JPL四元数转旋转举证
时间: 2025-04-27 11:25:01 AIGC 浏览: 26
### JPL 四元数转换为旋转矩阵的方法
对于JPL四元数,通常表示形式为 \(q = (x, y, z, w)\),其中\(w\)代表实部,\((x, y, z)\)代表虚部。当需要将这种形式的四元数转换成旋转矩阵时,可以按照如下公式进行:
设四元数 \(q = (x, y, z, w)\),则对应的旋转矩阵 \(R\) 的元素可按下列方式计算[^1]:
\[ R_{11} = 1 - 2(y^2 + z^2), \quad R_{12} = 2(xy - wz), \quad R_{13} = 2(xz + wy) \]
\[ R_{21} = 2(xy + wz), \quad R_{22} = 1 - 2(x^2 + z^2), \quad R_{23} = 2(yz - wx) \]
\[ R_{31} = 2(xz - wy), \quad R_{32} = 2(yz + wx), \quad R_{33} = 1 - 2(x^2 + y^2) \]
因此得到完整的旋转矩阵 \(R\) 如下所示:
\[ R =
\begin{bmatrix}
1 - 2(y^2+z^2) & 2(xy-wz) & 2(xz+wy) \\
2(xy+wz) & 1 - 2(x^2+z^2) & 2(yz-wx) \\
2(xz-wy) & 2(yz+wx) & 1 - 2(x^2+y^2)
\end{bmatrix} \]
下面给出Python代码示例来展示如何实现这一过程。
```python
import numpy as np
def quaternion_to_rotation_matrix_jpl(q):
"""
Convert a JPL Quaternion to Rotation Matrix.
Parameters:
q : tuple or list of float
A four-element sequence representing the quaternion (x, y, z, w).
Returns:
rmat : ndarray shape=(3,3)
The rotation matrix corresponding to input quaternion.
"""
x, y, z, w = q
# Calculate elements of the rotation matrix based on given formulas
xx, yy, zz = x*x, y*y, z*z
xy, xz, yz = x*y, x*z, y*z
wx, wy, wz = w*x, w*y, w*z
rmat = np.array([
[1-2*(yy+zz), 2*(xy-wz), 2*(xz+wy)],
[ 2*(xy+wz), 1-2*(xx+zz), 2*(yz-wx)],
[ 2*(xz-wy), 2*(yz+wx), 1-2*(xx+yy)]
])
return rmat
# Example usage with test data point
if __name__ == "__main__":
q_test = (-0.7071, 0., 0., 0.7071) # This represents a pi/2 rotation around Z axis in JPL convention
print(quaternion_to_rotation_matrix_jpl(q_test))
```
此段程序定义了一个名为`quaternion_to_rotation_matrix_jpl`的功能函数,用于接收遵循JPL约定的四元数组并将其转化为相应的旋转矩阵。最后还提供了一组测试数据点作为例子说明该方法的应用场景[^3]。
阅读全文
相关推荐


















