPH-5316}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 22823 (\N{CJK UNIFIED IDEOGRAPH-5927}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 28082 (\N{CJK UNIFIED IDEOGRAPH-6DB2}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 28404 (\N{CJK UNIFIED IDEOGRAPH-6EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 23380 (\N{CJK UNIFIED IDEOGRAPH-5B54}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 38754 (\N{CJK UNIFIED IDEOGRAPH-9762}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 31215 (\N{CJK UNIFIED IDEOGRAPH-79EF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 21344 (\N{CJK UNIFIED IDEOGRAPH-5360}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 26368 (\N{CJK UNIFIED IDEOGRAPH-6700}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 32456 (\N{CJK UNIFIED IDEOGRAPH-7EC8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 37259 (\N{CJK UNIFIED IDEOGRAPH-918B}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 37240 (\N{CJK UNIFIED IDEOGRAPH-9178}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 32420 (\N{CJK UNIFIED IDEOGRAPH-7EA4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 32500 (\N{CJK UNIFIED IDEOGRAPH-7EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:124: UserWarning: Glyph 32032 (\N{CJK UNIFIED IDEOGRAPH-7D20}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 26102 (\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 38388 (\N{CJK UNIFIED IDEOGRAPH-95F4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 36136 (\N{CJK UNIFIED IDEOGRAPH-8D28}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 38543 (\N{CJK UNIFIED IDEOGRAPH-968F}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 21464 (\N{CJK UNIFIED IDEOGRAPH-53D8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 21270 (\N{CJK UNIFIED IDEOGRAPH-5316}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 22823 (\N{CJK UNIFIED IDEOGRAPH-5927}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 28082 (\N{CJK UNIFIED IDEOGRAPH-6DB2}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 28404 (\N{CJK UNIFIED IDEOGRAPH-6EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 23380 (\N{CJK UNIFIED IDEOGRAPH-5B54}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 38754 (\N{CJK UNIFIED IDEOGRAPH-9762}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 31215 (\N{CJK UNIFIED IDEOGRAPH-79EF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 21344 (\N{CJK UNIFIED IDEOGRAPH-5360}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 26368 (\N{CJK UNIFIED IDEOGRAPH-6700}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 32456 (\N{CJK UNIFIED IDEOGRAPH-7EC8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 37259 (\N{CJK UNIFIED IDEOGRAPH-918B}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 37240 (\N{CJK UNIFIED IDEOGRAPH-9178}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 32420 (\N{CJK UNIFIED IDEOGRAPH-7EA4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 32500 (\N{CJK UNIFIED IDEOGRAPH-7EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:82: UserWarning: Glyph 32032 (\N{CJK UNIFIED IDEOGRAPH-7D20}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 26102 (\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 38388 (\N{CJK UNIFIED IDEOGRAPH-95F4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 36136 (\N{CJK UNIFIED IDEOGRAPH-8D28}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 37327 (\N{CJK UNIFIED IDEOGRAPH-91CF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 38543 (\N{CJK UNIFIED IDEOGRAPH-968F}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 21464 (\N{CJK UNIFIED IDEOGRAPH-53D8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 21270 (\N{CJK UNIFIED IDEOGRAPH-5316}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 22823 (\N{CJK UNIFIED IDEOGRAPH-5927}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 28082 (\N{CJK UNIFIED IDEOGRAPH-6DB2}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 28404 (\N{CJK UNIFIED IDEOGRAPH-6EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 23380 (\N{CJK UNIFIED IDEOGRAPH-5B54}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 38754 (\N{CJK UNIFIED IDEOGRAPH-9762}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 31215 (\N{CJK UNIFIED IDEOGRAPH-79EF}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 21344 (\N{CJK UNIFIED IDEOGRAPH-5360}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 27604 (\N{CJK UNIFIED IDEOGRAPH-6BD4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 26368 (\N{CJK UNIFIED IDEOGRAPH-6700}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 32456 (\N{CJK UNIFIED IDEOGRAPH-7EC8}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 37259 (\N{CJK UNIFIED IDEOGRAPH-918B}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 37240 (\N{CJK UNIFIED IDEOGRAPH-9178}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 32420 (\N{CJK UNIFIED IDEOGRAPH-7EA4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 32500 (\N{CJK UNIFIED IDEOGRAPH-7EF4}) missing from font(s) DejaVu Sans. C:\python\PyCharm 2024.3.5\plugins\python-ce\helpers\pycharm_matplotlib_backend\backend_interagg.py:85: UserWarning: Glyph 32032 (\N{CJK UNIFIED IDEOGRAPH-7D20}) missing from font(s) DejaVu Sans. 进程已结束,退出代码为 0

zip

最新推荐

recommend-type

一个基于 Python 的 Telegram 机器人,用于管理和控制 115 网盘,支持离线下载、视频上传、目录同步等功能.zip

一个基于 Python 的 Telegram 机器人,用于管理和控制 115 网盘,支持离线下载、视频上传、目录同步等功能.zip
recommend-type

基于扰动观察法的光伏MPPTBoost变换器最大功率点跟踪技术研究

光伏最大功率点跟踪(MPPT)技术及其在光伏发电系统中的重要性。重点讨论了基于扰动观察法(P&O)的MPPT技术和MPPT Boost变换器的应用。扰动观察法通过周期性改变光伏阵列的工作电压或电流并观察输出功率变化,进而调整工作点,确保光伏阵列始终处于最大功率点附近。而MPPT Boost变换器则通过高效的电压或电流控制,进一步提高了系统的输出效率。两者结合使用,在光强和温度等环境条件变化时,能够显著提升光伏系统的发电效率和寿命。 适用人群:从事光伏系统设计、安装和维护的专业技术人员,以及对清洁能源技术感兴趣的科研人员。 使用场景及目标:适用于需要优化光伏系统性能的场合,如太阳能电站、分布式光伏发电系统等。目标是提高光伏系统的发电效率,降低能耗,延长设备使用寿命。 其他说明:本文不仅提供了理论依据和技术细节,还强调了清洁能源发展的重要性和未来的研究方向。
recommend-type

2015-2018年咸海流域1km归一化植被指数8天合成数据集

数据说明文件
recommend-type

COMSOL多物理场耦合模拟:流体与多孔介质壁面反应及转化率研究

使用COMSOL软件对流体通过多孔介质壁面时发生的复杂反应进行建模和仿真的全过程。模型涵盖了流体力学、传热学以及化学反应动力学三个主要物理场,重点关注了流体流动过程中伴随的温度变化对反应速率的影响,以及最终的转化率计算。文中不仅提供了具体的模型构建步骤,如创建物理场、设置多孔介质属性、定义反应速率表达式等,还分享了一些实际操作中的经验和技巧,例如网格划分、参数调整等方面的心得。 适合人群:从事多物理场耦合仿真、化学工程、材料科学等领域研究的专业人士和技术爱好者。 使用场景及目标:适用于需要深入理解和掌握COMSOL多物理场耦合仿真技术的研究人员,特别是那些关注流体与固体表面相互作用及其引发的一系列物理化学现象的人群。通过学习本案例,可以更好地理解如何利用COMSOL解决复杂的工业应用场景中的问题,如提高化工生产效率、优化反应条件等。 其他说明:作者强调了在实际应用中需要注意的一些细节问题,比如合理的网格密度选择对于确保计算精度至关重要;而入口流速和活化能之间的平衡则是获得理想转化率的关键因素之一。此外,作者还展示了如何通过后处理手段直观展示反应过程中的各种变化趋势,为后续优化提供依据。
recommend-type

软件设计师04-17年真题及模拟卷精编解析

知识点: 1. 软考概述:软件设计师是计算机技术与软件专业技术资格(水平)考试(软考)的一种职业资格,主要针对从事软件设计的人员。通过考试的人员可以获得国家认可的专业技术资格证书。 2. 软考真题的重要性:对于准备参加软考的考生来说,真题是非常重要的复习资料。通过分析和练习历年真题,可以帮助考生熟悉考试的题型、考试的难度以及出题的规律。这不仅可以提高答题的速度和准确率,同时也能帮助考生对考试有更深入的了解。 3. 软件设计师考试的科目和结构:软件设计师考试分为两个科目,分别是上午科目(知识水平)和下午科目(应用技能)。上午科目的考试内容主要包括软件工程、数据结构、计算机网络、操作系统等基础知识。下午科目则侧重考察考生的软件设计能力,包括数据库设计、系统架构设计、算法设计等。 4. 历年真题的应用:考生可以通过历年的真题来进行自我测试,了解自己的薄弱环节,并针对这些环节进行重点复习。同时,模拟考试的环境可以帮助考生适应考试的氛围,减少考试焦虑,提高应试能力。 5. 模拟卷的作用:除了历年的真题外,模拟卷也是复习中不可或缺的一部分。模拟卷可以模拟实际考试的情况,帮助考生熟悉考试的时间安排和题量分布。通过模拟考试,考生可以检验自己的复习效果,查漏补缺,进一步巩固知识点。 6. 软考复习策略:在复习软件设计师真题时,应该制定合理的复习计划,合理分配时间,全面覆盖所有知识点。同时要注重理论与实践相结合,理解概念的同时要注重实际应用。考生还可以参加一些线上或线下的辅导班,与老师和同学进行交流,解决在复习中遇到的问题。 7. 考试报名及注意事项:考生需要在规定的时间内通过官方网站或者授权的培训机构进行报名。在报名时要注意个人信息的准确性,并在考试前了解具体的考试时间和地点。考生应提前准备考试所需的证件和文具,确保能够顺利参加考试。 8. 软考后的职业发展:通过软考获得专业技术资格证书后,对于软件设计师职业发展有一定的帮助。在求职、晋升以及职称评定等方面,具有国家认可的资格证书往往会增加一定的优势。同时,获得证书也是对个人技术能力的一种肯定,有助于提升个人在行业内的竞争力。 通过以上内容的介绍,可以看出软件设计师真题是备考软考的重要工具,它能够帮助考生全面了解考试结构和内容,检验学习效果,为成功通过软考做好充分准备。对于软件设计师这一职业来说,真题的研究与分析,不仅可以提高考试通过率,也对个人的专业成长有着重要的意义。
recommend-type

QMCA开源在容器化中的实践:Docker与Kubernetes集成秘籍

# 摘要 本文主要介绍了容器化技术在现代软件开发和部署中的重要性,特别是Docker和Kubernetes的技术细节与应用。文章首先概述了容器化技术的概况和QMCA开源项目。随后深入探讨Docker容器技术,涵盖了安装配置、镜像管理、网络和数据管理、以及高级功能的实践。接着,本文转向Kubernetes的基础知识和集群管理,包括架构组件、
recommend-type

CAD切地形剖面图

<think>好的,我现在需要帮用户解决如何在CAD中绘制或生成地形剖面图的问题。首先,用户提到了几个引用来源,我需要仔细看看这些引用里有什么有用的信息,然后结合自己的知识来整理步骤。 引用[1]提到使用【图新地球桌面端】的【提取剖面线】功能,生成高程值后用CAD命令绘制。这应该是一个专门软件辅助生成数据,再导入CAD的方法。步骤可能包括提取地形数据,生成CAD命令,然后在CAD中执行这些命令。 引用[2]说CAD绘制剖面图的步骤是先有线条,然后处理。用户可能想知道如何在CAD内部直接操作,比如画线后如何生成剖面。可能需要结合高程数据,或者使用插件。 引用[3]提到AutoCAD Civ
recommend-type

中级Java开发必学:龙果学院Java多线程并发编程教程

标题“Java多线程知识,龙果学院”与描述“Java多线程知识,龙果学院,适合中级Java开发,分小节讲解”向我们明确指出了该资料的主要内容和适用对象。本篇内容将围绕Java多线程及其并发编程展开,提供给中级Java开发者系统性的学习指导。 ### 知识点一:Java多线程基础 - **线程概念**:多线程是指从软件或者硬件上实现多个线程并发执行的技术,每个线程可以处理不同的任务,提高程序的执行效率。 - **Java中的线程**:Java通过Thread类和Runnable接口实现线程。创建线程有两种方式:继承Thread类和实现Runnable接口。 - **线程状态**:Java线程在生命周期中会经历新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)和死亡(Terminated)这几个状态。 - **线程方法**:包括启动线程的start()方法、中断线程的interrupt()方法、线程暂停的sleep()方法等。 ### 知识点二:线程同步机制 - **同步问题**:在多线程环境中,共享资源的安全访问需要通过线程同步来保障,否则会发生数据竞争和条件竞争等问题。 - **同步代码块**:使用synchronized关键字来定义同步代码块,确保同一时刻只有一个线程可以执行该代码块内的代码。 - **同步方法**:在方法声明中加入synchronized关键字,使得方法在调用时是同步的。 - **锁**:在Java中,每个对象都有一把锁,synchronized实质上是通过获取对象的锁来实现线程的同步。 - **死锁**:多个线程相互等待对方释放锁而导致程序无法继续运行的情况,需要通过合理设计避免。 ### 知识点三:线程间通信 - **等待/通知机制**:通过Object类中的wait()、notify()和notifyAll()方法实现线程间的协调和通信。 - **生产者-消费者问题**:是线程间通信的经典问题,涉及如何在生产者和消费者之间有效地传递数据。 - **等待集(wait set)**:当线程调用wait()方法时,它进入与之相关联对象的等待集。 - **条件变量**:Java 5引入了java.util.concurrent包中的Condition接口,提供了比Object的wait/notify更为强大的线程协作机制。 ### 知识点四:并发工具类 - **CountDownLatch**:允许一个或多个线程等待其他线程完成操作。 - **CyclicBarrier**:让一组线程到达一个屏障点后互相等待,直到所有线程都到达后才继续执行。 - **Semaphore**:信号量,用于控制同时访问特定资源的线程数量。 - **Phaser**:一种可以动态调整的同步屏障,类似于CyclicBarrier,但是更加灵活。 ### 知识点五:并发集合和原子变量 - **并发集合**:java.util.concurrent包下提供的一系列线程安全的集合类,例如ConcurrentHashMap、CopyOnWriteArrayList等。 - **原子变量**:如AtomicInteger、AtomicLong等,提供了无锁的线程安全操作,使用了CAS(Compare-And-Swap)技术。 - **锁框架**:如ReentrantLock、ReadWriteLock等,提供了比内置锁更为灵活和强大的锁机制。 ### 知识点六:线程池的使用 - **线程池概念**:线程池是一种多线程处理形式,它预先创建若干数量的线程,将线程置于一个池中管理,避免在使用线程时创建和销毁线程的开销。 - **线程池优势**:重用线程池中的线程,减少创建和销毁线程的开销;有效控制最大并发数;提供定时执行、周期性执行、单线程、并发数控制等功能。 - **线程池的参数**:核心线程数、最大线程数、存活时间、队列大小等参数决定了线程池的行为。 - **线程池的实现**:通过Executors类创建线程池,也可以通过ThreadPoolExecutor直接实例化一个线程池。 ### 知识点七:Java 8并发新特性 - **Stream API**:Java 8引入的Stream API在并行处理数据时非常有用,可以轻松将串行处理转换为并行处理。 - **CompletableFuture**:实现了Future和CompletionStage接口,用于异步编程,简化了线程操作并提供了更细粒度的控制。 - **Lambda表达式**:简化了使用匿名内部类实现事件监听器、比较器等场景,从而间接提升了并发编程的效率。 以上知识点覆盖了Java多线程和并发编程的基本概念、同步机制、线程间通信、并发工具类、原子变量、线程池的使用以及Java 8的新特性等核心内容。对于中级Java开发者而言,这些内容既全面又系统,有助于深入理解并应用Java多线程技术,设计出高效、稳定的应用程序。
recommend-type

QMCA开源版本控制指南:提升代码管理与团队协作效率的策略

# 摘要 本文全面介绍了QMCA开源版本控制系统的相关知识和应用。首先,概述了QMCA的基础知识和代码管理中的基本操作与功能。随后,重点探讨了QMCA在代码合并、分支管理、审核及问题追踪中的优势与应用。接着,分析了QMCA在团队协作中的权限管理、项目管理以
recommend-type

CAD技术标准

<think>好的,用户想了解CAD相关的技术标准规范。首先,我需要明确用户的需求,他们可能是在工程设计、制造或建筑领域工作,需要遵循特定的标准来确保图纸的兼容性和质量。 我应该先回忆常见的CAD技术标准,比如国际标准ISO和ANSI,还有国家层面的标准如中国的GB/T。这些标准通常涵盖文件格式、图层管理、尺寸标注等方面。比如,ISO 128规定了工程制图的基本规则,而GB/T 18229可能与CAD文件管理有关。 接下来,用户可能需要具体的标准编号和内容。例如,文件格式方面,DXF和DWG是常见的,由Autodesk制定,但ISO也有STEP标准(ISO 10303)。图层管理方面,不同